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ABSTRACT

In this dissertation, we develop a novel single level double-wavelet framework that

takes into account the spatial and temporal correlation at ROI-level for both task-induced

and resting state fMRI data analysis. Conventional approaches to fMRI analysis only

take into account temporal correlations but do not rigorously model the underlying spa-

tial correlation due to the complexity of estimating and inverting the high dimensional

spatio-temporal covariance matrix. Other spatio-temporal model approaches estimate the

covariance matrix with the assumption of stationary time series, which is not feasible some-

times. To address these limitations, we propose a double-wavelet approach for modeling

the spatio-temporal brain process. Working with wavelet coefficients simplifies temporal

and spatial covariance structure because under regularity conditions, wavelet coefficients

are approximately uncorrelated. Different wavelet functions were used to capture differ-

ent correlation structures in the spatio-temporal model. Main advantages of the wavelet

approach are that it is scalable and that it deals with non-stationarity in brain signals.

For tasked-induced fMRI data analysis, we applied our method to fMRI data to study

activation in pre-specified ROIs in the pre-fontal cortex. Data analysis showed that the

result using the double-wavelet approach was more consistent than the conventional ap-

proach when sample size decreased. We also developed a MATLAB graphical user in-

terface (GUI) for multi-subject task-induced fMRI data using double-wavelet transform,

which can estimate the effect of user-specified stimulus functions and region of interests

(ROI). For resting state fMRI data analysis, we applied our method to resting-state fMRI

data to study the difference between healthy subjects and patients with major depressive

disorder (MDD).

xi



Chapter 1

INTRODUCTION

One of the most challenging problem in contemporary science is to understand the hu-

man brain and its activity pattern. To acquire good quality data of the human brain function,

functional magnetic resonance imaging (fMRI) becomes a powerful tool in the last twenty

years. Compared to other methods like PET (Positron Emission Tomography) and MEG

(magnetoencephalography), fMRI has reasonable temporal resolution (1 ∼ 2 seconds) and

excellent spatial resolution (in mm3). Typical fMRI data are collected by scanning the

brain every few seconds and indirectly measure brain activity by detecting changes in oxy-

gen level associated with blood flow. There are about 100,000 three-dimensional volume

elements called voxels in each fMRI scan.

Several methods have been developed to take into account the spatial correlation in

fMRI data. Worsley et al. (1996) proposed spatial smoothing using a Gaussian kernel,

which is now commonly used as a preprocessing step in fMRI study. The goal of spatial

smoothing is to increase the signal to noise ratio in fMRI data, however it induces more

spatial correlation, which may result in invalid statistical inferences. Spatio-temporal mod-

eling is another approach to not only model the spatial correlation but also consider the

temporal correlation in fMRI data. Since Fourier coefficients are approximately uncorre-

lated across frequencies, Ombao et al. (2008) developed a spatio-spectral model to under-

stand the underlying spatio-temporal processes. Based on that, Kang et al. (2012) proposed

a spatio-spectral mixed-effects model to simultaneously estimate spatial correlation within

a region and correlation across regions.

Brammer (1998) and Ruttimann et al. (1998) first applied wavelet transform on fMRI

data. Long et al. (2004) performed wavelet transform on spatial data and calculated tempo-

ral noise parameters using iterative methods. Ville et al. (2004) proposed to simultaneously
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estimated two threshold using the original signal and the wavelet coefficients to denoise

the signal. Aston et al. (2005) estimated the spatio-temporal model coefficients using the

wavelet coefficients only from spatial data.

In this dissertation, we develop a novel single level double-wavelet framework that

takes into account the spatial and temporal correlation at ROI-level for both task-induced

and resting state fMRI data analysis.

1.1 Wavelet Transform

Similar to Fourier Transform, Wavelet Transform is a linear transform. Wavelet co-

efficients are obtained by the inner product of the observed data and wavelet functions,

which is similar to the sine and cousin functions in Fourier transform. There are two types

of wavelet transform, zero integral mother wavelet function and the unit integral father

wavelet function. Wavelet transform can be performed into different levels, which cor-

responding to different time interval length. In this paper, we only discuss single level

wavelet transform, which decomposes data into two frequency bands at each dimension.

1.2 Double Wavelet Transform

The main idea of the double-wavelet transform is to apply different wavelet functions

to different dimensional data in fMRI data analysis. The order of two wavelet transform

is interchangeable since wavelet transform is a linear transform. Suppose we have 4-D

fMRI data (1-D time series and 3-D volume). First we can obtain 3-D wavelet coefficients

by applying 3-D wavelet transform on 3-D column data at each time point. For each 3-D

wavelet transform, we have a time series of it. Second we apply 1-D wavelet transform on

the time series of the time series of each 3-D wavelet coefficient. We also apply the 1-D

wavelet transform on the stimulus function.

The wavelet transform naturally decomposes data into different scales. Each scale

corresponds to different frequency bands for both spatial and temporal data. The single

2



Figure 1.1: SLL, SLH , SHL and SHH represent the wavelet coefficients from the 2-D wavelet transform on the
spatial data in low-low (horizontal-vertical) frequency band (LL), low-high (horizontal-vertical) frequency
band (LH), high-low (horizontal-vertical) frequency band (HL), and high-high (horizontal-vertical) frequency
band (HH) respectively; TL and TH represent the wavelet coefficients from the 1-D wavelet transform on the
temporal data in low and high frequency band respectively.
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level discrete wavelet transform (SL-DWT) decomposes data into two frequency bands

at each dimension. For example, a 1-D signal would be transformed into wavelet coeffi-

cients indicating information from one high frequency band and one low frequency band

by SL-DWT. A 2-D image would be decomposed into high and low frequency bands on

both vertical and horizontal directions by SL-DWT, which results into four parts, low-

low (horizontal-vertical) frequency band (LL), low-high (horizontal-vertical) frequency

band (LH), high-low (horizontal-vertical) frequency band (HL), and high-high (horizontal-

vertical) frequency band (HH). Figure 1.1 shows the double wavelet coefficients, where S

indicates the wavelet coefficients from the 2-D wavelet transform on the spatial data and T

indicates the wavelet coefficients from the 1-D wavelet transform on the temporal data.

Figure 1.2 (a) is an example using the Daubechies 3 wavelet (spatial wavelet function)

and the Symlet 8 wavelet (temporal wavelet function) on an activated 3-D ROI data (β1 −

β2 > 0) in simulation (2-D in spatial domain and 1-D in temporal domain). Figure 1.2 (b)

is an example using Reverse Biorthogonal 3.1 wavelet as spatial wavelet and Haar wavelet

as temporal wavelet on a simulated 3-D resting state fMRI ROI data (2-D in spatial domain

and 1-D in temporal domain).

4



(a) (b)

Figure 1.2: (a) is an example using the Daubechies 3 wavelet (spatial wavelet function) and the Symlet 8
wavelet (temporal wavelet function) on an activated 3-D ROI data (β1 −β2 > 0) in simulation (2-D in spatial
domain and 1-D in temporal domain). (b) is an example using Reverse Biorthogonal 3.1 wavelet as spatial
wavelet and Haar wavelet as temporal wavelet on a simulated 3-D resting state fMRI ROI data (2-D in spatial
domain and 1-D in temporal domain).
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Chapter 2

DOUBLE-WAVELET TRANSFORM FOR MULTI-SUBJECT TASK-INDUCED

FUNCTIONAL MAGNETIC RESONANCE IMAGING DATA

The goal of this article is to model multi-subject task-induced fMRI response among

predefined regions of interest (ROIs) of the human brain. Conventional approaches to fMRI

analysis only take into account temporal correlations but do not rigorously model the un-

derlying spatial correlation due to the complexity of estimating and inverting the high di-

mensional spatio-temporal covariance matrix. Other spatio-temporal model approaches

estimate the covariance matrix with the assumption of stationary time series, which is not

feasible sometimes. To address these limitations, we propose a double-wavelet approach

for modeling the spatio-temporal brain process. Working with wavelet coefficients simpli-

fies temporal and spatial covariance structure because under regularity conditions, wavelet

coefficients are approximately uncorrelated. Different wavelet functions were used to cap-

ture different correlation structures in the spatio-temporal model. Main advantages of the

wavelet approach are that it is scalable and that it deals with non-stationarity in brain sig-

nals. Simulation studies showed that our method could reduce false positive rates and false

negative rates by taking into account spatial and temporal correlations simultaneously. We

also applied our method to fMRI data to study activation in pre-specified ROIs in the pre-

fontal cortex. Data analysis showed that the result using the double-wavelet approach was

more consistent than the conventional approach when sample size decreased.

2.1 Introduction

For investigating the human brain, functional magnetic resonance imaging (fMRI) is a

powerful tool because it has excellent spatial resolution (in mm3) and reasonable temporal

resolution (about 1 second) for capturing the evolution of the brain hemodynamic response.
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Typical fMRI data are generated by scanning the brain every few seconds. During each

scan, the signal from the brain is measured on three-dimensional volume elements called

voxels.

The conventional analysis of fMRI data (AV-GLM) first applies spatial smoothing on

the data to increase the signal to noise ratio (SNR) after a series of preprocessing steps,

e.g., motion correction, slice timing correction, and co-registration, estimates the parame-

ters from the mean time series of each ROI while taking into account the temporal correla-

tion, e.g., auto-regressive order one (AR(1)) structure, and then uses a simple t-test on the

parameters of the model from multiple subjects (Worsley & Friston, 1995; Weiskopf et al.,

2003; Huettel et al., 2004). This approach only takes into account the underlying temporal

correlation but does not rigorously model the underlying spatial correlation. Dubin (1988)

argued that ignoring spatial correlation in data led to smaller standard errors and higher

Type I errors.

Spatial smoothing and spatio-temporal modeling are two common approaches that take

into account spatial correlation in fMRI data analysis. Spatial smoothing using a Gaussian

kernel was proposed by Worsley et al. (1996). Katanoda et al. (2002) proposed combining

information from the six nearest neighboring voxels in the Fourier domain. Though these

approaches increased the signal to noise ratio in fMRI data, they actually induce more spa-

tial correlation, which may cause a higher error rate. Ombao et al. (2008) developed a

spatio-spectral model using the Fourier bases to understand the underlying spatio-temporal

processes. Kang et al. (2012) proposed a spatio-spectral mixed-effects model to estimate

local and global spatial correlation. These approaches utilized the fact that the Fourier co-

efficients are approximately uncorrelated across frequencies. However, these approaches

require temporal stationarity of the signals and the estimation and inversion of the covari-

ance matrix, both of which are computationally expensive in fMRI data analysis since there

could be over 100,000 voxels.

Recently, Karaman et al. (2014) used linear operators during spatial and temporal pre-
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processing and reconstruction operations. Degras & Lindquist (2014) developed a spatio-

temporal hierarchical model by estimating the hemodynamic response function (HRF) and

voxel activation simultaneously. Lindquist et al. (2009); Zhang et al. (2012, 2013, 2014)

proposed both parametric and semi-parametric estimation of the HRF. Although these

methods relaxed the stationary time series assumption, they still require stationary spa-

tial correlation across voxels. Hyun et al. (2014) proposed a Gaussian predictive process

model using a three-stage estimation to model the spatial correlation and cross-correlation

simultaneously. Furthermore, Hyun et al. (2016) applied the spatio-temporal Gaussian pro-

cess on the longitudinal neuroimaging data. However, the key assumptions of the spatio-

temporal Gaussian process need to be rigorously validated.

The wavelet transform is a linear transformation similar to the Fourier transform. We

start with a wavelet bases consisting of orthonormal functions. The signal being analyzed is

represented in terms of the selected bases and the wavelet coefficients are the inner product

(cross-correlation) between the observed signal and each of the wavelet bases functions.

Fan (2003) proved that the discrete wavelet transform (DWT) coefficients of both station-

ary and non-stationary signals were approximately uncorrelated as long as the length of

the wavelet filter was large enough and the length of signals were sufficiently long. The

wavelet transform was first introduced to fMRI analysis by Brammer (1998) and Ruttimann

et al. (1998). Brammer proposed manipulating the wavelet coefficients in the spatial do-

main and reconstructing the original data to optimize the detection of activation. Ruttimann

discovered that the sum of the square of standardized wavelet coefficients had a χ2 distri-

bution. The brain signals were reconstructed using only wavelet coefficients with large

magnitude (i.e., those that exceed a theoretically-derived threshold). Bullmore et al. (2003)

used the decorrelating property of the wavelet transform to control the Type I errors. Long

et al. (2004) performed spatio-temporal wavelet analysis for fMRI data by combining the

wavelet transform with calculating the temporal noise parameters using iterative methods.

To minimize the approximation errors, Ville et al. (2004) proposed using two thresholds.
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One threshold was used before reconstruction and the other was used after reconstruction.

Two thresholds, one in the wavelet domain and the other in the time domain, were simul-

taneously estimated to produce the reconstructed signal. Perhaps most closely related to

the approach we developed, Aston et al. (2005) proposed estimating the model coefficients

in the wavelet domain by applying one wavelet transform on the spatial data at each time

point. They transformed the wavelet coefficient residuals back to the spatial domain and

used the reconstructed residuals to estimate the variance of the coefficients.

In this article, we develop a novel single level double-wavelet framework that takes into

account the spatial and temporal correlation for estimating the ROI-level activation patterns

in multi-subject fMRI data analysis. Our approach does not require the estimation of the

spatio-temporal covariance matrix and inversion of it, which is a big computational burden

in the spatial-temporal model in fMRI data analysis. We first apply one wavelet transform

(spatial wavelet function) on the spatial data at each time point, then apply another wavelet

transform (temporal wavelet function) on the time series of each spatial wavelet coeffi-

cient. Different wavelet functions can be chosen to capture different correlation structures

in the spatial and temporal data. The boxcar stimulus function convolved with the HRF

is also transformed using the temporal wavelet function. For illustration purpose, a box-

car function, the canonical HRF given by SPM12 (http://www.fil.ion.ucl.ac.uk/spm/), the

convolution between two functions, and the wavelet coefficients by performing a wavelet

transform using Daubechies 3 wavelet on the convolution are depicted in Figure 2.1. All

estimations and inferences were done using wavelet coefficients. It is noteworthy that the

order of the computation of the two wavelet transforms has no effect on the result since the

wavelet transform is a linear transformation. The double-wavelet transform also simplifies

the data structure, where four-dimensional (4-D) data were converted into two-dimensional

(2-D) data. We examine the validity of our approach via simulation studies with different

spatial correlation structures. Finally we apply our approach to investigate higher cogni-

tive control function in the anterior premotor cortex (prePMD), the lateral prefrontal cortex
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(d) Coefficients by wavelet transform using Daubechies 3 wavelet on (c) 

Figure 2.1: A typical boxcar stimulus function is illustrated in (a); the HRF is illustrated in (b); the con-
volution between the stimulus function and the HRF is in (c), which is used as one of covariates in linear
model; (d) shows the wavelet coefficients by performing the single level wavelet transform using Daubechies
3 wavelet on (c). The units of x-axis in (a), (b), (c) and (d) are in seconds.
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(PFC), and the primary visual cortex.

2.2 The Wavelet Transform

First, we will introduce the wavelet transform. The wavelet families form a series

of orthonormal bases for different dimensional data. Wavelet coefficients are obtained

by the inner product of the observed data and wavelet functions which contain the zero

integral “mother” wavelet function and the unit integral “father” wavelet function. All other

wavelet functions are dilated and shifted from the mother and father wavelet functions.

For simplicity, we only introduce the one-dimensional (1-D) and two-dimensional (2-D)

wavelet transform in the method and simulation section.

2.2.1 One-Dimensional Wavelet Transform

Let Ψa,b(x) and Φa,b(x), a ∈ R\{0},b ∈ R be two families of functions defined as

translations and re-scales of functions Ψ(x) and Φ(x), where

Ψa,b(x) =
1√
a

Ψ
(

x−b
a

)
, Φa,b(x) =

1√
a

Φ
(

x−b
a

)

The function Ψ(x) is called the wavelet function or the mother wavelet function where∫
Ψ(x)dx = 0 and

∫
Ψ(x)2dx = 1. The function Φ(x) is called the scaling function or the

father wavelet function where
∫

Φ(x)dx = 1.

For discrete wavelet transform, we can select discrete values of a and b such that the

transformation is invertible, where a = 2− j, b = k2− j, j indicates the scale, and k indicates

the shift. More details can be found in Vidakovic (1999) and Nason (2008). In this paper,

we only discuss the single level discrete wavelet transform (SL-DWT), where j = 1, a = 1
2

and b = k
2 . To simplify the notation, we denote φω(x) for all scaled and shifted wavelet

functions Ψa,b(x) and Φa,b(x), where ω = 1,2, ...,Ω, and Ω is the total number of 1-D sin-

gle level wavelet coefficients. Different wavelet functions may have different Ω. Suppose
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we have a time series g(x), the 1-D discrete wavelet transform of g(x) can be expressed as

Wω = ∑
x

g(x)φω(x)

where Wω is a 1-D single level wavelet coefficient.

2.2.2 Two-Dimensional Wavelet Transform

Similar to 1-D wavelet transform, we have 2-D mother wavelet function Ψ(x,y) such

that∫ ∫
Ψ(x,y)dxdy= 0 and

∫ ∫
Ψ(x,y)2dxdy= 1, and 2-D father wavelet function Φ(x,y) such

that
∫ ∫

Φ(x,y)dxdy = 1. Their scaled and shifted wavelet functions are

Ψ(a,b1,b2)(x,y) =
1√
|a|

Ψ
(

x−ab1

2
,
y−ab2

a

)

Φ(a,b1,b2)(x,y) =
1√
|a|

Φ
(

x−ab1

2
,
y−ab2

a

)
.

For discrete wavelet transform, we can select discrete values of a, b1 and b2 such that the

transformation is invertible, where a = 2− j, b1 = k12− j and b2 = k22− j, j indicates the

scale, k1 and k2 indicate the shift. We will only use single level wavelet coefficient where

j = 1, a = 1
2 , b1 = k1

2 , and b2 = k2
2 . We can simplify the notation of all 2-D single level

wavelet functions Ψ
( 1

2 ,
k1
2 ,

k2
2 )
(x,y) and Φ

( 1
2 ,

k1
2 ,

k2
2 )
(x,y) as ϕr(x,y), r = 1,2, ...,R, and R is the

total number of 2-D single level wavelet coefficients. Let {ζ}= {x,y} represent all pairs of

2-D data coordinates. Suppose we have 2-D data g(ζ ) = g(x,y), the 2-D discrete wavelet

transform of g(ζ ) can be expressed as

Wr = ∑
ζ

g(ζ )ϕr(ζ )
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where Wr is a 2-D single level wavelet coefficient. The wavelet transform in higher dimen-

sions can be performed similarly.

2.3 Method

2.3.1 Spatio-temporal Model

We now develop our model in more detail. Suppose that there are N subjects, P exter-

nal stimuli, C many ROIs and Vc many voxels within the c-th ROI. Define the time series

at voxel v in ROI c for subject n to be Yncv(t), t = 1, ...,T , where T is the length of time

series. We define two functions πb(·) and πd(·) that generate valid covariance matrices.

