
Statistical Methods for Modeling Disease Progression

By

Jacquelyn Neal

Thesis

Submitted to the Faculty of the

Graduate School of Vanderbilt University

in partial fulfillment of the requirements

for the degree of

MASTER OF SCIENCE

in

Biostatistics

August 10, 2018

Nashville, Tennessee

Approved:

Professor Dandan Liu, Ph.D.

Professor Qingxia Chen, Ph.D.



DEDICATION

This thesis is dedicated to my sisters.

To the memory of Christina Elaine Neal, who would have been a formidable woman

and supportive of this endeavor.

To Stephanie Michelle Neal, who overcomes adversity daily as a female engineer

looks fantastic doing it.

To Alexandra Lynne Neal, first-rate accountant who beats chronic kidney disease

every day with the brightest smile imaginable.

To Rebecca Suzanne Neal, current competitive cheerleader and future pharmacist,

who has always terrified and amazed us and will continue to do so in the future.

I love you all.

ii



ACKNOWLEDGEMENTS

I’d like to thank the faculty of the Department of Biostatistics for their teaching,

mentoring, and support throughout this process. Specifically, my adviser, Dandan

Liu, for all of her support, both academically and beyond. I truly would not have

made it this far without her. Thanks go to Jonathan Schildcrout, Bryan Shepard,

and Aaron Kipp for their involvement and input in my research work over the years,

and Qingxia Chen for serving as the second reader of this thesis.

My time at Vanderbilt has been a major period of life-changing education and

research. I would not have been able to complete this process without the friendship

and support of the other students in the graduate program, especially my fellow

cohort members, Allison Hainline and Sandya Lakkur. My time in the department is

filled with fond memories, and I thank all of the students for their friendship.

Lastly, the support of my family has been invaluable. Thank you to my parents

and sisters for their constant support and for raising my spirits during the tough parts.

Thanks to my extended family for their support and love. To my Nashville friends and

family, thank you for your friendship and non-school conversations. Finally, thank

you to my mother, Lynne Buff Neal, for being my first role model of a woman in

STEM and showing me the possibilities of all I could do in the future.

iii



TABLE OF CONTENTS

Page

DEDICATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

Chapter

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 Motivating Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1 Introduction to AD . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.2 Potential Time-Dependent Effects . . . . . . . . . . . . . . . . . . . . 3

3 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3.2 Cross-sectional Methods . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.2.2 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.2.3 Model and Estimation . . . . . . . . . . . . . . . . . . . . . . . . 7

3.2.4 Calculating Risk . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.3 Multi-state Markov Model . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.3.2 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.3.3 Model and Estimation . . . . . . . . . . . . . . . . . . . . . . . . 10

3.3.4 Markov Assumption . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.3.5 Calculating Risk . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

iv



3.4 Partly Conditional Longitudinal Model . . . . . . . . . . . . . . . . . . 12

3.4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.4.2 Model and Estimation . . . . . . . . . . . . . . . . . . . . . . . . 13

3.4.3 Calculating Risk . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.5 Comparison between Three Methods . . . . . . . . . . . . . . . . . . . 14

4 Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4.1 National Alzheimer’s Coordinating Center Dataset . . . . . . . . . . . 16

4.2 Checking Participants with Diagnostic Reversion . . . . . . . . . . . . 17

4.3 Analysis Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.4 Cross-sectional Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.5 Multi-state Markov Model . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.6 Partly Conditional Longitudinal Model . . . . . . . . . . . . . . . . . . 25

4.6.1 Construction of Augmented Dataset . . . . . . . . . . . . . . . . 25

4.6.2 Partly Conditional Model Results . . . . . . . . . . . . . . . . . 25

4.7 Comparison Across Methods . . . . . . . . . . . . . . . . . . . . . . . 26

5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

v



LIST OF TABLES

Table Page

4.1 Parameter Estimates from Proportional Odds Model Adjusting for Pre-

vious History of MCI . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.2 Parameter Estimates for Proportional Odds Model, Stratified by Pre-

vious History of MCI . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.3 Descriptive statistics for participants . . . . . . . . . . . . . . . . . . . 21

4.4 Estimates from Proportional Odds Model with Follow-up of 3 Years . . 23

4.5 Estimates for Multi-state Markov Model Results for Normal - MCI and

MCI - AD Transitions . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.6 Estimates from Partly Conditional Model . . . . . . . . . . . . . . . . 25

vi



LIST OF FIGURES

Figure Page

2.1 Diagram of AD Disease Progression . . . . . . . . . . . . . . . . . . . 5

2.2 Hypothetical model of dynamic biomarkers of the AD pathologyJack

et al. [3] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

4.1 Three-year Predicted Probabilities by Complaint Level for Cross-sectional,

Multi-state, and Partly Conditional Models . . . . . . . . . . . . . . . 28

vii



CHAPTER 1

INTRODUCTION

For progressive diseases, building reliable and robust statistical models for disease

progression is important yet challenging for several reasons. Risk factors can impact

disease pathology in different ways during different disease stages, which might imply

disease stage specific modeling. Risk factor effects on disease progression might be

heterogeneous depending on the projection time period of interest (e.g. short-term

vs long-term), which might lead to projection term specific inference. Accurate in-

dividualized disease progression prediction model will aid clinical decision making in

early prevention, early identification and early treatment for disease management.

Disease progression could be quantified using either continuous measure of dis-

crete measures. This paper focuses on discrete measures of disease progression such

as clinical disease stages or severity of disease which is quite common in clinical prac-

tice. Modeling the transitions between multiple disease states is especially needed in

progressive diseases like Alzheimer’s disease (AD). The pathology of AD introduces

unique issues in the statistical modeling of its progression. Clinicians use annual

visits to assess cognition, functional activity, and other aspects of patient health to

determine a patient’s diagnosis. Generally speaking, there are two commonly used

statistical modeling approaches for disease progression; each has its advantages and

limitations. The first approach is cross-sectional. It is used to relate baseline charac-

teristics of patients to cross-sectional clinical diagnosis evaluated at the most recent

visit [2]. This method only includes disease progression measurement at one time

point and thus ignores information collected between baseline and the cross-sectional

follow-up time. The other approach is the multi-state model which models transition

between disease states and is often used under the Markov assumption that future
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evolution only depends on the current states. This approach takes advantage of

the multiple assessments of potential risk factors and disease states, and thus might

improve statistical efficiency of the model. Both transition intensities models and

transition probability models have developed where the former models instantaneous

transition rates and the latter models log-odds of transitions. It should be noted that

due to the Markov assumption, only transitions between temporally adjacent mea-

surements are modeled [7]. When the Markov assumption is violated, which is often

the case in reality, the Markov multi-state model will result in biased estimations.

On the other hand, the partly conditional model proposed by Pepe [8] does not

assume the Markov property, and directly models a future outcome given the cur-

rent measurement with flexible time lags between the current measurement time and

the future projection time. In the original papers, binary and continuous outcomes

were discussed. This method could be easily extended to ordinal outcomes which is

applicable to progressive disease with multiple disease stages.

The structure of the following thesis is structured in four parts. Section 2 is an

introduction to the motivating disease, AD, and its pathology, which is necessary to

understand for determining which methods to use for a particular scientific question.

Section 3 discusses in detail three major types of statistical modeling methods for

disease progression. Cross-sectional methods and multi-state methods have been

used in AD literature, but the third method, partly conditional models, has not yet

been used in this disease area. The results of applying each of these methods to an

AD dataset are presented in Section 4, and Section 5 discusses the results and gives

an overview of the strengths and limitations of each model type.
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CHAPTER 2

MOTIVATING EXAMPLE

2.1 Introduction to AD

AD is a progressive disease with risk factors that have time-dependent/stage-

dependent effect, with three general stages: Normal Cognition, MCI, and AD. Normal

cognition is used for those with no evidence of cognitive impairment or deficits in

activities of daily living due to cognitive impairment. MCI is the prodromal stage of

AD and is characterized by report of a cognitive change by the patient, informant,

or a clinician, reduced cognitive ability on neuropsychological testing, but an absence

of dementia. AD is diagnosed when there are cognitive impairments in at least 2

domains and a decrease in daily functions due to these declines. There are other

types of dementia that are not on the AD pathway, are not considered here. AD is

currently considered an irreversible condition with no cure, and the best course of

treatment is to delay the onset of the disease. Figure 2.1 below describes potential

transitions between NC, MCI and AD [10]. Though AD is not reversible, a transition

between MCI and NC exists as a potential pathway due to this possibility in the

clinical context of AD.

2.2 Potential Time-Dependent Effects

The etiology of AD has not been fully established, but there is evidence the

pathophysiological process of AD begins years before the presence of clinical symp-

toms appear [3]. A cascade hypothesis has been suggested to describe the progression

of the disease, which is illustrated by Figure 2.2. The cascade hypothesis illustrates

the measurement of a biomarker is dependent on both time and current disease stage

of a participant, which suggests time-varying covariates are of interest when modeling
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disease stage in AD. As the cascade hypothesis illustrates, the effectiveness of risk

factors as predictors are expected to vary depending on the age of the patient and

their current stage of disease.

Some risk factors will be more effective for predicting disease progression over

shorter time periods while others have a smaller effect that amplifies over time. Amy-

loid beta (Aβ ) accumulation is thought to be the first step of AD pathology, beginning

years before clinical symptoms manifest. As illustrated in Figure 2.2, changes in Aβ

may be useful in identifying patients at risk from transitioning from normal cognition

to MCI, while memory measures may be more useful when the patient has already

transitioned to the MCI stage. Based on the cascade hypothesis, Aβ measurements

would be more useful for prediction for a patient earlier in the disease, though the

long-term effect of the build-up may not be visible until decades later. Another

measure of interest, cognitive complaint status, has the potential to be useful in pre-

diction throughout AD progression. It measures whether a participant and/or their

informant notices issues in the patient’s memory, with four levels: “No Complaint”,