Let πb(·) be a function of the Euclidean distance between voxels within an ROI, and πd(·)

is corresponding to the covariance function between ROIs, which does not depend on the

Euclidean distance. Using the model described below, we would need to consider three

different correlations: the spatial correlation between voxels within an ROI, the tempo-

ral correlation within a voxel over time, and the correlation between ROIs. Consider the

following spatio-temporal model for the fMRI time series:

Yncv(t) =
P

∑
p=1

[β p
ncvX p(t)]+ εncv(t), where (2.1)

β p
ncv = β p

c +bp
ncv

εncv(t) = dnc + encv(t)

• X p(t) is the expected BOLD response corresponding to the pth stimulus which is

formally the convolution between the HRF and the pth impulse function. The HRF

is the expected neuronal activation function given a stimuli. An example of these

functions has been shown in Figure 2.1.

• β p
c is the ROI-specific activation level fixed effect due to stimulus p;
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• bp
ncv is a zero-mean voxel-specific random effect that accounts for the spatial covari-

ance between voxels v and v′ within ROI c for subject n, where

cov(bncv,bn′c′v′) =

 πb(∥ v− v′ ∥), when c = c′,n = n′,

0 otherwise.
(2.2)

• εncv(t) is the noise that takes into account the voxel-specific temporal correlation. dnc

is a zero-mean ROI-specific random effect with a covariance structure cov(dc,dc′) =

πd(c,c′) that is used to model the correlation between ROIs. encv(t) is the temporal

error that is assumed to follow an AR(1) process.

To test whether ROI c is activated when the pth stimulus is presented, we are interested

in the hypothesis:

H0 : β p
c −β 1

c = 0 (2.3)

where β 1
c indicates the baseline condition at ROI c.

2.3.2 Double-Wavelet Transform

The main idea of the double-wavelet transform is to first apply the 2-D/3-D wavelet

transform on the spatial image/volume data at each time point, then apply the 1-D wavelet

transform on the time series of each wavelet coefficient in the previous step. We also apply

the 1-D wavelet transform on the stimulus function. Then we build all models and analyses

using the double-wavelet coefficients instead of the original data. For simplicity, we assume

our data at each time point are two dimensional and we use the 2-D wavelet transform here.

From equation (2.1), we apply the 2-D discrete wavelet transform on the data at each

time point first. Assume that ϕr(v) are families of one specific 2-D wavelet transform
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function, then for ROI c, we have

Uncr(t) = ∑
v

Yncv(t)ϕr(v) =
P

∑
p=1

λ p
ncrX

p(t)+ εncv(t) where

r = 1,2, ...,R, and R is the total number of 2-D wavelet coefficients at each time point.

λ p
ncr = ∑v β p

ncvϕr(v) is the 2-D wavelet coefficient by applying the 2-D wavelet transform

on the spatially dependent parameter β p
ncv in ROI c for subject n.

Secondly, we apply the 1-D wavelet transform on the time series of each 2-D wavelet

coefficient Uncr(t). Assume that φω(t) are families of one specific 1-D wavelet transform

function, then we have

Wncrω = ∑
t

Uncr(t)φω(t) =
P

∑
p=1

λ p
ncrV

p
ω +δncrω where (2.4)

ω = 1,2, ...,Ω, and Ω is the total number of 1-D wavelet coefficients for the time series

of each 2-D wavelet coefficient. V p
ω = ∑t X p(t)φω(t) is the 1-D wavelet coefficients by

applying the 1-D wavelet transform on the stimulus function X p(t). δncrω =∑t εncr(t)φω(t)

is the 1-D wavelet coefficients by applying the 1-D wavelet transform on the time dependent

error term εncr(t) at the 2-D wavelet coefficient r in ROI c for subject n. An example of the

double-wavelet coefficients Wncrω in ROI c for subject n of an activated ROI (β1 −β2 > 0)

in simulation is illustrated in Figure 2.2(a). After the double-wavelet transform, all δncrω

are approximately uncorrelated, as long as the two wavelet filters are long enough (Fan,

2003).

2.3.3 Denoising

The wavelet transform naturally decomposes data into different scales. Each scale

corresponds to different frequency bands for both spatial and temporal data. The single

level discrete wavelet transform (SL-DWT) decomposes data into two frequency bands

at each dimension. For example, a 1-D signal would be transformed into wavelet coeffi-
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(a) (b)

Figure 2.2: The double-wavelet coefficient structure. (a) is an example using the Daubechies 3 wavelet
(spatial wavelet function) and the Symlet 8 wavelet (temporal wavelet function) on an activated 3-D ROI data
(β1 −β2 > 0) in simulation (2-D in spatial domain and 1-D in temporal domain). (b): SLL, SLH , SHL and SHH
represent the wavelet coefficients from the 2-D wavelet transform on the spatial data in low-low (horizontal-
vertical) frequency band (LL), low-high (horizontal-vertical) frequency band (LH), high-low (horizontal-
vertical) frequency band (HL), and high-high (horizontal-vertical) frequency band (HH) respectively; TL and
TH represent the wavelet coefficients from the 1-D wavelet transform on the temporal data in low and high
frequency band respectively.

cients indicating information from one high frequency band and one low frequency band

by SL-DWT. A 2-D image would be decomposed into high and low frequency bands on

both vertical and horizontal directions by SL-DWT, which results into four parts, low-

low (horizontal-vertical) frequency band (LL), low-high (horizontal-vertical) frequency

band (LH), high-low (horizontal-vertical) frequency band (HL), and high-high (horizontal-

vertical) frequency band (HH). For subject n at ROI c, Wncrω in equation (2.4) would have

the same shape as in Figure 3.1(b), where S indicates the wavelet coefficients from the 2-D

wavelet transform on the spatial data and T indicates the wavelet coefficients from the 1-D

wavelet transform on the temporal data.

In simulation, we found that more than 95% of the wavelet periodograms were con-

tained in the SLL · TL part, which included 1/8 of the original data. The data in SLL · TL

were the double-wavelet coefficients from the father wavelet (low-pass filter) in both time

domain and spatial domain. The double-wavelet coefficients other than SLL ·TL were the
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wavelet coefficients passing at least one high-pass filter in time domain or spatial domain.

To remove these noise from data, we simply excluded the wavelet coefficients not in the

SLL ·TL part when estimating parameters: we only used the double-wavelet coefficients in

the SLL ·TL part, where r = 1,2, ...,R/4 and ω = 1,2, ...,Ω/2.

2.3.4 Estimation

We first define some notations. We define Nq(µ,Σ) as multi-variate normal distribution

with q× 1 mean vector µ, and covariance matrix Σ, and denote the q× q identity matrix

by Iq

We can rewrite equation (2.4) in matrix notation, we have

Wncr = V Tλncr +δncr, where (2.5)

• Wncr = [Wncr1,Wncr2, ...,Wncr(Ω/2)]
T is a Ω/2×1 vector, which are the double-wavelet

coefficients in SLL ·TL part by performing double-wavelet transform on data Yncv for

subject n in ROI c. We assume that Wncr ∼ NΩ/2(V
Tλncr,cov(δncr))

• V =



V 1

V 2

. .

V P


=



V 1
1 V 1

2 V 1
3 . . . V 1

Ω/2

V 2
1 V 2

2 V 2
3 . . . V 2

Ω/2

. . . . . . . . . . .

V P
1 V P

2 V P
3 . . . V P

Ω/2


P×Ω/2

where V is a P×Ω/2 matrix, in which elements are the 1-D wavelet coefficients

by performing 1-D wavelet transform on X p(t) corresponding the pth stimulus func-

tion;

• λncr = [λ 1
ncr,λ 2

ncr, ...,λ P
ncr]

T is a P× 1 vector, consisting of the 2-D wavelet coeffi-

cients by performing 2-D wavelet transform on the β p
ncv;

• δncr = [δncr1,δncr2, ...,δncr(Ω/2)]
T is a Ω/2×1 vector, consisting of the 1-D wavelet
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coefficients by performing 1-D wavelet transform on the error term ϵncv, and δncr ∼

NΩ/2(0,σ2IΩ/2), where σ2 is the variance of the wavelet coefficients δncr.

Then we estimate λ̂ncr by using the ordinary least squares estimator

λ̂ncr = (V V T )−1V Wncr

The boxcar stimuli are orthogonal to each other in task-induced fMRI data, which

means X p′ · (Xp)T = 0 when p ̸= p′, then

V p′ · (V p)T = (ϕ(x)X p′)(ϕ(x)Xp)T = ϕ(x)X p′(Xp)Tϕ(x)T

where ϕ(x)= [ϕ1(x) ϕ2(x) ... ϕΩ/2(x)] and ϕk(x),k = 1,2, ...,Ω/2 are wavelet func-

tions. Then we have V p′ · (V p)T = 0 and (V V T )−1 is a diagonal matrix.

A simple t-test is used on a linear contrast of λncr based on multi-subject data. Since

there is a one to one relationship between β p
ncv and λ p

ncr, the hypothesis in equation (4.2) is

equivalent to

H0 : λ p
c −λ 1

c = 0

where λ 1
c is the mean of the estimator λ 1

ncr and λ p
c is the mean of the estimator λ p

ncr across

subjects for ROI c using double-wavelet coefficients in SLL ·TL part as discussed in Section

2.3.3.

2.4 Simulation Study

We explored and validated our approach via simulation studies. We generated multi-

subject spatially and temporally correlated data. Then, we compared our double-wavelet

(DW) approach with the conventional AV-GLM approach in terms of false positive and

false negative rates at each ROI.
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2.4.1 Data Generation

We have two simulation studies with different number of ROIs. In the first simulation,

we generated data with two ROIs. One ROI was assumed to be null ROI (β 2−β 1 = 0) and

the other ROI was assumed to be non-null ROI (β 2 −β 1 ̸= 0). We varied the correlation

between ROIs and the effect size (β 2 −β 1) from 0 to 1. Three to ten subjects were used in

the analysis.

In the second simulation, we generated data with six ROIs. Three ROIs (ROI 1, ROI 2

and ROI 3) were assumed to be null ROIs and three ROIs (ROI 4, ROI 5 and ROI 6) were

assumed to be non-null ROIs with the effect size 0.6. These six ROIs have the variance

σ2 = 1 and the correlation matrix in πd in equation (2.1) as



1.0 0.6 0.0 0.5 0.0 0.2

0.6 1.0 0.2 0.1 0.0 0.1

0.0 0.2 1.0 0.0 0.1 0.0

0.5 0.1 0.0 1.0 0.2 0.6

0.0 0.0 0.1 0.2 1.0 0.0

0.2 0.1 0.0 0.6 0.0 1.0


In both simulation studies, each ROI contained 100 voxels (10× 10). At each voxel,

spatially and temporally correlated time series with T = 128 were generated using AR(1)

structure. The parameter of AR(1) model was 0.6. Two boxcar external stimuli were used

to generate each signal.

We considered three different spatial correlations. First we assumed all voxels were

independent within an ROI, where πb(·) = 0 in equation (2.2). Secondly, we assumed that

πb(·) was an exponential covariance function with the decaying parameter 0.5. Thirdly, we

assumed that all observations were the same across voxels, meaning that all voxels were

extremely correlated with one another. All results were based on 100 repetitions for each
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simulation scenario.

2.4.2 Estimation and Results

We tried 54 different wavelet functions in the MATLAB (MathWorks, Natick, MA)

wavelet toolbox for both 2-D wavelet transform and 1-D wavelet transform. There were a

total of 2916 (54× 54) combinations of the double-wavelet transform. In simulation, we

found that using the Daubechies 3 wavelet (Db3) on the spatial data, and using the Symlets

8 wavelet (Sym8) on the temporal data minimized both the Type I errors and Type II errors.

2.4.2.1 Two ROIs

Figure 2.3 shows the Type I errors and the Type II errors for the DW and AV-GLM

approach based on 10 subjects under three different spatial correlations when the effect

size (β1−β2) was 0.6 and there was no correlation between the two ROIs. When all voxels

were uncorrelated, the Type II errors using the DW approach (3%) were less than half of the

Type II errors using the AV-GLM approach (7%) while their Type I errors were close (6% vs

5%). When the spatial correlations among voxels were based on the exponential covariance

function, the Type I and Type II errors using the DW approach (4% and 5%) were smaller

than using the AV-GLM approach (7% and 8%). When all voxels were identical, the Type

I and Type II errors using the DW approach (8% and 25%) were slightly smaller than using

the AV-GLM approach (9% and 26%).

Figure 2.4 shows the Type I errors and the Type II errors for the DW and AV-GLM

approach based on 10 subjects when the correlation between the two ROIs varied from 0 to

0.9 and the effect size (β1−β2) was 0.6. There was no effect of between-ROI correlation on

the Type I and Type II errors. When all voxels were uncorrelated, the AV-GLM approach

had slightly smaller Type I errors than the DW approach (5% vs. 6%) while the Type II

errors using the DW approach (3%) were less than half of the Type II errors using the

AV-GLM approach (7%). When the spatial correlations among voxels were based on the
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Figure 2.3: Type I and Type II errors for the DW and AV-GLM approach based on 10 subjects with different
spatial correlation structures, when the effect size (β1−β2) was 0.6 and the correlation between the two ROIs
was 0.
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Figure 2.4: Type I and Type II errors for the DW and AV-GLM approach based on 10 subjects with different
correlations between ROIs, when the effect size (β1 −β2) was 0.6.
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exponential covariance function, the Type I and Type II errors using the DW approach (4%

and 5%) were both smaller than using the AV-GLM approach (7% and 8%). The DW

approach had smaller Type I and Type II errors (8% and 25%) than the AV-GLM approach

(9% and 26%) when all voxels were identical.

Figure 2.5 shows the Type I errors and the Type II errors for the DW and AV-GLM

approach based on 10 subjects when the effect size (β1 −β2) changed from 0.1 to 1 under

three different spatial correlations. The correlation between the two ROIs was 0.2. There

was no change in the Type I errors with the effect size. Two methods had no difference

when all voxels were independent, identical or the spatial correlations among voxels were

based on the exponential covariance function in terms of the Type II errors. The AV-GLM

approach had smaller Type I errors than the DW approach (5% vs. 6%) when all voxels

were uncorrelated. The DW approach had smaller Type I errors than the AV-GLM approach

(4% vs. 7%) when the spatial correlations among voxels were based on the exponential

covariance function. When all voxels were identical, the DW approach had slightly lower

Type I errors than the AV-GLM approach (8% vs. 9%).

Figure 2.6 shows the Type I errors and the Type II errors for the DW approach and

the AV-GLM approach based on different number of subjects under three different spatial

correlations. The correlation between the two ROIs was 0.3 and the effect size (β1−β2) was

0.9. When all voxels were independent, the AV-GLM approach performed better than the

DW approach in terms of Type I errors, while their type II errors were very similar. When

the spatial correlations among voxels were based on the exponential covariance function,

the DW approach had smaller Type I and Type II errors than the AV-GLM approach. When

all voxels were identical, the DW approach performed better than the AV-GLM approach

in terms of Type I errors, while their type II errors were very similar.

The simulation studies showed that the DW approach outperformed the AV-GLM ap-

proach when voxels were identical and the spatial correlations among voxels were based on

the exponential covariance function. The AV-GLM approach only outperformed the DW
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Figure 2.5: Type I and Type II errors for the DW and AV-GLM approach based on 10 subjects with different
effect size (β1 −β2), when the correlation between the two ROIs was 0.2.
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Figure 2.6: Type I and Type II errors for the DW and AV-GLM approach based on different number of
subjects. The correlation between the two ROIs was 0.3. The effect size (β1 −β2) was 0.9.
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Table 2.1: Mean Type I errors for the DW and the AV-GLM approach controlling the FDR at 0.05 when the
spatial correlations among voxels were based on exponential covariance function. The effect size (β1 −β2)
was 0.6

# of Subject ROI 1 ROI 2 ROI 3 Mean Type I
DW 4 0.00 0.02 0.05 0.02

AV-GLM 4 0.02 0.03 0.06 0.04
DW 8 0.02 0.01 0.05 0.03

AV-GLM 8 0.05 0.00 0.04 0.03
DW 12 0.01 0.03 0.06 0.03

AV-GLM 12 0.03 0.03 0.06 0.04

approach when all voxels were independent, which is not feasible in practice. The DW

approach outperformed the AV-GLM approach in our simulation, partly because it did not

require two assumptions. First, the AV-GLM approach assumed that the mean time series

of each ROI had AR(1) structure. Second, the AV-GLM approach assumed that all voxels

were uncorrelated by not rigorously modeling the underlying spatial correlations in esti-

mating model parameters. These two assumptions used in our simulation studies can be

violated in common fMRI data analysis.

2.4.2.2 Six ROIs

For this simulation, there were six correlated ROIs and the effect size (β1 − β2) was

0.6. We control the FDR at 0.05 level. For three different types of spatial correlation

between voxels, the mean Type I errors for three null ROIs and the mean Type II errors for

three non-null ROIs are presented in Figure 2.7. The DW approach performed as good as

the AV-GLM approach when all voxels were independent and identical. When the spatial

correlations among voxels were based on the exponential covariance function, we found

that the DW approach had slightly smaller mean Type I errors for three non-null ROIs than

the AV-GLM approach. The Type I errors for 4, 8 and 12 subjects were listed in Table 1.
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Figure 2.7: Mean Type I errors and mean Type II errors for the DW and AV-GLM approach based on different
number of subjects with different spatial correlation structures, when the effect size (β1 −β2) was 0.6.
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(a) (b) (c)

Figure 2.8: Colored boxes on the axial slices of the brain illustrate the location of three ROIs: the red box
indicates ROI 1, the blue box indicates ROI 2 and the green box indicates ROI3; their coordinates are also
included: (a) ROI 1 (-40,4,3), (b) ROI 2 (-42,28,24), (c) ROI 3 (14,-100,0)

2.5 Data Analysis

We applied our proposed double-wavelet transform approach to a study designed to test

cognitive control related activation in the prefrontal cortex (PFC) of the human brain. Here

we describe the background, motivation, study design and the data.

In a previous study (Badre & D’Esposito, 2007; Long & Badre, 2009), the anterior pre-

motor cortex (prePMd) was activated in an experimental situation. During the experiment,

each participant first selected one of two perceptual dimensions (i.e., shape or texture) of a

stimulus and then selected a response. All participants were trained to press one of four but-

tons while seeing four stimulus shapes and four stimulus textures (e.g., webbed, streaked).

Since the response sets associated with shape and texture overlap, the participant needed

to first select whether shape or texture was the relevant cue dimension to make a correct

response. Participants also needed to link two colors with the texture dimension and two

colors with the shape dimension. In the experiment, they would see a shape with a partic-

ular texture within a colored box. They would choose one of the four buttons based on the

color of the box and the associations they learned for shape or for texture.

For a given block of trials, participants would be cued either one dimension (D1) or

two dimensions (D2). On D2 blocks, they were required to select the relevant dimension

based on color. On D1 blocks, minimal cognitive control was required because the same

dimension was always relevant. Based on prior studies (Badre & D’Esposito, 2007; Badre
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et al., 2009), prePMd should be activated with the contrast of D2 > D1. We defined this as

ROI 1. Regions rostral to prePMd (e.g., lateral frontal cortex, Brodmann area 9/46) were

suggested to have less activation by this specific control demand by hierarchical theories

of rostro-caudal frontal organization. These regions were more involved in more abstract

control (Koechlin et al., 2003; Badre, 2008). One region rostral to prePMd in lateral PFC

was associated with higher order control (Badre & D’Esposito, 2007). We defined this as

ROI 2. We also defined an ROI in the primary visual cortex (ROI 3) whose D2 versus

D1 contrast should not be different in low-level perceptual demands. This ROI 3 was not

expected to show activation. The three ROIs were illustrated in Figure 2.8, where ROI 1,

ROI 2, and ROI 3 were denoted by colored boxes in each axial slice of the brain image.

Their x-, y-, and z-coordinates in the brain were also included, where the origin was at the

center of the brain.

There were 144 trials (2 sec/trial) for each dimension condition (D1, D2). The inter-

trial interval was 0 - 8 sec. Six scanning runs (4 min/run) contained 48 trials each. Each run

had 4 blocks (12 trials/block), which followed an ABBA format for dimension type (e.g.,

D1, D2, D2, D1). The subject’s order of dimension conditions were counterbalanced.

Functional images were acquired using a gradient-echo echo-planar sequence (TR = 2

sec; TE = 30 msec; flip angle = 90; 33 axial slices, 3× 3× 3.5 mm) on the Siemens 3T

TIM Trio MRI system at the Brown University MRI Research Facility. High-resolution

T1-weighted (MP-RAGE) anatomical images were collected (TR = 1900 msec; TE = 2.98

sec; flip angle = 9; 160 sagittal slices, 1×1×1 mm) after each run. Participants would see

visual stimuli through a mirror attached to a matrix eight-channel head coil.

Data were preprocessed and analyzed using SPM12 and MATLAB (MathWorks, Nat-

ick, MA). To correct for differences in slice acquisition timing, all images of slice in time

were re-sampled to match the first slice. Images were then motion corrected and normal-

ized to Montreal Neurological Institute stereotaxic space, and spatially smoothed for the

AV-GLM approach (FWHM=4) but not for the double-wavelet approach.
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We applied the 3-D wavelet transform using the Db3 wavelet on the volume of the brain

at each time point, and then applied the 1-D wavelet transform using the Sym8 wavelet on

the time series of each 3-D wavelet coefficient. We had three stimuli: D1, D2, and the

instruction period (IP). The three stimuli were convolved with the canonical HRF used in

SPM12 and then transformed using the 1-D Sym8 wavelet, which were denoted by VD1,

VD2 and VDIP. Then we applied equation (2.5) to the data collected from 15 subjects to see

if we could find any activated ROI(s) among the three given ROIs. Each ROI contained 343

(7× 7× 7) voxels per ROI. The corresponding regression coefficients were λ D1
c , λ D2

c and

λ DIP
c in ROI c, where c ∈ {1,2,3}. λ D2

c −λ D1
c was of primary interest to test the hypothesis

H0 : λ D2
c −λ D1

c > 0, which was equivalent to H0 : β D2
c −β D1

c > 0 in equation (2.1). Given

the point estimates of λ D2
c − λ D1

c at each ROI for each subject, p-values were computed

based on a t-test. To manage the multiple comparisons, we controlled the False Discovery

Rate (FDR) at 0.05 level.

To see which method was more robust when sample size decreased, we compared the

results using a different number of subjects to the result using all 15 subjects for each ROI.

A full description of this approach, called data decimation, can be found in Yang et al.

(2010). We calculated the rejection rates based on all possible combinations of different

subjects. For example, the rejection rate at 6 subjects was based on C(15,6) = 5005 tests.

The rejection rates are illustrated in Figure 2.9. We defined the rejection rate as the correct

rejection rate if the test was rejected using all 15 subjects. Otherwise, the rejection rate was

called the incorrect rejection rate. For ROI 1 and ROI 2, the correct rejection rates went up

when the number of subjects increased. For ROI 3, the incorrect rejection rates went down

when the number of subjects increased, as we expected to see no difference between D2

versus D1 contrast. For ROI 1, the DW approach had slightly lower correct rejection rates

(82.6% and 92.7%) than the AV-GLM approach (85.5% and 94.7%) for 3 and 4 subjects.

For ROI 2, the DW approach had slightly lower correct rejection rates (94.1% and 99.4%)

than the AV-GLM approach (97.4% and 99.9%) for 3 and 4 subjects. For ROI 3, the DW
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Figure 2.9: Rejection rates for ROI 1, ROI 2 and ROI 3 using different numbers of subjects for the DW and
AV-GLM approach
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approach had much smaller incorrect rejection rates (9.7%, 4.2%, 1.5% and 0.5%) than

the AV-GLM approach (20.4%, 10.3%, 7.1% and 4.9%) for 3, 5, 7 and 9 subjects. After

10 subjects, there was no difference between the two methods for all three ROIs.

These results were consistent with our claim supported via simulation studies in Section

4 that the DW approach outperformed the AV-GLM approach in terms of the Type II errors

and the Type I errors resulted from the two methods were similar, when the voxel-level

spatial correlation was based on the exponential covariance function. We can conclude

that ignoring the underlying spatial correlation in fMRI data results in misleading scientific

findings for a small sample size by potentially underestimating the variance of estimators

of interest as shown in Dubin (1988).

2.6 Conclusion

In this article, we proposed a double-wavelet transform approach, where we trans-

formed the data twice using different wavelet functions and the stimulus functions were

also transformed into a wavelet domain. The advantages of our wavelet model over exist-

ing models are as follows. First, we took into account the spatial-temporal correlation in

fMRI data by transforming the data twice. Second, stationary assumptions on both spatial

and temporal data were not required using the double-wavelet transform since the wavelet

transform handled it naturally. Third, our approach did not require the estimation and

inversion of the covariance matrix because wavelet coefficients were approximately uncor-

related, which significantly reduced the computational burden in the fMRI data analysis.

Fourth, the double-wavelet transform converted 4-D data into 2-D data, which simplified

the fMRI data structure.

In simulation, we suggested using the Daubechies 3 wavelet on the spatial data and the

Symlets 8 wavelet on the temporal data. When there were two ROIs, we found that the

DW approach outperformed the AV-GLM approach when all voxels were independent and

there existed underlying spatial correlation. The AV-GLM approach only outperformed
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the DW approach when all voxels were identical, which would be unrealistic in fMRI data

analysis. When there were six ROIs, we found that the DW approach outperformed the AV-

GLM approach when the spatial correlations among voxels were based on the exponential

covariance function.

The data analysis showed that the results using the DW approach were less sensitive

to a decrease in sample size, compared to the AV-GLM approach. These results were con-

sistent with our simulation study, meaning that the DW approach made less mistakes than

the conventional AV-GLM approach by properly taking into account the spatio-temporal

correlation for a small sample size.

One limitation of our approach is the subjective choice of the wavelet functions. Differ-

ent wavelet functions have various performances. This can be partially solved by using data

decimation method to choose wavelet functions, as we did in the data analysis section. The

other limitation of our approach is that we may lose some information during the denoising

step if there are important signals in either temporal or spatial high frequency band. Our

approach can also be extended to the resting state fMRI data to investigate the functional

connectivity among ROIs.
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Appendix A

Matlab Code for simulation and data analysis

1 % T h i s f i l e i s f o r da ta a n a l y s i s p a r t f o r paper :

2 % ”Double−w a v e l e t Trans form f o r Mul t i−s u b j e c t Task−i n d u c e d

F u n c t i o n a l

3 % Magnet ic Resonance Imaging Data”

4

5 % Package needed : SPM, NIFTI

6 % A l l f u n c t i o n s needed are i n ” f u n c t i o n ” f o l d e r

7

8 % P ar t :

9 % 1 . B e f o r e a n a l y s i s : E x t r a c t ROIs from each s u b j e c t

10 % 2 . AV−GLM approach

11 % 3 . Double w a v e l e t approach

12 % 4 . r e s u l t c o m b i n a t i o n u s i n g R

13

14 % L a s t up d a t e : J u l . 1 8 , 2017

15

16 % add pa to o f spm , NIFTI , and f u n c t i o n s

17 % addpath ’ / Users / minchunzhou / Box Sync / mat lab / NI fT I 20140122

/ ’ ;

18 % addpath ’ / Users / minchunzhou / Box Sync / mat lab / spm12 / ’ ;

19 % addpath ’ ˜ / Desk top / JASA submi t / s u b m i t c o d e / f u n c t i o n s / ’

20
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21 %% Parame te r s

22

23 % t h e s i z e o f each 3D image

24 dim = [79 95 69] ;

25

26 % number o f s u b j e c t needed

27 subj num = [ 1 0 6 : 1 0 7 , 1 1 1 : 1 1 2 , 1 1 6 : 1 2 6 ] ;

28

29 % images per run

30 num images = 128 ;

31

32 % number o f ROIs

33 num ROI = 3 ;

34

35 % number o f runs

36 num run = 6 ;

37

38

39 %% 1 . B e f o r e a n a l y s i s : E x t r a c t ROIs from each s u b j e c t

40 % load f i v e b i n a r y ROI f i l e s s e p a r a t e l y t o s e e which

c o o r d i n a t e s are c o r r e s p o n d i n g

41

42 cd ( ’ c l u s t b i n a r y ’ ) ;

43

44 % load ROI1

45 t e m p r o i 1 = l o a d n i i ( ’ c o n 2 c l u s t 8 4 b i n . n i i ’ ) ;

46 c l u s t 8 4 = t e m p r o i 1 . img ;
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47 r c l u s t 1 = f i n d n ( c l u s t 8 4 ) ;

48

49 % load ROI2

50 t e m p r o i 2 = l o a d n i i ( ’ c o n 2 c l u s t 6 6 b i n . n i i ’ ) ;

51 c l u s t 6 6 = t e m p r o i 2 . img ;

52 r c l u s t 2 = f i n d n ( c l u s t 6 6 ) ;

53

54 % load ROI3

55 t e m p r o i 3 = l o a d n i i ( ’ c o n 2 c l u s t 1 6 b i n . n i i ’ ) ;

56 c l u s t 1 6 = t e m p r o i 3 . img ;

57 r c l u s t 3 = f i n d n ( c l u s t 1 6 ) ;

58

59 r c l u s t = c e l l ( num ROI , 1 ) ;

60

61 % r e s i z e ROIs i n t o box shape

62 f o r c l u s t = 1 : num ROI

63 temp = e v a l ( [ ’ r c l u s t ’ num2s t r ( c l u s t ) ] ) ;

64 r c l u s t { c l u s t } = reshapeROI ( temp , −3 ,3) ;

65 end

66

67

68 % i m p o r t da t a

69 f o r s u b j = 1 : l e n g t h ( subj num )

70

71 R O I t i m e s e r i e s = c e l l ( num run , num ROI ) ;

72 R O I t i m e s e r i e s s m o o t h = c e l l ( num run , num ROI ) ;

73 subname = subj num ( s u b j ) ;
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74 temp0 = s p r i n t f ( ’ I m p o r t i n g S u b j e c t %d ’ , subj num ( s u b j ) ) ;

75 d i s p ( temp0 )

76

77 i f ( subname == 105) | | ( subname == 111) | | ( subname

==112) | | ( subname == 113)

78 s t a r t v = 1 4 ;

79 e l s e i f ( subname == 106) | | ( subname == 107) | | ( subname

==117) . . .

80 | | ( subname == 118) | | ( subname ==127)

81 s t a r t v = 1 3 ;

82 e l s e

83 s t a r t v = 1 2 ;

84 end

85 end

86

87 i f subname == 105

88 p r e f i x = 1052 ;

89 e l s e i f subname == 116

90 p r e f i x = 115 ;

91 e l s e

92 p r e f i x = subname ;

93 end

94 end

95

96 f o r s e s s i o n = 1 : num run

97 cd ( [ ’ / d a t a / kangh1 / C o l l a b o r a t i o n s / DavidBadre /

c o n n e c t i v i t y / ’ , num2s t r ( subname ) , ’ / ’ , . . .
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98 num2s t r ( s e s s i o n , ’%03d ’ ) , ’ / ’ ] ) ;

99

100

101 temp0 = s p r i n t f ( ’ I m p o r t i n g S u b j e c t %d %d t h run ’ ,

subj num ( s u b j ) , s e s s i o n ) ;

102 d i s p ( temp0 )

103

104

105 tempimg = z e r o s ( 7 9 , 9 5 , 6 9 , num images ) ;

106 tempimg smooth = z e r o s ( 7 9 , 9 5 , 6 9 , num images ) ;

107

108 f o r j = 1 :128

109 imgname =[ ’ wraf ’ , num2s t r ( p r e f i x ) , ’− ’ , num2s t r (

s t a r t v , ’%04d ’ ) , ’− ’ , num2s t r ( j , ’%05d ’ ) , ’− ’ ,

num2s t r ( j , ’%06d ’ ) ] ;

110 t e m p c e l = l o a d n i i ( imgname ) ;

111

112 tempimg ( : , : , : , j ) = t e m p c e l . img ; ;

113 tempimg smooth ( : , : , : , j ) = i m g a u s s f i l t 3 ( t e m p c e l .

img , 1 . 5 ) ; % s p a t i a l −smooth , s igma = 1 . 5

114 end

115

116 % e x t r a c t each ROI t i m e s e r i e s o u t o f whole b r a i n

117 f o r c l u s t = 1 : num ROI

118

119 t e m p c l u s t = r c l u s t { c l u s t } ;

120 s e r i e s f o l d e r 1 = [ ] ;
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121 s e r i e s f o l d e r 1 s m o o t h = [ ] ;

122

123 f o r i =1 : s i z e ( t e m p c l u s t , 1 )

124 temp1 = t e m p c l u s t ( i , : ) ;

125 tempx1 = temp1 ( 1 ) ;

126 tempy1 = temp1 ( 2 ) ;

127 tempz1 = temp1 ( 3 ) ;

128 t e m p s e r i 1 = tempimg ( tempx1 , tempy1 ,

tempz1 , : ) ;

129 t e m p s e r i 1 = t e m p s e r i 1 ( : ) ’ ;

130 s e r i e s f o l d e r 1 = [ s e r i e s f o l d e r 1 ;

t e m p s e r i 1 ] ;

131

132 t e m p s e r i 1 s m o o t h = tempimg smooth (

tempx1 , tempy1 , tempz1 , : ) ;

133 t e m p s e r i 1 s m o o t h = t e m p s e r i 1 s m o o t h

( : ) ’ ;

134 s e r i e s f o l d e r 1 s m o o t h = [

s e r i e s f o l d e r 1 s m o o t h ;

t e m p s e r i 1 s m o o t h ] ;

135

136 end

137 s e r i e s f o l d e r 2 = s e r i e s f o l d e r 1 ;

138 R O I t i m e s e r i e s { s e s s i o n , c l u s t } =

s e r i e s f o l d e r 2 ;

139 R O I t i m e s e r i e s s m o o t h = s e r i e s f o l d e r 1 s m o o t h

;
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140 end

141

142

143 cd ( [ ’ / d a t a / kangh1 / C o l l a b o r a t i o n s / DavidBadre / c o n n e c t i v i t y

/ ’ , num2s t r ( subname ) , ’ / ’ ] )

144

145 s t a r t v = s t a r t v + 1 ;

146

147 end

148

149 R O I t i m e s e r i e s N = c e l l ( num run , num ROI ) ;

150

151

152 f o r k = 1 : num run

153 f o r c l u s t = 1 : num ROI

154 s e r i e s 1 = R O I t i m e s e r i e s {k , c l u s t } ;

155 R O I t i m e s e r i e s N {k , c l u s t } = n o r m s e r i e s ( s e r i e s 1 ) ;

156

157 s e r i e s 1 s m o o t h = R O I t i m e s e r i e s s m o o t h {k , c l u s t } ;

158 R O I t i m e s e r i e s N s m o o t h {k , c l u s t } = n o r m s e r i e s (

s e r i e s 1 s m o o t h ) ;

159

160 end

161 end

162

163 cd ( ’ / g p f s2 0 / d a t a / kangh1 / C o l l a b o r a t i o n s / DavidBadre /

c o n n e c t i v i t y / da t a ROI box ’ )
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164 save ( s p r i n t f ( ’%d d a t a R O I b o x ’ , subname ) , ’

R O I t i m e s e r i e s N ’ )

165

166 cd ( ’ / g p f s2 0 / d a t a / kangh1 / C o l l a b o r a t i o n s / DavidBadre /

c o n n e c t i v i t y / da t a ROI box smoo thed ’ )

167 save ( s p r i n t f ( ’%d d a t a R O I b o x ’ , subname ) , ’

R O I t i m e s e r i e s N s m o o t h ’ )

168

169

170 end

171

172

173

174 %% 2 . AV−GLM approach

175 % c o n v e n t i o n a l a n a l y s i s f o r each ROI

176 num images = 128 ; % images per run

177 t = num images ; % t i m e i n TR u n i t

178 num covN = 3 ;

179

180 % Need t o c r e a t e X = S * HRF ( c o n v o l u t i o n )

181 num subj = l e n g t h ( subj num ) ;

182

183 TR=2;

184 h r f = sp m hr f (TR) ;

185

186 s t i m u = c e l l ( num subj , num run ) ;

187
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188 % load o n s e t and c o n v o l v e w i t h HRF

189 f o r j = 1 : num subj

190 s u b j = subj num ( j ) ;

191

192 cd ( [ ’ / Use r s / minchunzhou / Desktop / B l o c k b e h a v i o r / twodhi−’ ,

num2s t r ( s u b j ) , ’ / b e h a v i o r a l / ’ ] ) ;

193

194 % load t h e o n s e t f o r each s u b j e c t

195 d a t = l o a d ( ’ o n s e t s . mat ’ ) ;

196 o n s e t i n f o = d a t . neworder1 ;

197 i f o n s e t i n f o ( 1 , 4 ) == 0

198 o n s e t i n f o ( 1 , 4 ) =1;

199 end

200

201 % d e a l w i t h t h e on s e t f o r each run

202 f o r k =1: num run

203

204 run = f i n d ( o n s e t i n f o ( : , 1 ) == k ) ;

205 r u n i n f o = o n s e t i n f o ( run , : ) ;

206 run D1 = f i n d ( r u n i n f o ( : , 3 ) == 1) ;

207 run D2 = f i n d ( r u n i n f o ( : , 3 ) == 2) ;

208 r u n i n s t = f i n d ( r u n i n f o ( : , 3 ) == 0) ; % f o r

i n s t r u n c t i o n p a r t

209

210 o n s e t 1 = z e r o s ( 1 , num images ) ;

211 o n s e t 1 ( r u n i n f o ( run D1 , 4 ) ) = 1 ; % f o r D1

212
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213 o n s e t 2 = z e r o s ( 1 , num images ) ;

214 o n s e t 2 ( r u n i n f o ( run D2 , 4 ) ) = 1 ; % f o r D2

215

216 o n s e t 3 = z e r o s ( 1 , num images ) ;

217 o n s e t 3 ( r u n i n f o ( r u n i n s t , 4 ) ) = 1 ; % f o r i n s t r u c t i o n

218

219 % c o n v o l v e o n s e t w i t h HRF f o r each run

220 s1 = conv ( onse t1 , h r f ) ; s1 = s1 ( 1 : num images ) ;

221 s2 = conv ( onse t2 , h r f ) ; s2 = s2 ( 1 : num images ) ;

222 s0 = conv ( onse t3 , h r f ) ; s0 = s0 ( 1 : num images ) ;

223 i f k >=2

224 s0 ( 5 ) = 0 ;

225 end

226

227 s t i m u { j , k} = [ s1 ’ s2 ’ s0 ’ ] ;

228 end

229 end

230

231

232 b e t a d i f f g l m = z e r o s ( num subj , num ROI ) ;

233

234 % e s t i m a t i o n

235 f o r j = 1 : num subj

236 s u b j = subj num ( j ) ;

237

238 % load t h e smoothed da ta

239 cd ( [ ’ / Use r s / minchunzhou / o t h e r f i l e / S tudy / R e s e a r c h /
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D i s s e r t a t i o n / b l o c k d i s s e r t a t i o n / b l o c k d a t a a n a l y s i s /

ROIdata / da t a ROI box smoo thed / ’ ] ) ;

240

241 l o a d ( s p r i n t f ( ’%d d a t a R O I b o x . mat ’ , s u b j ) )

242 row =1;

243

244 f o r c l u s t = 1 : num ROI

245

246 F i r s t p a r t = z e r o s ( 3 ) ;

247 S e c o n d p a r t = z e r o s ( 3 , 1 ) ;

248

249 f o r run = 1 : num run

250

251 d a t a r u n = R O I t i m e s e r i e s N { run , c l u s t } ;

252 X = s t i m u { j , run } ;

253

254 [ F i r s t t e m p , Second temp ] = c o n v e n r u n ( d a t a r u n ,

X, t ) ;

255

256 F i r s t p a r t = F i r s t p a r t + F i r s t t e m p ;

257 S e c o n d p a r t = S e c o n d p a r t + Second temp ;

258

259 end

260

261

262 a l l i n v = i n v ( F i r s t p a r t ) ;

263
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264 % e s t i m a t e t h e b e t a

265 b e t a h a t g l m = a l l i n v * S e c o n d p a r t ;

266 b e t a d i f f g l m ( j , c l u s t ) = b e t a h a t g l m ( 2 ) −

b e t a h a t g l m ( 1 ) ;

267 end

268

269 end

270

271 % d e l e t e nan v a l u e

272 b e t a d i f f g l m N = b e t a d i f f g l m ( mean ( i s n a n ( b e t a d i f f g l m ) ,

2 ) ==0 , : ) ;

273

274 c o u n t =1 ;

275 p v a l g l m = z e r o s ( num subj −2,num ROI ) ;

276 r e s u l t = c e l l ( num ROI *(15−2) , 6 ) ;

277

278 % d ata d e c i m a t i o n

279 k = l e n g t h ( subj num ) ;

280

281 f o r c a l s u b = 3 : k

282 a l l t h r e e = nchoosek ( subj num , c a l s u b ) ;

283 s a l l = s i z e ( a l l t h r e e ) ;

284

285 r e s u l t = c e l l ( num ROI* s a l l ( 1 ) , 9 ) ;

286 c o u n t =1;

287

288 f o r c l u s t = 1 : num ROI
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289

290 f o r i = 1 : s a l l ( 1 )

291

292 t h r e e = f i n d ( ismember ( subj num ,

a l l t h r e e ( i , : ) ) ==1) ;

293

294 C = num2ce l l ( num2s t r ( t h r e e , ’%1d ’ ) ) ;

295

296 b e t a d i f f g l m R = mean (

b e t a d i f f g l m N ( t h r e e , c l u s t ) ) ;

297 S E b e t a d i f f g l m R = s t d (

b e t a d i f f g l m N ( t h r e e , c l u s t ) ) /

s q r t ( c a l s u b ) ;

298 t s t a t g l m = b e t a d i f f g l m R /

S E b e t a d i f f g l m R ;

299 p v a l g l m =2*(1− normcdf ( abs ( t s t a t g l m )

, 0 , 1 ) ) ;

300

301 r e s u l t { count , 1} = c l u s t ;

302 r e s u l t { count , 2} = c a l s u b ;

303 r e s u l t { count , 3} = b e t a d i f f g l m R ;

304 r e s u l t { count , 4} = S E b e t a d i f f g l m R

;

305 r e s u l t { count , 5} = t s t a t g l m ;

306 r e s u l t { count , 6} = p v a l g l m ;

307 r e s u l t { count , 7} = s t r j o i n (C,{ ’ ’ } ) ;

308 r e s u l t { count , 8} = ’ mean ’ ;
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309 r e s u l t { count , 9} = ’ mean ’ ;

310

311 c o u n t = c o u n t +1 ;

312

313 end

314

315

316 cd ( [ ’ / Use r s / minchunzhou / Desktop / ROIdata /

d a t a c o m b i n a t i o n r o i ’ ] ) ;

317 c e l l 2 c s v ( s p r i n t f ( ’ mean %d %d . csv ’ , c a l s u b , c l u s t ) , r e s u l t

)

318

319 end

320 end

321

322

323 %% 3 . Double w a v e l e t approach

324 % Double w a v e l e t t r a n s f o r m

325

326 % a l l c a n d i d a t e w a v e l e t

327 a l l w a v e = { ’ h a a r ’ , ’ db1 ’ , ’ db2 ’ , ’ db3 ’ , ’ db4 ’ , ’ db5 ’ , ’ db6 ’ , ’ db7 ’ ,

’ db8 ’ , ’ db9 ’ , . . .

328 ’ db10 ’ , ’ sym2 ’ , ’ sym3 ’ , ’ sym4 ’ , ’ sym5 ’ , ’ sym6 ’ , ’ sym7 ’ , ’ sym8 ’ ,

’ c o i f 1 ’ , . . .

329 ’ c o i f 2 ’ , ’ c o i f 3 ’ , ’ c o i f 4 ’ , ’ c o i f 5 ’ , ’ b i o r 1 . 1 ’ , ’ b i o r 1 . 3 ’ , ’

b i o r 1 . 5 ’ , . . .

330 ’ b i o r 2 . 2 ’ , ’ b i o r 2 . 4 ’ , ’ b i o r 2 . 6 ’ , ’ b i o r 2 . 8 ’ , ’ b i o r 3 . 1 ’ , ’ b i o r 3
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. 3 ’ , . . .

331 ’ b i o r 3 . 5 ’ , ’ b i o r 3 . 7 ’ , ’ b i o r 3 . 9 ’ , ’ b i o r 4 . 4 ’ , ’ b i o r 5 . 5 ’ , ’ b i o r 6

. 8 ’ , . . .

332 ’ r b i o 1 . 1 ’ , ’ r b i o 1 . 3 ’ , ’ r b i o 1 . 5 ’ , ’ r b i o 2 . 2 ’ , ’ r b i o 2 . 4 ’ , ’ r b i o 2

. 6 ’ , . . .

333 ’ r b i o 2 . 8 ’ , ’ r b i o 3 . 1 ’ , ’ r b i o 3 . 3 ’ , ’ r b i o 3 . 5 ’ , ’ r b i o 3 . 7 ’ , ’ r b i o 3

. 9 ’ , . . .

334 ’ r b i o 4 . 4 ’ , ’ r b i o 5 . 5 ’ , ’ r b i o 6 . 8 ’ , ’ dmey ’ } ;

335

336

337 waveTnumber =18; % sym8

338 wavePnumber =4; % db3

339

340 T = num images ; % t i m e i n TR u n i t

341 dim = [7 7 7 ] ;

342 waveTname = a l l w a v e {waveTnumber } ;

343 wavePname = a l l w a v e {wavePnumber } ;

344 N. l e v e l = 1 ;

345 Nsubj = l e n g t h ( subj num ) ;

346 num subj = Nsubj ;

347 r o i s i z e = 1 : 7 ;

348

349 WT = wavedec3 ( ones ( dim ( 1 ) , dim ( 2 ) , dim ( 3 ) ) , N. l e v e l ,

wavePname ) ;

350 sWT = s i z e (WT. dec {1} ) ;

351 c o e f b a n d = prod (sWT) ;

352 N. wavecoef = prod (sWT) ;
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353

354 u s e c o e f b a n d = 1 : c o e f b a n d ;

355 [TC , TS ] = wavedec ( z e r o s ( 1 , T ) , 1 , waveTname ) ;

356 Ntime = l e n g t h (TC) ;

357 waveband = 1 : ( Ntime / 2 ) ;

358

359 waveT = z e r o s (N. wavecoef , Ntime ) ;

360

361 waveda ta = z e r o s ( num run , coefband , Ntime / 2 ) ;

362

363 % o n s e t

364 TR=2;

365 h r f = sp m hr f (TR) ;

366

367 s t i m u = c e l l ( num subj , num run ) ;

368

369 % d o u b l e w a v e l e t t r a n s f o r m t h e da ta

370 f o r sub = 1 : num subj

371 s u b j = subj num ( sub ) ;

372

373 cd ( [ ’ / Use r s / minchunzhou / o t h e r f i l e / S tudy / R e s e a r c h /

D i s s e r t a t i o n / b l o c k d i s s e r t a t i o n / b l o c k d a t a a n a l y s i s /

ROIdata / da t a ROI box / ’ ] ) ;

374

375 l o a d ( s p r i n t f ( ’%d d a t a R O I b o x . mat ’ , s u b j ) )

376 row =1;

377
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378 temp0 = s p r i n t f ( ’ I m p o r t i n g S u b j e c t %d ’ , s u b j ) ;

379 d i s p ( temp0 )

380

381 d a t a = z e r o s ( 7 , 7 , 7 , 1 2 8 ) ;

382

383 f o r r o i = 1 : num ROI

384 f o r run =1: num run

385

386 temp0 = s p r i n t f ( ’ I m p o r t i n g S u b j e c t %d %d t h run %d

r o i ’ , sub j , run , r o i ) ;

387 d i s p ( temp0 )

388

389 d a t a t e m p = R O I t i m e s e r i e s N { run , r o i } ;

390

391 % reashap d a t aback t o c o o r d i n a t o r f o r m a t

392 c o u n t =1 ;

393 f o r i = r o i s i z e

394 f o r j = r o i s i z e

395 f o r k = r o i s i z e

396 d a t a ( i , j , k , : ) = d a t a t e m p ( count , : ) ;

397 c o u n t = c o u n t +1 ;

398 end

399 end

400 end

401

402

403 % 3d w a v e l e t t r a n s f o r m
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404 waveda ta ( run , : , : ) = DW3d( da t a , wavePname ,

waveTname ) ;

405

406 end

407 cd ( ’ / Use r s / minchunzhou / Desktop / ROIdata /

d a t a c o m b i n a t i o n w a v e ’ )

408 save ( s p r i n t f ( ’ w a v e d a t a %d %d %d %d ’ , wavePnumber ,

waveTnumber , sub j , r o i ) , ’ waveda ta ’ )

409

410 end

411 end

412

413

414 % use t e m p o r a l w a v e l e t t r a n s f o r m t r a n s f e r t h e s t i m u l u s

415 f o r j = 1 : num subj

416 s u b j = subj num ( j ) ;

417

418 cd ( [ ’ / Use r s / minchunzhou / Desktop / B l o c k b e h a v i o r / twodhi−’ ,

num2s t r ( s u b j ) , ’ / b e h a v i o r a l / ’ ] ) ;

419

420 d a t = l o a d ( ’ o n s e t s . mat ’ ) ;

421 o n s e t i n f o = d a t . neworder1 ;

422 i f o n s e t i n f o ( 1 , 4 ) == 0

423 o n s e t i n f o ( 1 , 4 ) =1;

424 end

425

426 f o r k =1: num run
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427

428 run = f i n d ( o n s e t i n f o ( : , 1 ) == k ) ;

429 r u n i n f o = o n s e t i n f o ( run , : ) ;

430 run D1 = f i n d ( r u n i n f o ( : , 3 ) == 1) ;

431 run D2 = f i n d ( r u n i n f o ( : , 3 ) == 2) ;

432 r u n i n s t = f i n d ( r u n i n f o ( : , 3 ) == 0) ; % f o r

i n s t r u n c t i o n p a r t

433

434 o n s e t 1 = z e r o s ( 1 , num images ) ;

435 o n s e t 1 ( r u n i n f o ( run D1 , 4 ) ) = 1 ; % f o r D1

436

437 o n s e t 2 = z e r o s ( 1 , num images ) ;

438 o n s e t 2 ( r u n i n f o ( run D2 , 4 ) ) = 1 ; % f o r D2

439

440 o n s e t 3 = z e r o s ( 1 , num images ) ;

441 o n s e t 3 ( r u n i n f o ( r u n i n s t , 4 ) ) = 1 ; % f o r i n s t r u c t i o n

442

443 s1 = conv ( onse t1 , h r f ) ; s1 = s1 ( 1 : num images ) ;

444 s2 = conv ( onse t2 , h r f ) ; s2 = s2 ( 1 : num images ) ;

445 s0 = conv ( onse t3 , h r f ) ; s0 = s0 ( 1 : num images ) ;

446 % s00 = ones ( 1 , num images ) ;

447 i f k >=2

448 s0 ( 5 ) = 0 ;

449 end

450

451 % w a v e l e t t r a n s f o r m t h e o n s e t

452 [ s t a n 1 , TS1 ] = wavedec ( s1 , 1 , waveTname ) ;
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453 [ s t a n 2 , TS2 ] = wavedec ( s2 , 1 , waveTname ) ;

454 [ s t a n 0 , TS1 ] = wavedec ( s0 , 1 , waveTname ) ;

455

456

457 s t a n = [ s t a n 1 ( waveband ) s t a n 2 ( waveband ) s t a n 0 (

waveband ) ] ;

458

459 s t i m u { j , k} = [ s t a n 1 ( waveband ) ’ s t a n 2 ( waveband ) ’

s t a n 0 ( waveband ) ’ ] ;

460 end

461 end

462

463 % e s t i m a t i o n

464

465 con = [−1 1 0 ] ;

466 wavecon = z e r o s ( num run ) ;

467 wavecon sub = z e r o s ( num subj , num ROI ) ;

468

469 f o r j = 1 : num subj

470 s u b j = subj num ( j ) ;

471

472 f o r c l u s t = 1 : num ROI

473

474 cd ( [ ’ / Use r s / minchunzhou / Desktop / ROIdata /

d a t a c o m b i n a t i o n w a v e ’ ] ) ;

475 l o a d ( s p r i n t f ( ’ w a v e d a t a %d %d %d %d ’ , wavePnumber ,

waveTnumber , sub j , c l u s t ) )
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476 F i r s t i n v t e m p = z e r o s ( 3 ) ;

477 S e c o n d p a r t = z e r o s ( 3 , 1 ) ;

478

479 f o r run = 1 : num run

480

481 waveX = s t i m u { j , run } ;

482

483 w a v e d a t a u s e = r e s h a p e ( waveda ta ( run , : , : ) ,

coefband , Ntime / 2 ) ;

484 w a v e d a t a u s e = w a v e d a t a u s e ( usecoe fband , waveband

) ;

485

486 w a v e d a t a u s e 1 = mean ( waveda t a use , 1 ) ;%/ c o e f b a n d

/ 8 * prod ( dim ) ;

487

488 F i r s t i n v t e m p = F i r s t i n v t e m p + waveX ’* waveX ;

489

490 S e c o n d p a r t = waveX ’* waveda ta use1 ’+ S e c o n d p a r t ;

491

492 end

493

494 a l l i n v = i n v ( F i r s t i n v t e m p ) ;

495 b e t a h a t g l m = a l l i n v * S e c o n d p a r t ;

496

497 wavecon sub ( j , c l u s t ) = b e t a h a t g l m ( 2 ) −

b e t a h a t g l m ( 1 ) ;

498
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499 end

500

501 end

502

503 b e t a d i f f g l m N = wavecon sub ( mean ( i s n a n ( wavecon sub ) , 2 )

==0 , : ) ;

504

505 k = l e n g t h ( subj num ) ;

506

507 f o r c a l s u b = 3 : k

508

509 a l l t h r e e = nchoosek ( subj num , c a l s u b ) ;

510 s a l l = s i z e ( a l l t h r e e ) ;

511

512 r e s u l t = c e l l ( num ROI* s a l l ( 1 ) , 9 ) ;

513 c o u n t =1 ;

514

515 f o r c l u s t = 1 : num ROI

516

517 f o r i = 1 : s a l l ( 1 )

518

519 t h r e e = f i n d ( ismember ( subj num ,

a l l t h r e e ( i , : ) ) ==1) ;

520

521 C = num2ce l l ( num2s t r ( t h r e e , ’%1d ’ ) ) ;

522

523
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524 b e t a d i f f g l m R = mean (

b e t a d i f f g l m N ( t h r e e , c l u s t ) ) ;

525 S E b e t a d i f f g l m R = s t d (

b e t a d i f f g l m N ( t h r e e , c l u s t ) ) /

s q r t ( c a l s u b ) ;

526 t s t a t g l m = b e t a d i f f g l m R /

S E b e t a d i f f g l m R ;

527 p v a l g l m =2*(1− normcdf ( abs ( t s t a t g l m )

, 0 , 1 ) ) ;

528

529 r e s u l t { count , 1} = c l u s t ;

530 r e s u l t { count , 2} = c a l s u b ;

531 r e s u l t { count , 3} = b e t a d i f f g l m R ;

532 r e s u l t { count , 4} = S E b e t a d i f f g l m R

;

533 r e s u l t { count , 5} = t s t a t g l m ;

534 r e s u l t { count , 6} = p v a l g l m ;

535 r e s u l t { count , 7} = s t r j o i n (C,{ ’ ’ } ) ;

536 r e s u l t { count , 8} = wavePname ;

537 r e s u l t { count , 9} = waveTname ;

538

539 c o u n t = c o u n t +1 ;

540

541 end

542

543

544 cd ( [ ’ / Use r s / minchunzhou / Desktop / ROIdata /
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d a t a c o m b i n a t i o n r o i ’ ] ) ;

545 c e l l 2 c s v ( s p r i n t f ( ’ dw %d %d %d %d . csv ’ , wavePnumber ,

waveTnumber , c a l s u b , c l u s t ) , r e s u l t )

546

547 end

548 end
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Chapter 3

DOUBLE-WAVELET TRANSFORM FOR MULTI-SUBJECT RESTING STATE

FUNCTIONAL MAGNETIC RESONANCE IMAGING DATA

The goal of this article is to model multi-subject resting-state fMRI (functional mag-

netic resonance imaging) response among predefined regions of interest (ROIs) of the hu-

man brain. Conventional approaches to resting-state fMRI analysis does not rigorously

model the underlying spatial correlation due to the complexity of estimating and inverting

the high dimensional spatio-temporal covariance matrix. Other spatio-temporal model ap-

proaches estimate the covariance matrix with the assumption of stationary time series. To

address these limitations, we propose a double-wavelet approach for modeling the spatio-

temporal brain process. Working with wavelet coefficients simplifies temporal and spatial

covariance structure, because under regularity conditions, wavelet coefficients are approxi-

mately uncorrelated. Different wavelet functions were used to capture different correlation

structures in the spatio-temporal model. The advantages of the wavelet approach are that it

is scalable and that it captures non-stationarity in brain signals. Simulation studies showed

that our method can reduce false positive and false negative rate by taking into account spa-

tial and temporal correlation simultaneously. We also applied our method to resting-state

fMRI data to study the difference between heath subjects and major depressive disorder

(MDD) patients.

3.1 Introduction

One of the most challenging problem in contemporary science is to understand the hu-

man brain and its activity pattern. To acquire good quality data of the human brain function,

functional magnetic resonance imaging (fMRI) becomes a powerful tool in the last twenty

years. Compared to other methods like PET (Positron Emission Tomography) and MEG
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(magnetoencephalography), fMRI has reasonable temporal resolution (1 ∼ 2 seconds) and

excellent spatial resolution (in mm3). Typical fMRI data are collected by scanning the

brain every few seconds and indirectly measure brain activity by detecting changes in oxy-

gen level associated with blood flow. There are about 100,000 three-dimensional volume

elements called voxels in each fMRI scan.

Resting state fMRI (rs-fMRI) is commonly used to estimate the functional connectivity

(FC), which is defined as the temporal dependency between spatially distinct brain regions

(Aertsen et al., 1989; Friston et al., 1993). Biswal et al. (1995) first detected strong tem-

poral correlations between the left and right sensorimotor cortices. Several regions were

reported to have strong correlations similar to functional networks like visual areas, audi-

tory cortices, and other higher order cognitive networks (Biswal et al., 1997; Lowe et al.,

1998; Cordes et al., 2000, 2001; Kiviniemi et al., 2004; Luca et al., 2005; den Heuvel

et al., 2008). It is now widely acknowledged that there exists functional connectivity be-

tween brain regions, measured by using spontaneous fMRI time-series, while subjects do

not think of something in particular during the scan.

Multiple preprocessing steps are usually taken before the rs-fMRI data analysis, such as

motion correction, temporal filtering and spatial smoothing. The most common approach

to estimate the functional connectivity between a pair of regions of interest (ROIs) is to

simply calculate the correlation between the mean time series of two ROIs (Biswal et al.,

1995; Cordes et al., 2001; Raichle et al., 2001; Fox et al., 2006; Vincent et al., 2008). We

refer to this approach as “AVG-FC”. This approach does not rigorously take into account

the underlying spatial correlation within an ROI. Dubin (1988) argued that ignoring spatial

correlation in data led to biased standard errors.

Several methods have been developed to take into account the spatial correlation in

fMRI data. Worsley et al. (1996) proposed spatial smoothing using a Gaussian kernel,

which is now commonly used as a preprocessing step in fMRI study. The goal of spatial

smoothing is to increase the signal to noise ratio in fMRI data, however it induces more
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spatial correlation, which may result in invalid statistical inferences. Spatio-temporal mod-

eling is another approach to not only model the spatial correlation but also consider the

temporal correlation in fMRI data. Since Fourier coefficients are approximately uncorre-

lated across frequencies, Ombao et al. (2008) developed a spatio-spectral model to under-

stand the underlying spatio-temporal processes. Based on that, Kang et al. (2012) proposed

a spatio-spectral mixed-effects model to simultaneously estimate spatial correlation within

a region and correlation across regions.

Similar to Fourier transform, wavelet transform is a linear transformation. The main

difference between two methods are the information trade-off between time and frequency

domain. Fourier transform coefficients only contain information about the signal in fre-

quency domain without any information in time domain. The wavelet transform down-

sample the signal into different scale and location, which captures the low frequencies in

longer time period and high frequencies in short time period. Wavelet coefficients are also

approximately uncorrelated across and within scales (Fan, 2003). Brammer (1998) and

Ruttimann et al. (1998) first applied wavelet transform on fMRI data. Long et al. (2004)

performed wavelet transform on spatial data and calculated temporal noise parameters us-

ing iterative methods. Ville et al. (2004) proposed to simultaneously estimated two thresh-

old using the original signal and the wavelet coefficients to denoise the signal. Aston et al.

(2005) estimated the spatio-temporal model coefficients using the wavelet coefficients only

from spatial data.

The wavelet transform has also been recently adapted to resting state fMRI study. Ery-

ilmaz et al. (2011) separated the signal into four frequency bands and calculated the cor-

relation between regions to investigate the effects of positive and negative emotions on

functional connectivity. Patel et al. (2014) add one extra step in the preprocessing step

using wavelet transform to remove a range of different motion artifacts and motion-related

biases. Meddaa et al. (2011) down-sampled signal into five levels and used a data-driven

approach to cluster voxels into functional regions. These methods utilized the multiresolu-
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tion property of wavelet transform in the time domain. However, they did not consider the

spatial correlation in the fMRI data.

In this article, we proposed a single level double wavelet framework that transformed

the resting state fMRI data twice using different wavelet functions, and estimated the func-

tional connectivity between specific ROI pairs using weighted Pearson correlation calcu-

lated by wavelet coefficients. We transform the fMRI data at each time point using one

wavelet function (spatial wavelet function). This is the first wavelet transform and the co-

efficients are called “spatial wavelet coefficient”. Then we transform the time series of

spatial wavelet coefficients using another wavelet function (temporal wavelet function).

This is the second wavelet transform and the coefficients are called “double wavelet co-

efficients”. The single level double wavelet transform separates fMRI data into multiple

locations. We estimate the functional connectivity by calculating the mean correlation be-

tween wavelet coefficients in different location and weighted by wavelet periodgram. We

validate our approach via simulation studies with different spatial correlation structures.

3.2 The Discrete Wavelet Transform

The wavelet transform decomposes different dimensional data into multiple scales and

locations. Wavelet coefficients are calculated by the inner product of the wavelet functions

and the data. The wavelet functions are scaled and shifted from the zero integral “mother”

wavelet function and the unit integral “father” wavelet function. We only introduce the

one-dimensional (1-D) and two-dimensional (2-D) discrete wavelet transform in this paper.

Higher dimensional wavelet transform can be performed similarly.

3.2.1 One-Dimensional Discrete Wavelet Transform

Let Ψ(x) and Φ(x) be the mother and father wavelet function, where
∫

Ψ(x)dx = 0 and∫
Φ(x)dx = 1. We call Ψ j,k(x) and Φ j,k(x) ( j ∈R\{0},k ∈R) to be series of wavelet func-

tions that are scaled and shifted from the mother and father wavelet function, respectively.
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More details can be found in Vidakovic (1999) and Nason (2008):

Ψ j,k(x) =
1√
2 j

Ψ
(

x−2 jk
2 j

)
, Φ j,k(x) =

1√
2 j

Φ
(

x−2 jk
2 j

)
.

In this paper, we only perform one scale wavelet transform, which we call the single

level discrete wavelet transform (SL-DWT), where j = 1. To simplify the notation, we

combine all scaled and shifted wavelet functions Ψ j,k(x) and Φ j,k(x) as φω(x), where ω =

1,2, ...,Ω, and Ω is the number of the 1-D single level wavelet coefficients. For 1-D time

series g(x), the 1-D discrete wavelet transform of g(x) can be expressed as

Wω = ∑
x

g(x)φω(x),

where Wω is one 1-D single level wavelet coefficient. The square of wavelet coefficient

is called wavelet periodogram,

Iω = (Wω)
2 =

(
∑
x

g(x)φω(x)
)2

.

The wavelet periodogram Iω represents the energy content at certain scale and location. We

can also define the energy of the wavelet coefficient at scale j by S j = ∑ω Iω , where S j is

called scalegram at scale j. For further details on the scalegram, see Scargle et al. (1993);

Chiann & Morettin (1998).

3.2.2 Two-Dimensional Wavelet Transform

Similar to 1-D wavelet transform, we have 2-D wavelet functions Ψ( j,k1,k2)(x,y) and

Φ( j,k1,k2)(x,y) ( j ∈ R\{0},k1,k2 ∈ R) which are scaled and shifted from the 2-D mother

wavelet function Ψ(x,y) and father wavelet function Φ(x,y), where
∫ ∫

Ψ(x,y)dxdy = 0

62



and
∫ ∫

Φ(x,y)dxdy = 1.

Ψ( j,k1,k2)(x,y) =
1√
2 j

Ψ
(

x−2 jk1

2 j ,
y−2 jk2

2 j

)

Φ( j,k1,k2)(x,y) =
1√
2 j

Φ
(

x−2 jk1

2 j ,
y−2 jk2

2 j

)
For the single level wavelet transform where j = 1, all 2-D single level wavelet func-

tions Ψ( j,k1,k2)(x,y) and Φ( j,k1,k2)(x,y) can be expressed as ϕr(x,y), r = 1,2, ...,R, and R

is the number of the 2-D single level wavelet coefficients. Let {ζ} = {x,y} represent all

pairs of 2-D data coordinates. If we have 2-D data g(ζ ) = g(x,y), the 2-D discrete wavelet

transform of g(ζ ) can be expressed as

Wr = ∑
ζ

g(ζ )ϕr(ζ ) (3.1)

where Wr is a 2-D single level wavelet coefficient. Ir is the 2-D wavelet periodogram, which

is calculated by

Ir = (Wr)
2 =

(
∑
ζ

g(ζ )ϕr(ζ )

)2

(3.2)

3.3 Method

3.3.1 Spatio-temporal Model

Let C be the number of ROIs and Vc be the number of voxels within the c-th ROI. Define

the time series at voxel v in ROI c to be Ycv(t), t = 1, ...,T , where T is the length of time

series. We define πb(·) to be a function of the Euclidean distance between voxels within an

ROI. Consider the following spatio-temporal model for the fMRI time series:

Ycv(t) = dc(t)+bcv(t)+ ecv(t), (3.3)
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• bcv(t) is a zero-mean voxel-specific random effect that accounts for the spatial co-

variance between voxels v and v′ within ROI c, where

cov(bcv(t),bcv′(t)) =

 πb(∥ v− v′ ∥), when c = c′,

0 otherwise.

• dc(t) is a zero-mean ROI-specific random effect with a covariance structure cov(dc(t),dc′(t))

that takes into account the correlation across ROIs.

• ecv(t) is the noise that models the temporal correlation for voxel v in ROI c.

3.3.2 The Double Wavelet Transform

We now introduce the double wavelet transform. Suppose we have a 3-D data (2-D

spatial data and 1-D temporal data) as in model (3.3). First, we perform 2-D wavelet

transform on the 2-D spatial data at each time point. We have

Ucr(t) = ∑
v

Ycv(t)ϕr(v),

where ϕr(v) is a 2-D wavelet function, r = 1,2, ...,R, and R is the total number of 2-D

wavelet coefficients at each time point. Secondly, we apply the 1-D wavelet transform

on the time series of each 2-D wavelet coefficients Ucr(t). Assume that φω(t) is an 1-D

wavelet function, then we have

Wcrω = ∑
t

Ucr(t)φω(t) (3.4)

ω = 1,2, ...,Ω, where Ω is the length of 1-D wavelet coefficients.
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3.3.3 Coefficients Structure

The wavelet transform separates the data into different scales and locations. In each

scale, different locations correspond to different frequency bands. For the single level dis-

crete double wavelet transform (SL-DWT), the data are decomposed into two frequencies

in each dimension. For the 3-D data (2-D spatial data and 1-D temporal data), the 2-D

spatial data are separated into high and low frequency bands on both vertical and hori-

zontal directions, which includes four parts, low-low (horizontal-vertical) frequency band

(LL), low-high (horizontal-vertical) frequency band (LH), high-low (horizontal-vertical)

frequency band (HL), and high-high(horizontal-vertical) frequency band (HH). The 1-D

time series are decomposed into one high frequency band and one low frequency band.

Figure 3.1(b) illustrates the structure of double wavelet coefficients Wcrω in equation (3.4),

where S indicates the wavelet coefficients from the 2-D wavelet transform on the spatial

data and T indicates the wavelet coefficients from the 1-D wavelet transform on the tem-

poral data.

We define the double wavelet periodogram Icrω as the energy of the double wavelet

coefficient Wcrω ,

Icrω = (Wcrω)
2

We use Icr to represent all wavelet periodogram in each spatial-temporal frequency

band, where p = 1,2, ...,P and P is the total number of spatial-temporal frequency bands

that the single level double wavelet transform created. In Figure 3.1(b), P = 8 for double

wavelet transform that includes 2-D spatial wavelet transform and 1-D temporal transform.

3.3.4 Weighted Correlation

To calculate the correlation between ROI c and c′, we first calculate the Pearson correla-

tion ρp between two vectors of mean temporal wavelet coefficients in each spatial-temporal

frequency band p. We also calculate the variance of wavelet periodogram as the weight
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(a) (b)

Figure 3.1: Coefficient structure using the double-wavelet transform. (a) an example using Reverse Biorthog-
onal 3.1 wavelet as spatial wavelet and Haar wavelet as temporal wavelet on a simulated 3-D ROI data (2-D
in spatial domain and 1-D in temporal domain). (b) SLL, SLH , SHL and SHH represent the wavelet coefficients
from the 2-D wavelet transform on the spatial data in low-low (horizontal-vertical) frequency band (LL),
low-high(horizontal-vertical) frequency band (LH), high-low (horizontal-vertical) frequency band (HL), and
high-high (horizontal-vertical) frequency band (HH) respectively; TL and TH represent the wavelet coeffi-
cients from the 1-D wavelet transform on the temporal data in low and high frequency band respectively.

ϖp. Then we have the weighted correlation between ROI c and c′ using the double wavelet

transform.

To simplify the notation, we use W p
crω to denote the double wavelet coefficient in spatial-

temporal frequency band p, then r = 1,2, ...,R/2 j and ω = 1,2, ...,Ω/2, where j is the

dimension of spatial wavelet. In the example of 3-D data (2-D spatial data and 1-D temporal

data), the dimensional of spatial data is two, which means j = 2. We can rewrite W p
crω in

vector notation,

W p
cr = [W p

cr1 W p
cr2 . . . W p

cr(Ω/2)].

The correlations and weights are calculated by,

ρp = corr

 1
R/2 j

R/2 j

∑
r=1

W p
cr,

1
R/2 j

R/2 j

∑
r=1

W p
c′r


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ϖp =
var(Icp)+ var(Ic′p)

∑P
p=1[var(Icp)+ var(Ic′p)]

. (3.5)

Finally, we have the weighted correlation ρ = ∑P
p=1 ρpϖp. For multiple subjects, we

can perform Fisher z-transform on ρn and test if the correlation is equal to zero or not,

where n indicates the number of subjects.

3.4 Simulation Study

We explored and validated our approach through simulation studies. We generated sin-

gle subject and multi-subject spatially and temporally correlated data. Then, we compared

our double wavelet (DW) approach with the conventional mean voxel approach at each ROI

in terms of mean square error (MSE) for single subject analysis and false positive and false

negative rates for multi-subject analysis.

3.4.1 Data Generation

We have four simulation studies with different number of ROIs and subjects. In the first

simulation, we generated data with two ROIs for single subject. We varied the correlation

between ROIs from 0 to 1. At each voxel, we use AR(1) structure to generate temporally

correlated time series with length 128. The AR(1) parameter was 0.6. In the second sim-

ulation, the total length of each time series was 128 as well, but we use AR(1) and AR(2)

structure alternately with length 32 each to generate non-stationary time series data. The

AR(1) parameter was 0.6 and AR(2) parameter was 0.3. Other settings were the same as the

first simulation. In the third simulation, we generated data with five ROIs for one subject.
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These five ROIs have the covariance matrix πd in Model (3.3) as



1.0 0.6 0.0 0.5 0.0

0.6 1.0 0.2 0.6 0.0

0.0 0.2 1.0 0.0 0.1

0.5 0.6 0.0 1.0 0.2

0.0 0.0 0.1 0.2 1.0


In the fourth simulation, we generated data with two ROIs for multiple subjects. We

varied the correlation between ROIs from 0 to 1 and three to ten subjects were used in the

analysis. In the third and fourth simulation, we use AR(1) structure with parameter 0.6 to

generate temporally correlated time series with length 128.

Three different spatial correlations were used in each simulation study. First we as-

sumed all voxels were independent within an ROI, i.e., no spatial correlation. Secondly,

we assumed that the spatial correlation was from an exponential covariance function with

the decaying parameter 0.5, i.e., moderate spatial correlation. Thirdly, we assumed that

all time series were the same across voxels within an ROI, i.e., extreme spatial correla-

tion. In all three simulation studies, each ROI contained 100 voxels (10×10). Each spatial

correlation scenario were based on 500 repetitions in four simulation studies.

3.4.2 Estimation and Results

Different wavelet functions were tested for both spatial wavelet function and temporal

wavelet function. Using MATLAB (MathWorks, Natick, MA) wavelet toolbox, we tried

54 different wavelet functions, which resulted in total 2916 (54×54) combinations of the

double-wavelet transform. In simulation, we found that using the Reverse Biorthogonal 3.1

wavelet (Rbio3.1) on the spatial data, and using the Haar wavelet (Haar) on the temporal

data minimized the MSE. This combination was used for all subsequent simulation studies

and data analysis.
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3.4.2.1 Single Subject - Two ROIs - Stationary time series

Figure 3.2 shows the MSE, Bias2 and Variance for the DW and AVG-FC approach

when the underlying correlation between two ROIs varied from 0 to 1 for three different

types of spatial correlation. The underlying temporal correlation for each voxel was AR(1).

When all voxels were uncorrelated, the DW approach had smaller MSE because the gain

in variance dominates the loss in bias, compared to AVG-FC. When the spatial correlations

among voxels were based on exponential covariance function, the DW approach outper-

formed the AVG-FC approach in terms of bias2, variance and MSE. The DW approach

had 1/4 of the AVG-FC approach’s bias and variance, and 1/8 of the AVG-FC approach’s

MSE. When all voxels were identical, the AVG-FC approach had smaller MSE because the

AVG-FC approach had smaller variance, while there was no discernible difference in bias

between the two approach.

3.4.2.2 Single Subject - Two ROIs - Non-stationary time series

Figure 3.3 shows the MSE, Bias2 and Variance for the DW and AVG-FC approach when

the underlying correlation between two ROIs varied from 0 to 1 for three different types of

spatial correlation. The underlying temporal correlation for each voxel was a combination

of AR(1) and AR(2). The results showed similar pattern as simulation 1. When all vox-

els were uncorrelated, the DW approach had smaller MSE. When the spatial correlations

among voxels were based on exponential covariance function, the DW approach outper-

formed the AVG-FC approach in terms of bias2, variance and MSE. The DW approach had

1/3 of the AVG-FC approach’s bias2, variance, and MSE. When all voxels were identical,

the AVG-FC approach had smaller MSE.

3.4.2.3 Single Subject - Five ROIs - Stationary time series

For this simulation, there were five correlated ROIs. Figure 3.4 shows the MSE for the

DW and AVG-FC approach. The DW approach outperformed the AVG-FC approach in
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Figure 3.2: MSE, Bias2 and Variance for the DW and AVG-FC approach based on single subject analysis
between two ROIs for stationary time series. X-axis is the underlying correlation.

70



0.00

0.01

0.02

0.03

0.04

0.00 0.25 0.50 0.75 1.00

(a)

In
de

pe
nd

en
t

MSE

0.00000

0.00025

0.00050

0.00075

0.00100

0.00 0.25 0.50 0.75 1.00

(b)

Bias2

0.00

0.01

0.02

0.03

0.04

0.00 0.25 0.50 0.75 1.00

(c)

Variance

0.0

0.2

0.4

0.6

0.00 0.25 0.50 0.75 1.00

(d)

E
xp

on
en

tia
l

0.0

0.2

0.4

0.00 0.25 0.50 0.75 1.00

(e)

0.000

0.025

0.050

0.075

0.100

0.00 0.25 0.50 0.75 1.00

(f)

0.000

0.005

0.010

0.015

0.020

0.00 0.25 0.50 0.75 1.00

(j)

Id
en

tic
al

0e+00

2e−04

4e−04

6e−04

0.00 0.25 0.50 0.75 1.00

(k)

0.000

0.005

0.010

0.015

0.020

0.00 0.25 0.50 0.75 1.00

(l)

Method  DW   AVG−FC

Figure 3.3: MSE, Bias2 and Variance for the DW and AVG-FC approach based on single subject analysis
between two ROIs for non-stationary time series. X-axis is the underlying correlation.
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Figure 3.4: MSE for the DW and AVG-FC approach based on single subject analysis among five ROIs. X-axis
is the underlying correlation for different pairs, for example, “1-0.6” means the first pair with true correlation
0.6.
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terms of MSE when all voxels were uncorrelated and when the spatial correlations among

voxels were based on exponential covariance function. When the underlying correlation

are 0.5 and 0.6, the difference in MSE between two methods are small. When all voxels

were identical, the AVG-FC approach had smaller MSE but this extreme spatial correlation

would not be feasible in practice. These results were consistent with the results using two

ROIs.

3.4.2.4 Multiple Subjects - Two ROIs - Stationary time series

Figure 3.5 shows rejection rate of the correlation between two ROIs for the DW and

AVG-FC approach when the number of subjects varied from 3 to 20 for three different

types of spatial correlation and the underlying true correlation were 0, 0.2 and 0.5.

When all voxels were uncorrelated and there were no the underlying correlation be-

tween ROIs, the DW approach and the AVG-FC approach had similar rejection rate when

there were less than 15 subject, after that, the DW approach had smaller rejection rate. The

DW approach had slightly larger rejection rate than the AVG-FC approach when the true

underlying correlation was 0.2. There was no difference between two methods when the

underlying correlation was 0.5 and when we had more than 4 subjects.

When the spatial correlations among voxels were based on exponential covariance func-

tion, the rejection rate using AVG-FC approach increased as number of subjects went up

when the underlying correlation between two ROIs was 0, which means the AVG-FC ap-

proach had too strong power to detect small difference. However, the reject rate using the

DW approach decreased as the number of subjects increased when there were no underly-

ing correlation between two ROIs. When the underlying correlation between two ROIs was

0.2, the DW approach had slightly higher rejection rate than the AVG-FC approach. There

were no difference between two methods when the underlying correlation was 0.5.

When all voxels were identical, the DW approach and the AVG-FC approach had simi-

lar rejection rate when the underlying correlation between ROIs was 0. The DW approach
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Figure 3.5: Rejection rates for the DW and AVG-FC approach based on multiple subject analysis between
two ROIs. X-axis is the number of subjects.
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had smaller rejection rate than the AVG-FC approach when the true underlying correlation

was 0.2. There was no difference between two methods when the underlying correlation

was 0.5 and when we had more than 4 subjects.

The DW approach outperformed the AVG-FC approach in all practical settings, al-

though the AVG-FC approach outperformed the DW approach in some unrealistic settings,

i.e., extreme spatial correlation.

3.5 Data Analysis

We applied our proposed double-wavelet transform approach on a study designed to

investigate the functional connectivity in major depressive disorder (MDD) patients. Here

we describe the background, motivation, study design and the data.

In a previous study (Kang et al., 2016), brain network properties associated with major

depressive disorder (MDD) was established using resting-state fMRI data. They found

that 35 regions out of 90 automated anatomical labeling (AAL) regions showed significant

differences in functional connectivity between the healthy control (HC) subjects and MDD

groups. In this paper, we investigated these 35 regions using a data set (Taylor et al., 2016;

Saleh et al., 2017), which included 12 subjects (6 HC and 6 MDD patients) matched by

their age, race, sex and education level. The average age is 27.7 years for the MDD group,

and 27.5 years for the controls; both groups are 50% male.

Functional images were acquired using a gradient-echo echo-planar sequence (TR =

2 sec; TE = 27 msec; flip angle = 77; 32 axial slices, 4× 4× 4 mm) on the Siemens 3T

TIM Trio MRI system at the Duke University MRI Research Facility. High-resolution

T1-weighted (MP-RAGE) anatomical images were collected for visualization (TR = 2300

msec; TE = 3.46 sec; 160 sagittal slices, 0.9×0.9×1.2 mm).

Data were preprocessed and analyzed using FSL (https://fsl.fmrib.ox.ac.uk) and AFNI

(Analysis of Functional NeuroImages, https://afni.nimh.nih.gov). Following quality assur-

ance procedures to assess outliers or artifacts in volume and slice-to-slice variance in the
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Table 3.1: List of ROIs showing significant difference between HC and MDD groups using DW approach
and AVG-FC approach

Pair Method HC MDD HC-MDD P-value
Angular L - Frontal Mid R DW 0.13 -0.05 0.18 0.04
Frontal Sup L - Temporal Inf R DW 0.09 -0.05 0.14 0.01
Frontal Sup Orb R - Rectus R DW 0.26 0.39 -0.14 0.02
Parietal Sup R - Cingulum Ant R DW -0.27 -0.10 -0.18 0.01
ParaHippocampal L - Paracentral Lobule R DW 0.00 -0.11 0.11 0.04
ParaHippocampal L - Paracentral Lobule R AVG-FC 0.00 -0.18 0.18 0.01

global signal, functional images were corrected for differences in slice acquisition timing

by re-sampling all slices in time to match the first slice. Images were then motion corrected.

Functional data were then normalized based on Montreal Neurological Institute stereotaxic

space, and spatially smoothed for the AVG-FC approach but not for the double wavelet

approach.

We applied the 3-D wavelet transform using Rbio3.1 wavelet on the volume data at

each time point, and then applied the 1-D wavelet transform using Haar wavelet on the

time series of each 3-D wavelet coefficient. The double wavelet weighted correlation as

in equation (3.5) were calculated for each subject at each ROI pair. Then p-values were

computed based on t-test between HC and MDD groups.

The results showing significant difference between two groups were listed in Table 3.1.

Out of 35 significant region pairs in Kang et al. (2016), we found 5 region pairs showed

significant results using the DW approach, and only one region pair was found significant

using the AVG-FC approach. After controlling False Discovery Rate (FDR) at 0.1 level, all

significance disappeared.

There could be several reasons why we were not able replicate the results in Kang’s

paper. First, the patients in our study were younger than the patients in Kang’s study (27.5

years vs 44.1 years). Second, Kang performed binomial tests on the differences between

the two groups in the proportion of subjects showing strong functional connections. In our

method, we test the difference in the mean correlation between two groups. Although the
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significance disappeared when we control for FDR at 0.1 level, our method tends to detect

more regions pairs than the AVG-FC approach out of 35 significant pairs.

3.6 Conclusion

In this article, we proposed a double-wavelet transform approach, where we trans-

formed the data twice using different wavelet functions, and combined all information from

different frequency bands using weighted Pearson correlation. There are several advantages

to use double-wavelet transform. First, the spatial-temporal correlation in fMRI data as into

consideration by transforming the data twice using different wavelet functions. Second,

due to a natural property of wavelet transform, wavelet transform released the stationary

assumptions on both spatial and temporal data, which may not be feasible but is necessary

for most of available tools in fMRI data analysis. Third, estimation and inversion of the

covariance matrix were not required as in spatio-temporal modeling. This significantly re-

duced computational burden in fMRI data analysis. Fourth, the double-wavelet transform

simplified the fMRI data structure by converting 4-D data into 2-D data.

In simulation, we suggested to use the Reverse Biorthogonal 3.1 wavelet on the spatial

data and the Haar wavelet on the temporal data. For single subject analysis, we found that

the DW approach outperformed the AVG-FC approach in terms of MSE when all voxels

were independent and the spatial correlations among voxels were moderate.

For multiple subject analysis, we found that the DW approach had lower false positive

rate than the AVG-FC approach as the number of subject increased, when the spatial corre-

lations among voxels were based on exponential covariance function and when all voxels

were identical. The DW approach had lower false negative rate than the AVG-FC approach

as the number of subject increased, when the spatial correlations among voxels were based

on exponential covariance function and when all voxels were independent. Note that the

two extreme cases in spatial correlation, i.e., observations are all identical across voxels or

are all independent, are not realistic. Therefore, it can be claimed that the DW approach
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outperformed the AVG-FC approach when the underlying spatial correlation is realistic.

In data analysis, we found five ROI pairs showed significant result using the DW ap-

proach, and one ROI pair using the AVG-FC approach. The five ROI pairs had mean

correlation difference between 0.1 and 0.2. These results were consistent with our simula-

tion study, meaning that the DW approach made less mistakes than the AVG-FC approach

by properly taking into account the spatio-temporal correlation as shown in Figure 3.5.

Although the significance disappeared when we control for FDR at 0.1 level, our method

would be able to find more significant region pairs with a small sample size than the AVG-

FC approach in the 35 region pairs in Kang et al. (2016).

One limitation of our approach is the subjective choice of the wavelet functions. Dif-

ferent wavelet functions have various performance when decorrelating different correlation

structure. More research can be done for different levels of wavelet transform in the future.
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Appendix B

Matlab Code for simulation

1 %%%%% T h i s f i l e i s f o r a n a l y z i n g u s i n g Double w a v e l e t

approach

2

3 c l e a r a l l

4

5 l o c a l =0

6

7 i f l o c a l ==1

8 d i s p ( ’ Running on l o c a l machine ’ )

9 a d d p a t h ’ / Use r s / Michaelzmc / m a t l ab / NIfTI 20140122 / ’ ;

10 a d d p a t h ’ / Use r s / Michaelzmc / m a t l ab / m a t l a b F u n c t i o n s / ’ ;

11 a d d p a t h ’ / Use r s / Michaelzmc / Documents / m a t l a b / spm12 / ’ ;

12

13 e l s e

14 d i s p ( ’ Running on Accre ’ )

15 a d d p a t h ’ / home / zhoum5 / M a t l a b f u n c t i o n / NIfTI 20140122 / ’ ;

16 a d d p a t h ’ / home / zhoum5 / M a t l a b f u n c t i o n / m a t l a b F u n c t i o n s / ’ ;

17 a d d p a t h ’ / home / zhoum5 / M a t l a b f u n c t i o n / spm8 / ’ ;

18

19 end

20

21
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22

23 Nsimu = 1 ;

24 Nsubj = 500 ;

25 dim = [10 1 0 ] ;

26

27

28 p h i = 0 . 6 ;

29 T = 12 8 ; t = 128 ;

30 R = 5 ; num ROI = 5 ;

31 Ncor = nchoosek (R , 2 ) ;

32

33 Voxel = 100 ;

34 a l p h a = 0 . 1 ;

35 N. l e v e l = 1 ;

36

37

38 % f o r FDR c o n t r o l

39 i n c r e m e n t = a l p h a / R ;

40 FDR vec = [ i n c r e m e n t : i n c r e m e n t : a l p h a ] ;

41 w a v e F D R r e s u l t g l m s i m = z e r o s ( Nsimu , num ROI ) ;

42

43 num covN = 2 ;

44

45 row =1;

46

47 SIgma = [ 1 , 0 . 6 , 1e−10 , 0 . 5 , 1e−10;

48 0 . 6 , 1 , 0 . 2 , 0 . 6 , 1e−10;
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49 1e−10 , 0 . 2 , 1 , 1e−10 , 0 . 1 ;

50 0 . 5 , 0 . 6 , 1e−10 , 1 , 0 . 2 ;

51 1e−10 , 1e−10 , 0 . 1 , 0 . 2 , 1 ] ;

52

53 t r u t h t e m p = t r i l ( SIgma , −1) ;

54 t r u t h = ( t r u t h t e m p ( t r u t h t e m p ˜ = 0 ) ) ’ ;

55

56 t r u t h ( t r u t h == 1) = 0 ;

57

58 waveTname = ’ h a a r ’

59 wavePname = ’ r b i o 3 . 1 ’

60

61

62 % g e t 2d w a v e l e t c o e f f i c i e n t s i z e

63 [C , S ] = wavedec2 ( z e r o s ( dim ( 1 ) , dim ( 2 ) ) , N.

l e v e l , wavePname ) ;

64

65 % number o f low−low w a v e l e t c o e f f i c i e n t

66 p l o t . s i z e = S ( 1 , 1 ) *S ( 1 , 2 ) ;

67 %p l o t . s i z e = sum ( S ( : , 1 ) . * S ( : , 2 ) ) ;

68 c o e f b a n d = 1 : l e n g t h (C) ;

69

70 % number o f 2d w a v e l e t c o e f f i c i e n t

71 N. wavecoef = l e n g t h (C) ;

72

73 % c r e a t e w a v e l e t c o e f f i c i e n t m a t r i x

74 waveC = z e r o s ( T , l e n g t h (C) ) ;
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75 % 1D w a v e l e t c o e f f i c i e n t

76 [TC , TS ] = wavedec ( z e r o s ( 1 , T ) , 1 , waveTname ) ;

77

78 Ntime = l e n g t h (TC) ;

79 waveband = 1 : Ntime ;

80

81 waveT = z e r o s ( l e n g t h (C) , l e n g t h (TC) ) ;

82

83 wave pva l g lm = z e r o s (R , Nsimu ) ;

84

85 wavecon = z e r o s ( Nsimu , R , Nsubj , l e n g t h ( c o e f b a n d

) ) ;

86 wavecon sub = z e r o s ( Nsubj , R) ;

87

88 waveda ta = z e r o s (R , Nsubj , l e n g t h ( c o e f b a n d ) , l e n g t h (

waveband ) ) ;

89

90 or igmean = z e r o s ( Nsimu , R , Nsubj , Ntime ) ;

91 o r i g c o r = z e r o s ( Nsubj , Ncor ) ;

92 o r i g c o r 1 = z e r o s ( Nsubj , Ncor ) ;

93

94

95 o r i g c o r m e a n = z e r o s ( Nsimu , Ncor ) ;

96 o r i g c o r m e a n p a r = z e r o s ( Nsimu , Ncor ) ;

97

98 mean ROI= z e r o s (R , Nsubj , Ntime ) ;

99
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100

101 c o u n t = 0 ;

102

103 r e s u l t = c e l l ( 9 , 11) ;

104

105 d a t a t p y e a l l = { ’ Exp2 ’ , ’ gau0 ’ , ’ gau100 ’ } ;

106 c o r t y p e = { ’ r e g ’ , ’ p a r ’}

107

108

109 f o r d t y p e = 1 : l e n g t h ( d a t a t p y e a l l )

110

111 d a t a t p y e = d a t a t p y e a l l { d t y p e }

112

113 sim =1;

114

115 cd ( ’ / s c r a t c h / kangh1 / minchun / R e s t D a t a / c o r s i m u f i v e r o i ’ )

116

117 l o a d ( s p r i n t f ( ’%s Sim%d f i v e . mat ’ , d a t a t p y e , sim ) )

;

118 d a t a = d a t a ( 1 : Nsubj , : , : , : , : ) ;

119

120 f o r sub = 1 : Nsubj

121

122 f o r r o i = 1 :R

123

124 f o r t = 1 : T

125 s u b j b r a i n = r e s h a p e ( d a t a ( sub , r o i
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, : , : , t ) , dim ( 1 ) , dim ( 2 ) ) ;

126 [ waveC ( t , : ) , S ] = wavedec2 (

s u b j b r a i n , N. l e v e l , wavePname

) ;

127 end

128

129 f o r c o e f = 1 :N. wavecoef

130

131 sub jT = r e s h a p e ( waveC ( : , c o e f ) , 1 ,

T ) ;

132 [ waveT ( coef , : ) , TS ] = wavedec (

subjT , 1 , waveTname ) ;

133

134 end

135

136

137 waveda ta ( r o i , sub , : , : ) = waveT (

coefband , waveband ) ;

138

139

140

141 end

142

143 end

144

145 s d a t a = s i z e ( waveda ta ) ;

146 compcor = z e r o s ( 1 0 0 , 1 0 ) ;
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147

148 wavecor = z e r o s ( 1 0 0 , 1 0 ) ;

149 wavepar = z e r o s ( 1 0 0 , 1 0 ) ;

150

151 s p a d a t a 1 = ( 1 : ( s d a t a ( 3 ) * 1 / 4 ) ) + 0* ( s d a t a ( 3 ) * 1 / 4 ) ;

152 s p a d a t a 2 = ( 1 : ( s d a t a ( 3 ) * 1 / 4 ) ) + 1* ( s d a t a ( 3 ) * 1 / 4 ) ;

153 s p a d a t a 3 = ( 1 : ( s d a t a ( 3 ) * 1 / 4 ) ) + 2* ( s d a t a ( 3 ) * 1 / 4 ) ;

154 s p a d a t a 4 = ( 1 : ( s d a t a ( 3 ) * 1 / 4 ) ) + 3* ( s d a t a ( 3 ) * 1 / 4 ) ;

155

156 s p a d a t a A l l = [ s p a d a t a 1 ; s p a d a t a 2 ; s p a d a t a 3 ; s p a d a t a 4 ] ;

157

158 tempdataA = ( 1 : ( s d a t a ( 4 ) / 2 ) ) + 0*( s d a t a ( 4 ) / 2 ) ;

159 tempdataB = ( 1 : ( s d a t a ( 4 ) / 2 ) ) + 1*( s d a t a ( 4 ) / 2 ) ;

160

161 t e m p d a t a A l l = [ tempdataA ; tempdataB ] ;

162

163 indTemp = [ ’A’ ; ’B ’ ] ;

164 v a r i a n c e = z e r o s ( 4 , 2 , 1 0 0 ) ;

165

166 f o r spa = 1 : 4

167

168 s p a d a t a = s p a d a t a A l l ( spa , : ) ;

169

170 t e m p d a t a = 1 : ( s d a t a ( 4 ) ) ;

171

172 f o r sim = 1:100

173
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174 d1 = r e s h a p e ( mean ( waveda ta ( 1 , sim , s p a d a t a ,

t e m p d a t a ) , 3 ) , l e n g t h ( t e m p d a t a ) , 1 ) ;

175 d2 = r e s h a p e ( mean ( waveda ta ( 2 , sim , s p a d a t a ,

t e m p d a t a ) , 3 ) , l e n g t h ( t e m p d a t a ) , 1 ) ;

176 d3 = r e s h a p e ( mean ( waveda ta ( 3 , sim , s p a d a t a ,

t e m p d a t a ) , 3 ) , l e n g t h ( t e m p d a t a ) , 1 ) ;

177 d4 = r e s h a p e ( mean ( waveda ta ( 4 , sim , s p a d a t a ,

t e m p d a t a ) , 3 ) , l e n g t h ( t e m p d a t a ) , 1 ) ;

178 d5 = r e s h a p e ( mean ( waveda ta ( 5 , sim , s p a d a t a ,

t e m p d a t a ) , 3 ) , l e n g t h ( t e m p d a t a ) , 1 ) ;

179

180

181 t empcor = c o r r ( [ d1 d2 d3 d4 d5 ] ) ;

182 t emppar = p a r t i a l c o r r ( [ d1 d2 d3 d4 d5 ] ) ;

183

184 d i a t e m p c o r = t r i l ( tempcor , −1) ;

185 v e c t e m p c o r = ( d i a t e m p c o r ( d i a t e m p c o r ˜ = 0 ) )

’ ;

186

187 d i a t e m p p a r = t r i l ( temppar , −1) ;

188 v e c t e m p p a r = ( d i a t e m p p a r ( d i a t e m p p a r ˜ = 0 ) )

’ ;

189

190

191 wavecor ( sim , : ) = v e c t e m p c o r ;

192 wavepar ( sim , : ) = v e c t e m p p a r ;

193
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194 end

195

196

197 f o r j = 1 :10

198

199 c o u n t = c o u n t +1;

200

201 c o r r e l a t i o n = t r u t h ( j ) ;

202

203 a l l s u b = wavecor ( : , j ) ;

204

205 r e s u l t { count , 1} = c o r r e l a t i o n ;

206 r e s u l t { count , 2} = d a t a t p y e ;

207 r e s u l t { count , 3} = wavePname ;

208 r e s u l t { count , 4} = waveTname ;

209

210 r e s u l t { count , 5} = mean ( a l l s u b −

c o r r e l a t i o n ) ;

211 r e s u l t { count , 6} = v a r ( a l l s u b −

c o r r e l a t i o n ) ;

212 r e s u l t { count , 7} = ( mean ( a l l s u b −

c o r r e l a t i o n ) ) ˆ2 + v a r ( a l l s u b −

c o r r e l a t i o n ) ;

213

214 r e s u l t { count , 8} = spa ;

215 r e s u l t { count , 9} = ’ Al l t emp ’ ;

216 r e s u l t { count , 1 0} = c o r t y p e {1} ;
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217 r e s u l t { count , 1 1} = j ;

218

219 c o u n t = c o u n t +1;

220

221 c o r r e l a t i o n = t r u t h ( j ) ;

222

223 a l l s u b = wavepar ( : , j ) ;

224

225 r e s u l t { count , 1} = c o r r e l a t i o n ;

226 r e s u l t { count , 2} = d a t a t p y e ;

227 r e s u l t { count , 3} = wavePname ;

228 r e s u l t { count , 4} = waveTname ;

229

230 r e s u l t { count , 5} = mean ( a l l s u b −

c o r r e l a t i o n ) ;

231 r e s u l t { count , 6} = v a r ( a l l s u b −

c o r r e l a t i o n ) ;

232 r e s u l t { count , 7} = ( mean ( a l l s u b −

c o r r e l a t i o n ) ) ˆ2 + v a r ( a l l s u b −

c o r r e l a t i o n ) ;

233

234 r e s u l t { count , 8} = spa ;

235 r e s u l t { count , 9} = ’ Al l t emp ’ ;

236 r e s u l t { count , 1 0} = c o r t y p e {2} ;

237 r e s u l t { count , 1 1} = j ;

238

239
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240 end

241

242

243 f o r temp = 1 : 2

244

245 t e m p d a t a = t e m p d a t a A l l ( temp , : ) ;

246

247 f o r sim = 1:100

248

249 d1 = r e s h a p e ( mean ( waveda ta ( 1 , sim , s p a d a t a ,

t e m p d a t a ) , 3 ) , l e n g t h ( t e m p d a t a ) , 1 ) ;

250 d2 = r e s h a p e ( mean ( waveda ta ( 2 , sim , s p a d a t a ,

t e m p d a t a ) , 3 ) , l e n g t h ( t e m p d a t a ) , 1 ) ;

251 d3 = r e s h a p e ( mean ( waveda ta ( 3 , sim , s p a d a t a ,

t e m p d a t a ) , 3 ) , l e n g t h ( t e m p d a t a ) , 1 ) ;

252 d4 = r e s h a p e ( mean ( waveda ta ( 4 , sim , s p a d a t a ,

t e m p d a t a ) , 3 ) , l e n g t h ( t e m p d a t a ) , 1 ) ;

253 d5 = r e s h a p e ( mean ( waveda ta ( 5 , sim , s p a d a t a ,

t e m p d a t a ) , 3 ) , l e n g t h ( t e m p d a t a ) , 1 ) ;

254

255 t empcor = c o r r ( [ d1 d2 d3 d4 d5 ] ) ;

256 t emppar = p a r t i a l c o r r ( [ d1 d2 d3 d4 d5 ] ) ;

257

258 d i a t e m p c o r = t r i l ( tempcor , −1) ;

259 v e c t e m p c o r = ( d i a t e m p c o r ( d i a t e m p c o r ˜ = 0 ) )

’ ;

260
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261 d i a t e m p p a r = t r i l ( temppar , −1) ;

262 v e c t e m p p a r = ( d i a t e m p p a r ( d i a t e m p p a r ˜ = 0 ) )

’ ;

263

264

265 wavecor ( sim , : ) = v e c t e m p c o r ;

266 wavepar ( sim , : ) = v e c t e m p p a r ;

267

268 end

269

270 f o r j = 1 :10

271

272 c o u n t = c o u n t +1;

273

274 c o r r e l a t i o n = t r u t h ( j ) ;

275

276 a l l s u b = wavecor ( : , j ) ;

277

278 r e s u l t { count , 1} = c o r r e l a t i o n ;

279 r e s u l t { count , 2} = d a t a t p y e ;

280 r e s u l t { count , 3} = wavePname ;

281 r e s u l t { count , 4} = waveTname ;

282

283 r e s u l t { count , 5} = mean ( a l l s u b −

c o r r e l a t i o n ) ;

284 r e s u l t { count , 6} = v a r ( a l l s u b −

c o r r e l a t i o n ) ;
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285 r e s u l t { count , 7} = ( mean ( a l l s u b −

c o r r e l a t i o n ) ) ˆ2 + v a r ( a l l s u b −

c o r r e l a t i o n ) ;

286

287 r e s u l t { count , 8} = spa ;

288 r e s u l t { count , 9} = indTemp ( temp ) ;

289 r e s u l t { count , 1 0} = c o r t y p e {1} ;

290 r e s u l t { count , 1 1} = j ;

291

292

293

294 c o u n t = c o u n t +1;

295

296 c o r r e l a t i o n = t r u t h ( j ) ;

297

298 a l l s u b = wavepar ( : , j ) ;

299

300 r e s u l t { count , 1} = c o r r e l a t i o n ;

301 r e s u l t { count , 2} = d a t a t p y e ;

302 r e s u l t { count , 3} = wavePname ;

303 r e s u l t { count , 4} = waveTname ;

304

305 r e s u l t { count , 5} = mean ( a l l s u b −

c o r r e l a t i o n ) ;

306 r e s u l t { count , 6} = v a r ( a l l s u b −

c o r r e l a t i o n ) ;

307 r e s u l t { count , 7} = ( mean ( a l l s u b −
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c o r r e l a t i o n ) ) ˆ2 + v a r ( a l l s u b −

c o r r e l a t i o n ) ;

308

309 r e s u l t { count , 8} = spa ;

310 r e s u l t { count , 9} = indTemp ( temp ) ;

311 r e s u l t { count , 1 0} = c o r t y p e {2} ;

312 r e s u l t { count , 1 1} = j ;

313

314

315 end

316 end

317 end

318

319

320

321 % here

322

323 wavecor = z e r o s ( 4 , 2 , 100 ,10 ) ;

324 wavepar = z e r o s ( 4 , 2 , 100 ,10 ) ;

325

326 compcor = z e r o s ( 1 0 0 , 1 0 ) ;

327

328 f o r sim = 1:100

329

330 f o r spa = 1 : 4

331

332 f o r temp = 1 : 2
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333

334 s p a d a t a = s p a d a t a A l l ( spa , : ) ;

335 t e m p d a t a = t e m p d a t a A l l ( temp , : ) ;

336

337 d1 = r e s h a p e ( mean ( waveda ta ( 1 , sim , s p a d a t a ,

t e m p d a t a ) , 3 ) , l e n g t h ( t e m p d a t a ) , 1 ) ;

338 d2 = r e s h a p e ( mean ( waveda ta ( 2 , sim , s p a d a t a ,

t e m p d a t a ) , 3 ) , l e n g t h ( t e m p d a t a ) , 1 ) ;

339 d3 = r e s h a p e ( mean ( waveda ta ( 3 , sim , s p a d a t a ,

t e m p d a t a ) , 3 ) , l e n g t h ( t e m p d a t a ) , 1 ) ;

340 d4 = r e s h a p e ( mean ( waveda ta ( 4 , sim , s p a d a t a ,

t e m p d a t a ) , 3 ) , l e n g t h ( t e m p d a t a ) , 1 ) ;

341 d5 = r e s h a p e ( mean ( waveda ta ( 5 , sim , s p a d a t a ,

t e m p d a t a ) , 3 ) , l e n g t h ( t e m p d a t a ) , 1 ) ;

342

343 t empcor = c o r r ( [ d1 d2 d3 d4 d5 ] ) ;

344 t emppar = p a r t i a l c o r r ( [ d1 d2 d3 d4 d5 ] ) ;

345

346 d i a t e m p c o r = t r i l ( tempcor , −1) ;

347 v e c t e m p c o r = ( d i a t e m p c o r ( d i a t e m p c o r ˜ = 0 ) )

’ ;

348

349 d i a t e m p p a r = t r i l ( temppar , −1) ;

350 v e c t e m p p a r = ( d i a t e m p p a r ( d i a t e m p p a r ˜ = 0 ) )

’ ;

351

352 wavecor ( spa , temp , sim , : ) = v e c t e m p c o r ;
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353 wavepar ( spa , temp , sim , : ) = v e c t e m p p a r ;

354

355 va r1 = v a r ( r e s h a p e ( waveda ta ( 1 , sim , s p a d a t a ,

t e m p d a t a ) , l e n g t h ( s p a d a t a ) * l e n g t h ( t e m p d a t a )

, 1 ) ) ;

356 va r2 = v a r ( r e s h a p e ( waveda ta ( 2 , sim , s p a d a t a ,

t e m p d a t a ) , l e n g t h ( s p a d a t a ) * l e n g t h ( t e m p d a t a )

, 1 ) ) ;

357 va r3 = v a r ( r e s h a p e ( waveda ta ( 3 , sim , s p a d a t a ,

t e m p d a t a ) , l e n g t h ( s p a d a t a ) * l e n g t h ( t e m p d a t a )

, 1 ) ) ;

358 va r4 = v a r ( r e s h a p e ( waveda ta ( 4 , sim , s p a d a t a ,

t e m p d a t a ) , l e n g t h ( s p a d a t a ) * l e n g t h ( t e m p d a t a )

, 1 ) ) ;

359 va r5 = v a r ( r e s h a p e ( waveda ta ( 5 , sim , s p a d a t a ,

t e m p d a t a ) , l e n g t h ( s p a d a t a ) * l e n g t h ( t e m p d a t a )

, 1 ) ) ;

360

361 v a r i a n c e ( spa , temp , sim ) = mean ( [ va r1 va r2 va r3

va r4 va r5 ] ) ;

362

363

364 v e c t o r 1 = r e s h a p e ( waveda ta ( 1 , sim , s p a d a t a ,

t e m p d a t a ) , l e n g t h ( s p a d a t a ) * l e n g t h ( t e m p d a t a )

, 1 ) ;

365 v e c t o r 2 = r e s h a p e ( waveda ta ( 2 , sim , s p a d a t a ,

t e m p d a t a ) , l e n g t h ( s p a d a t a ) * l e n g t h ( t e m p d a t a )
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, 1 ) ;

366 v e c t o r 3 = r e s h a p e ( waveda ta ( 3 , sim , s p a d a t a ,

t e m p d a t a ) , l e n g t h ( s p a d a t a ) * l e n g t h ( t e m p d a t a )

, 1 ) ;

367 v e c t o r 4 = r e s h a p e ( waveda ta ( 4 , sim , s p a d a t a ,

t e m p d a t a ) , l e n g t h ( s p a d a t a ) * l e n g t h ( t e m p d a t a )

, 1 ) ;

368 v e c t o r 5 = r e s h a p e ( waveda ta ( 5 , sim , s p a d a t a ,

t e m p d a t a ) , l e n g t h ( s p a d a t a ) * l e n g t h ( t e m p d a t a )

, 1 ) ;

369

370 va r1 = v a r ( v e c t o r 1 . * v e c t o r 1 ) ;

371 va r2 = v a r ( v e c t o r 2 . * v e c t o r 2 ) ;

372 va r3 = v a r ( v e c t o r 3 . * v e c t o r 3 ) ;

373 va r4 = v a r ( v e c t o r 4 . * v e c t o r 4 ) ;

374 va r5 = v a r ( v e c t o r 5 . * v e c t o r 5 ) ;

375

376

377 v a r i a n c e w a v e f o r m ( spa , temp , sim ) = mean ( [ va r1

va r2 va r3 va r4 va r5 ] ) ;

378

379

380 end

381

382 end

383

384 t empvar = sum ( r e s h a p e ( v a r i a n c e ( : , : , sim ) , 1 , 8 ) ) ;
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385 t empvar waveform = sum ( r e s h a p e ( v a r i a n c e w a v e f o r m

( : , : , sim ) , 1 , 8 ) ) ;

386

387 f o r j = 1 :10

388

389 compcor ( sim , j ) = sum ( sum ( r e s h a p e ( v a r i a n c e ( : , : ,

sim ) , 4 , 2 ) . * r e s h a p e ( wavecor ( : , : , sim , j ) ,

4 , 2 ) ) ) / t empvar ;

390 comppar ( sim , j ) = sum ( sum ( r e s h a p e ( v a r i a n c e ( : , : ,

sim ) , 4 , 2 ) . * r e s h a p e ( wavepar ( : , : , sim , j ) ,

4 , 2 ) ) ) / t empvar ;

391

392 compcor waveform ( sim , j ) = sum ( sum ( r e s h a p e (

v a r i a n c e w a v e f o r m ( : , : , sim ) , 4 , 2 ) . * r e s h a p e

( wavecor ( : , : , sim , j ) , 4 , 2 ) ) ) /

t empvar waveform ;

393 comppar waveform ( sim , j ) = sum ( sum ( r e s h a p e (

v a r i a n c e w a v e f o r m ( : , : , sim ) , 4 , 2 ) . * r e s h a p e

( wavepar ( : , : , sim , j ) , 4 , 2 ) ) ) /

t empvar waveform ;

394

395 end

396

397 end

398

399

400 f o r j = 1 :10
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401

402

403 c o r r e l a t i o n = t r u t h ( j ) ;

404

405 c o u n t = c o u n t +1;

406

407 a l l s u b = compcor ( : , j ) ;

408

409 r e s u l t { count , 1} = c o r r e l a t i o n ;

410 r e s u l t { count , 2} = d a t a t p y e ;

411 r e s u l t { count , 3} = wavePname ;

412 r e s u l t { count , 4} = waveTname ;

413

414 r e s u l t { count , 5} = mean ( a l l s u b −

c o r r e l a t i o n ) ;

415 r e s u l t { count , 6} = v a r ( a l l s u b −

c o r r e l a t i o n ) ;

416 r e s u l t { count , 7} = ( mean ( a l l s u b −

c o r r e l a t i o n ) ) ˆ2 + v a r ( a l l s u b −

c o r r e l a t i o n ) ;

417

418 r e s u l t { count , 8} = ’ c o m p v a r i a n c e ’ ;

419 r e s u l t { count , 9} = ’ c o m p v a r i a n c e ’ ;

420 r e s u l t { count , 1 0} = c o r t y p e {1} ;

421 r e s u l t { count , 1 1} = j ;

422

423 c o u n t = c o u n t +1;
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424

425 a l l s u b = comppar ( : , j ) ;

426

427 r e s u l t { count , 1} = c o r r e l a t i o n ;

428 r e s u l t { count , 2} = d a t a t p y e ;

429 r e s u l t { count , 3} = wavePname ;

430 r e s u l t { count , 4} = waveTname ;

431

432 r e s u l t { count , 5} = mean ( a l l s u b −

c o r r e l a t i o n ) ;

433 r e s u l t { count , 6} = v a r ( a l l s u b −

c o r r e l a t i o n ) ;

434 r e s u l t { count , 7} = ( mean ( a l l s u b −

c o r r e l a t i o n ) ) ˆ2 + v a r ( a l l s u b −

c o r r e l a t i o n ) ;

435

436 r e s u l t { count , 8} = ’ c o m p v a r i a n c e ’ ;

437 r e s u l t { count , 9} = ’ c o m p v a r i a n c e ’ ;

438 r e s u l t { count , 1 0} = c o r t y p e {2} ;

439 r e s u l t { count , 1 1} = j ;

440

441

442

443 c o r r e l a t i o n = t r u t h ( j ) ;

444

445 c o u n t = c o u n t +1;

446
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447 a l l s u b = compcor waveform ( : , j ) ;

448

449 r e s u l t { count , 1} = c o r r e l a t i o n ;

450 r e s u l t { count , 2} = d a t a t p y e ;

451 r e s u l t { count , 3} = wavePname ;

452 r e s u l t { count , 4} = waveTname ;

453

454 r e s u l t { count , 5} = mean ( a l l s u b −

c o r r e l a t i o n ) ;

455 r e s u l t { count , 6} = v a r ( a l l s u b −

c o r r e l a t i o n ) ;

456 r e s u l t { count , 7} = ( mean ( a l l s u b −

c o r r e l a t i o n ) ) ˆ2 + v a r ( a l l s u b −

c o r r e l a t i o n ) ;

457

458 r e s u l t { count , 8} = ’ comp waveform ’ ;

459 r e s u l t { count , 9} = ’ comp waveform ’ ;

460 r e s u l t { count , 1 0} = c o r t y p e {1} ;

461 r e s u l t { count , 1 1} = j ;

462

463 c o u n t = c o u n t +1;

464

465 a l l s u b = comppar waveform ( : , j ) ;

466

467 r e s u l t { count , 1} = c o r r e l a t i o n ;

468 r e s u l t { count , 2} = d a t a t p y e ;

469 r e s u l t { count , 3} = wavePname ;
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470 r e s u l t { count , 4} = waveTname ;

471

472 r e s u l t { count , 5} = mean ( a l l s u b −

c o r r e l a t i o n ) ;

473 r e s u l t { count , 6} = v a r ( a l l s u b −

c o r r e l a t i o n ) ;

474 r e s u l t { count , 7} = ( mean ( a l l s u b −

c o r r e l a t i o n ) ) ˆ2 + v a r ( a l l s u b −

c o r r e l a t i o n ) ;

475

476 r e s u l t { count , 8} = ’ comp waveform ’ ;

477 r e s u l t { count , 9} = ’ comp waveform ’ ;

478 r e s u l t { count , 1 0} = c o r t y p e {2} ;

479 r e s u l t { count , 1 1} = j ;

480

481

482 end

483

484 end

485

486

487 c e l l 2 c s v ( ’ / s c r a t c h / kangh1 / minchun / R e s t R e s u l t /

dw f ive 0325 wave fo rm . csv ’ , r e s u l t )
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Chapter 4

MATLAB GUI FOR MULTI-SUBJECT TASK-INDUCED FUNCTIONAL MAGNETIC

RESONANCE IMAGING DATA USING DOUBLE-WAVELET TRANSFORM

One of the main challenge in functional magnetic resonance imaging (fMRI) data anal-

ysis is the high computational cost due to the complex spatio-temporal correlation. Using

wavelet transform can help reduce the spatio-temporal correlation, as well as save the com-

putation time. In this paper, we develop a MATLAB graphical user interface (GUI) for

multi-subject task-induced fMRI data using double-wavelet transform, which can estimate

the effect of user-specified stimulus functions in pre-specified region of interests (ROI).

4.1 Introduction

Task-induced functional magnetic resonance imaging (fMRI) is one of the technologies

for studying human brain activity in response to external stimuli. The conventional analysis

of fMRI data only takes into account the temporal correlation, e.g., auto-regressive order

one (AR(1)) structure, and estimates the parameters from the mean time series of each

region of interest (ROI). For multiple subjects, a simple t-test is used on the parameters

(Worsley & Friston, 1995; Weiskopf et al., 2003; Huettel et al., 2004). This approach

does not rigorously model the underlying spatial correlation., which led to smaller standard

errors and higher Type I errors Dubin (1988).

Spatial smoothing is common approaches that take into account spatial correlation in

fMRI data analysis. Spatial smoothing using a Gaussian kernel was proposed by Worsley

et al. (1996). This method was implemented in statistical parametric mapping (SPM) by

Frackowiak et al. (1997). Although spatial smoothing increased the signal to noise ratio

(SNR) in fMRI data, it actually induce more spatial correlation, which may cause a higher

error rate.

101



The wavelet transform is a linear transformation, and the wavelet coefficients we get

are approximately uncorrelated Fan (2003). The wavelet transform was first introduced

to fMRI analysis by Brammer (1998) and Ruttimann et al. (1998). Aston et al. (2005)

proposed estimating the model coefficients in the wavelet domain by applying one wavelet

transform on the spatial data at each time point.

We develop a novel single level double-wavelet framework that estimating the model

coefficients in the wavelet domain by applying the wavelet transform twice on both spatial

data and temporal data. This approach takes into account the spatial and temporal correla-

tion for estimating the ROI-level activation patterns in multi-subject fMRI data analysis.

This paper provides a MATLAB graphical user interface (GUI) using the single level

double-wavelet transform for multiple subject fMRI data analysis. The GUI aims to be

useful for both beginners and advanced user of MATLAB. The GUI incorporates a user-

friendly interface that helps to control the whole fMRI analysis by (a) importing data, (b)

reading stimulus functions (c) selecting region of interest (ROI), (d) single subject analysis,

(e) group analysis.

The remaining sections are organized as follows. In section 2, the spatio-temporal

model for task-induced fMRI data is presented, and then double-wavelet transform is intro-

duced. In section 3, we illustrate the design of GUI, and using example data to show how

to use the GUI step by step. The summary and future work are presented in section 4.

4.2 Method

4.2.1 Model

In fMRI study, suppose we have N subjects, P external stimuli, C ROIs and Vc voxels

within the c-th ROI. For each voxel v in ROI c for subject n, we define the time series as

Yncv(t), t = 1, ...,T , where T is the length of time series. There are two different correlations

we need to consider: the spatial correlation between voxels within an ROI, and the temporal
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correlation within a voxel. Here is the model to describe these two different correlation in

fMRI data:

Yncv(t) =
P

∑
p=1

[β p
ncvX p(t)]+ εncv(t), where (4.1)

β p
ncv = β p

c +bp
ncv

• X p(t) is the expected BOLD response corresponding to the pth stimulus which is

formally the convolution between the HRF and the pth impulse function. The HRF

is the expected neuronal activation function given a stimuli. .

• β p
c is the ROI-specific activation level fixed effect due to stimulus p;

• bp
ncv is a zero-mean voxel-specific random effect that accounts for the spatial covari-

ance between voxels v and v′ within ROI c for subject n.

• εncv(t) is the noise that takes into account the voxel-specific temporal correlation,

which is assumed to follow an AR(1) process.

To test whether ROI c is activated when the pth stimulus is presented, we are interested

in the hypothesis:

H0 : β p
c −β 1

c = 0 (4.2)

where β 1
c indicates the baseline condition at ROI c.

4.2.2 Wavelet Transform

Similar to Fourier transform, wavelet transform is a linear transform. Wavelet coeffi-

cients are obtained by the inner product of the observed data and wavelet functions, which is
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similar to the sine and cousin functions in Fourier transform. There are two types of wavelet

transform, zero integral mother wavelet function and the unit integral father wavelet func-

tion. Wavelet transform can be performed into different levels, which corresponding to

different time interval length. In this paper, we only discuss single level wavelet transform,

which decomposes data into two frequency bands at each dimension.

4.2.3 Double-Wavelet Transform

The main idea of the double-wavelet transform is to apply different wavelet functions

to different dimensional data in fMRI data analysis. The order of two wavelet transform

is interchangeable since wavelet transform is a linear transform. Suppose we have 4-D

fMRI data (1-D time series and 3-D volume). First we can obtain 3-D wavelet coefficients

by applying 3-D wavelet transform on 3-D volume data at each time point. For each 3-D

wavelet transform, we have a time series of it. Second we apply 1-D wavelet transform on

the time series of each 3-D wavelet coefficient. We also apply the 1-D wavelet transform

on the stimulus function. We will introduce double-wavelet transform in theory step by

step with Matlab code.

We first apply the 3-D discrete wavelet transform on the data at each time point in

equation (4.1). The 3-D wavelet function we use is ϕr(v) for ROI c, then we have

Uncr(t) = ∑
v

Yncv(t)ϕr(v) =
P

∑
p=1

λ p
ncrX

p(t)+ εncv(t) where

r = 1,2, ...,R, and R is the total number of 3-D wavelet coefficients at each time point

t. λ p
ncr = ∑v β p

ncvϕr(v) is the 3-D wavelet coefficient, which are obtained by convolving the

3-D wavelet function and the spatially dependent parameter β p
ncv in ROI c for subject n.

Next, for each time series of 3-D wavelet coefficient Uncr(t), we apply the 1-D wavelet

transform. The 1-D wavelet function we use is φω(t), then we have
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(a) (b)

Figure 4.1: The double-wavelet coefficient structure. (a) is an example using the Daubechies 3 wavelet
(spatial wavelet function) and the Symlet 8 wavelet (temporal wavelet function) on an activated 3-D ROI data
(β1 −β2 > 0) in simulation (2-D in spatial domain and 1-D in temporal domain). (b): SLL, SLH , SHL and SHH
represent the wavelet coefficients from the 2-D wavelet transform on the spatial data in low-low (horizontal-
vertical) frequency band (LL), low-high (horizontal-vertical) frequency band (LH), high-low (horizontal-
vertical) frequency band (HL), and high-high (horizontal-vertical) frequency band (HH) respectively; TL and
TH represent the wavelet coefficients from the 1-D wavelet transform on the temporal data in low and high
frequency band respectively.

Wncrω = ∑
t

Uncr(t)φω(t) =
P

∑
p=1

λ p
ncrV

p
ω +δncrω where (4.3)

ω = 1,2, ...,Ω, and Ω is the total number of 1-D wavelet coefficients for the time series

of each 3-D wavelet coefficient. V p
ω =∑t X p(t)φω(t) is the 1-D wavelet coefficients by con-

volving the 1-D wavelet function with the stimulus function X p(t). δncrω = ∑t εncr(t)φω(t)

is the 1-D wavelet coefficients by convolving with 1-D wavelet function and the time de-

pendent error term εncr(t) at the 3-D wavelet coefficient r in ROI c for subject n. δncrω is

the double-wavelet coefficient, which is approximately uncorrelated after double-wavelet

transformation.

The single level discrete wavelet transform (SL-DWT) decomposes data into two scales

on each dimension. For example, a 1-D signal would be transformed into wavelet coeffi-

cients indicating information from one high frequency band and one low frequency band.
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A 2-D image would be decomposed into high and low frequency bands on both vertical

and horizontal directions by SL-DWT, which results into four parts, low-low (horizontal-

vertical) frequency band (LL), low-high (horizontal-vertical) frequency band (LH), high-

low (horizontal-vertical) frequency band (HL), and high-high (horizontal-vertical) frequency

band (HH). For simplicity, we only illustrate 3-D data (1-D time series and 2-D spatial data)

in Figure 4.1(b), where S indicates the wavelet coefficients from the 2-D wavelet transform

on the spatial data and T indicates the wavelet coefficients from the 1-D wavelet transform

on the temporal data.

We found that more than 95% of the wavelet periodograms were contained in the SLL ·

TL part for simulated task-induced fMRI data. Hence we only used the double-wavelet

coefficients in the SLL · TL part, where r = 1,2, ...,R/4 and ω = 1,2, ...,Ω/2, since other

parts of the double wavelet coefficient can be consider as noise in the data.

We can rewrite equation (4.3) in matrix notation. We define Nq(µ,Σ) as multi-variate

normal distribution with q× 1 mean vector µ, and covariance matrix Σ, and denote the

q×q identity matrix by Iq. Then we have

Wncr = V Tλncr +δncr, where (4.4)

• Wncr = [Wncr1,Wncr2, ...,Wncr(Ω/2)]
T is a Ω/2×1 vector, which are the double-wavelet

coefficients in SLL ·TL part by performing double-wavelet transform on data Yncv for

subject n in ROI c. We assume that Wncr ∼ NΩ/2(V
Tλncr,cov(δncr))

• V =



V 1

V 2

. .

V P


=



V 1
1 V 1

2 V 1
3 . . . V 1

Ω/2

V 2
1 V 2

2 V 2
3 . . . V 2

Ω/2

. . . . . . . . . . .

V P
1 V P

2 V P
3 . . . V P

Ω/2


P×Ω/2

where V is a P×Ω/2 matrix, in which elements are the 1-D wavelet coefficients

by performing 1-D wavelet transform on X p(t) corresponding the pth stimulus func-
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tion;

• λncr = [λ 1
ncr,λ 2

ncr, ...,λ P
ncr]

T is a P× 1 vector, consisting of the 2-D wavelet coeffi-

cients by performing 2-D wavelet transform on the β p
ncv;

• δncr = [δncr1,δncr2, ...,δncr(Ω/2)]
T is a Ω/2×1 vector, consisting of the 1-D wavelet

coefficients by performing 1-D wavelet transform on the error term ϵncv, and δncr ∼

NΩ/2(0,σ2IΩ/2), where σ2 is the variance of the wavelet coefficients δncr.

Then we estimate λ̂ncr by using the ordinary least squares estimator

λ̂ncr = (V V T )−1V Wncr

The boxcar stimuli are orthogonal to each other in task-induced fMRI data, which

means X p′ · (Xp)T = 0 when p ̸= p′, then

V p′ · (V p)T = (ϕ(x)X p′)(ϕ(x)Xp)T = ϕ(x)X p′(Xp)Tϕ(x)T

where ϕ(x)= [ϕ1(x) ϕ2(x) ... ϕΩ/2(x)] and ϕk(x),k = 1,2, ...,Ω/2 are wavelet func-

tions. Then we have V p′ · (V p)T = 0 and (V V T )−1 is a diagonal matrix.

A simple t-test is used on a linear contrast of λncr based on multi-subject data. Since

there is a one to one relationship between β p
ncv and λ p

ncr, the hypothesis in equation (4.2) is

equivalent to

H0 : λ p
c −λ 1

c = 0

where λ 1
c is the mean of the estimator λ 1

ncr and λ p
c is the mean of the estimator λ p

ncr across

subjects for ROI c using double-wavelet coefficients in SLL ·TL part.
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Figure 4.2: The interface of Matlab GUI

4.3 Graphical User Interface Design

4.3.1 GUI Design Process

This Matlab GUI for multi-subject task-induced fMRI data using double-wavelet trans-

form is developed in Matlab (Mathwork, Inc) as an open source software. It is designed to

analyze single subject fMRI data using double-wavelet approach, and then perform group

analysis using T-test for different contrast in stimulus. The interface is shown in Fig 4.2.

The GUI includes two main parts. The left part is for signal subject analysis. There are

five chunks in this part, which will guide the user step by step to perform single subject

analysis. In the “Data” chunk, the user can browse in the computer and select multiple

sessions’ data for single subject. The format of data is required to be in NIFTI format. The

ID name and repetition time (TR) need to be entered here.
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In the “Stimulus” chunk, the user can browse and select multiple sessions’ stimuli for

the data in the “Data” chunk. The stimulus is a box-car function at each time point. Dif-

ferent stimulus needs to be put in different column without header and save as csv (comma

separated values) file. The user also need to input the length of time series needed.

In the “Region of Interest” chunk, the user can specify the region of interest in three

ways, using prespecified AAL (Automated Anatomical Labeling) number, user’s own bi-

nary mask or cube centered at a certain coordinator.

In the “Wavelet Function” chunk, the user can choose different wavelet functions for

volume data and time series data. In the last chunk, the user can run the single subject

analysis given input data, create a new csv file and save the result. The user can also save

result to a current csv file, where multiple subjects’ result can be saved in one file for later

use.

The group analysis function is on the right side of the GUI, There are two chunks in

this part. In the first chunk, the user need to load the csv file containing single subjects’

analysis. The content in the file will be shown in the table. In the “Contrast” chunk, the

user can choose different contrast to test. A student t-test will be performed here. The test

result is shown below and can be saved in to a csv file. We will use an example to illustrate

all the steps in more detail.

4.3.2 Illustrative examples

We provide sample data for users to download. The sample data include three subjects’

data, stimulus functions, and one binary mask file. We will use these files to illustrate how

to use the GUI.

The sample data were from a study designed to test cognitive control related activation

in the prefrontal cortex (PFC) of the human brain. The binary mask is from the anterior

premotor cortex (prePMd). During the study, each participant would be given two stimulus

(D1 and D2). Based on prior studies (Badre & D’Esposito, 2007; Badre et al., 2009),
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Figure 4.3: Illustrating the setting and result for subject 105

prePMd should be activated with the contrast of D2 > D1. More details about the study

can be found in Kang et al. (2012).

In “Data” section, we select “105 1.nii”, “105 2.nii” and “105 3.nii” using browser.

The ID Name will be set to default as the first file name “105 1”. Users can change the

ID name. The repetition time (TR) is 2 seconds in this study. In “Stimulus” section, we

select “105 1.csv”, “105 2.csv” and “105 3.csv” using browser. We can set the length of

time series that we want to use. Here we set the length as 128. In “Region of Interest”

section, we select “Binary Mask”, and select “roi1.nii” using browser. In the “Wavelet

Function” section, we use the default setting: “db3” as spatial wavelet and “sym8” as

temporal wavelet.

After selecting all files and settings, we click “Run and Show Estimate”, the result of

subject 105 will be calculated and shown in the window as in Figure 4.3. Since there are

three stimulus in the stimulus files, three double-wavelet coefficients corresponding to each
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stimulus were shown in the box. Then we click “Create new file and Save” to save the result

of subject 105. The subject ID, ROI name, and estimate of each stimulus function will be

saved to a csv file. We save it as “test.csv”.

Repeating the step above for subject 106 and subject 107. The only difference would be

the last step. Rather than clicking “Create new file and Save”, we need to click “Selecting

existing file and Save”, where you can save the result in the “test.csv”, the file we created

for subject 105. Then the estimates for all subjects will be saved in to one file and ready

for group analysis.

To perform group analysis, we click the “Browser” in the “Group Analysis” section on

the right hand side of the GUI. We then select the file “test.csv”, which contains the result

for three subjects. The file name will be displayed next to the “Browser” button, and the

content of the file will be shown in the box below the “Browser” button. Since we are

interested in the contrast between first two stimulus functions, we select “Stimulus1” and

“Stimulus2” in the “Contrast” Section, and then click “Test”. The T statistics and p-value

of the test will be calculated and shown in the box as in Figure 4.4.

4.4 Summary

In this paper, we presented the MATLAB GUI for multi-subject task-induced fMRI

data using double-wavelet transform. The main advantage of using double-wavelet trans-

form is that it takes account both spatial and temporal correlation, which reduce type I and

type II errors. This GUI provides features from importing data and stimulus functions,

specifying region of interest, and performing analysis from single subject analysis to group

analysis. We believe that this GUI will make double-wavelet transform to a wider range of

researchers.
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Figure 4.4: Illustrating the setting and result group analysis.
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Appendix C

Main Matlab Code for GUI

1 % d ou b l e w a v e l e t use l e v e l 1

2 N. l e v e l = 1 ;

3 % e x t r a c t t h e s i z e o f 4d da ta

4 S d a t a = s i z e ( d a t a ) ;

5 % 3D s i z e

6 dim = [ S d a t a ( 1 ) S d a t a ( 2 ) S d a t a ( 3 ) ] ;

7 % Time l e n g t h

8 T = S d a t a ( 4 ) ;

9 % g e t t h e s i z e o f 3d w a v e l e t c o e f f i c i e n t

10 WT = wavedec3 ( z e r o s ( dim ( 1 ) , dim ( 2 ) , dim ( 3 ) ) , N. l e v e l , wave3d

) ;

11 % e x t r a c t t h e low−low p a r t

12 sWT = s i z e (WT. dec {1} ) ;

13 % number o f 2d w a v e l e t c o e f f i c i e n t

14 co e f 3d = prod (sWT) ;

15 % 1D w a v e l e t c o e f f i c i e n t

16 [TC , TS ] = wavedec ( z e r o s ( 1 , T ) , N. l e v e l , wave1d ) ;

17 % l e n g t h 1d w a v e l e t t r a n s f o r m

18 Ntime = l e n g t h (TC) ;

19 % number o f 1d low f r e q u e n c y w a v e l e t c o e f f i c i e n t

20 waveband = 1 : ( Ntime / 2 ) ;

21 % s i z e o f dou b l e w a v e l e t t r a n s f o r m da ta
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22 DWdata = z e r o s ( coef3d , Ntime / 2 ) ;

23 % c r e a t e 3d w a v e l e t c o e f f i c i e n t m a t r i x

24 waveC = z e r o s ( T , co e f 3d ) ;

25

26 % w a v e l e t t r a n s f o r m on each 3D da ta a t each t i m e p o i n t

27 f o r t = 1 : T

28 d a t a w a i t i n g = d a t a ( : , : , : , t ) ;

29 % r e s h a p e da ta i n t o 3d

30 s u b j b r a i n = r e s h a p e ( d a t a w a i t i n g , dim ( 1 ) , dim ( 2 ) , dim ( 3 ) )

;

31 % 3d Wave le t t r a n s f o r m

32 WT temp = wavedec3 ( s u b j b r a i n , N. l e v e l , wave3d ) ;

33 % r e s h a p e t r a n s f o r m e d da ta i n t o 2d

34 waveC ( t , : ) = r e s h a p e ( WT temp . dec {1} , coef3d , 1 ) ;

35 end

36

37 % w a v e l e t t r a n s f o r m on t i m e s e r i e s o f each 3d w a v e l e t

c o e f f i c i e n t

38 f o r c o e f = 1 : co e f 3d

39 % r e s h a p e t o 1d t i m e s e r i e s

40 sub jT = r e s h a p e ( waveC ( : , c o e f ) , 1 , T ) ;

41 % 1d w a v e l e t t r a n s f o r m

42 [ waveT ( coef , : ) , TS ] = wavedec ( subjT ,N. l e v e l , wave1d ) ;

43 end

44 % e x t r a c t low−low low da ta

45 DWdata = waveT ( : , waveband ) ;
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Chapter 5

CONCLUSION

5.1 Summary

In this dissertation, we proposed a double-wavelet transform approach, where we trans-

formed the data twice using different wavelet functions. We applied this approach to task-

induced fMRI data analysis in Chapter 2, and to resting state fMRI data analysis in Chapter

3. The advantages of our wavelet model over existing models are as follows. First, we

took into account the spatial-temporal correlation in fMRI data by transforming the data

twice. Second, stationary assumptions on both spatial and temporal data were not required

using the double-wavelet transform since the wavelet transform handled it naturally. Third,

our approach did not require the estimation and inversion of the covariance matrix be-

cause wavelet coefficients were approximately uncorrelated, which significantly reduced

the computational burden in the fMRI data analysis. Fourth, the double-wavelet transform

converted 4-D data into 2-D data, which simplified the fMRI data structure. In Chapter 4,

we presented the MATLAB GUI for multi-subject task-induced fMRI data using double-

wavelet transform.

5.2 Future Research

Though double-wavelet transform has many advantage over existing model, there is

much work to be done in the future. Here we list some directions.

First, more simulation and research need to be done on the subjective choice of the

wavelet functions. This can be partially solved by using data decimation method to choose

wavelet functions. Second, the wavelet transform naturally decomposes data into different

scales. The single level discrete wavelet transform (SL-DWT) decomposes data into two

frequency bands at each dimension. There are more ways to combine these information in
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different frequency bands. Third, we only investigate single level discrete wavelet trans-

form (SL-DWT). More levels can be used to further improve the signal-to-noise ratio and

model performance. Fourth, the MATLAB GUI can be attached to SPM to make it more

accessible to researchers. Fifth, R shinyapp and package for double wavelet transform can

be developed for R users.
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