“Self complaint only”, “Informant complaint only”, and “Both complaints”. Having

a cognitive complaint at a younger age is a sign of deteriorating memory and would

appear earlier in the disease. However, a major change in complaint status over a

short period of time, such as a patient having no complaint at one visit and then

both types of complaint at the next is a marker of a more rapid decline in cognitive

ability and an increase in disease progression. Predictors like cognitive complaint

may be useful for prediction models when the potential time-dependent importance

is incorporated.
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Figure 2.1: Diagram of AD Disease Progression

Figure 2.2: Hypothetical model of dynamic biomarkers of the AD pathologyJack et al.
[3]
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CHAPTER 3

METHODS

3.1 Overview

Examining risk factors of disease progression is a preliminary step to building

a strong predictive model for progression. Several statistical methods have already

been established that can be applied to studying disease progression, each with their

own strengths, assumptions, and limitations. Three general categories of methods

will be examined: cross-sectional methods, which use one record per patient, multi-

state Markov models, and partly conditional longitudinal models. Each method has

particular scientific questions it can answer and specific assumptions that influence

parameter interpretation.

Examining risk factors over time requires longitudinal data collection. In the

case of AD, most patients are examined annually, and building a longitudinal dataset

with enough observations per person to use traditional longitudinal models can take

decades. In the interim, the relationship between disease stage and risk factors over

time can be examined using cross-sectional methods, where the dataset is reduced

to one record per patient. This can be done using the most recent or last diagnosis

per patient as the outcome, while adjusting for time in study or difference between

current age and baseline age.

There are additional considerations which need to be investigated for a progressive

disease like AD. Due to the nature of AD and the study population, death must be

considered as a competing risk. Ignoring the competing risk introduces bias into the

models which can affect prediction accuracy, so the competing event of death must

be included in the model [12].
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3.2 Cross-sectional Methods

3.2.1 Introduction

Cross-sectional statistical methods are commonly used for modeling the relation-

ship between disease progression and risk factors, where the dataset is reduced to one

record per patient by cross-sectionally looking at the dataset and comparing with a

chosen baseline record. For example, a record could be built by evaluating disease

progression based on the most recent outcome relative to the baseline outcome, where

risk factors from baseline will be used while adjusting for time between baseline and

the most recent visits. For categorical or ordinal measures of disease progression,

logistic regression or proportional odds models could be used [2]. A pre-defined pro-

jection period can also be used to define the cross-section time. For example, to build

a model for t year progression, the record with the follow-up time closest to t years

could be used to construct disease progression measures relative to baseline disease

stages.

3.2.2 Notation

Let ti j denote the j-th follow-up time for subject i, j = 1, . . . ,mi, where mi is the

number of visits for subject i and ti1 = 0. Let Yi(t) denote diagnosis for subject i at

time t, where Yi(t) ∈ {k : 1, . . .K}. Let Xi(t) denote risk factors for subject i at time t.

3.2.3 Model and Estimation

For progressive disease with multiple disease stages, Yi(timi) can be considered as

an ordinal outcome with K potential values. In application, a proportional odds

model for diagnosis at the latest follow-up will be used given baseline outcome and

adjusting for baseline measurements of all covariates, Xi(0). Time in the study of

the patient is used as a covariate in the model. It is important to note the time or
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visit number at which a change in diagnosis occurred is not taken into account with

this model. The proportional odds model for disease progression from Yi(0) = j to

Yi(timi) = k could then be specified as

logit(P(Yi(timi)> k|Yi(0) = j,Xi(0))) = α jk +Xi(0)T β jk + timiδ jk, j < k (3.1)

where β jk is the vector of coefficients for baseline covariates, and δ jk is the coefficient

for cross-sectional follow-up time. The model is conditioned on the baseline disease

stage for simplified modeling and comparison between methods. Logistic regression

is commonly used in practice where the outcome as the last follow-up measurement

was collapsed to two states: stable vs progression.

3.2.4 Calculating Risk

A calculable quantity to compare between different models of disease progres-

sion is needed. The model estimates of each method cannot be directly compared

as they differ in type of quantity. The cross-sectional and partly conditional models

give estimates as odds ratio, while multi-state models model transition intensities as

hazard ratios. Though the cross-sectional methods and longitudinal methods both

estimate odds ratios, they have different interpretations and cannot be directly com-

pared either. Because the interest of this study lies in t year prediction, calculating

predicted probabilities of progression for specific patient profiles is used for compar-

ison. The formula used for cross-sectional methods is P(Y (t) > k|Y (0) = j,X(0) =

invlogit(α jk +X(0)T β jk+ tδ jk), where invlogit(x) = exp(x)
1+exp(x) .
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3.3 Multi-state Markov Model

3.3.1 Introduction

Multi-state methods model transitions between multiple states. Under the Markov

assumption, only transitions between consecutive visits are included in the likelihood

formulation. These methods are relatively new-to-use in AD literature, and have been

used only for the last decade. Some studies directly model transition probabilities [11]

using polytomous logistic regression, whereas some studies model transition intensities

[1, 4]. A multi-state model based on transition intensity is the focus of this paper. The

multi-state model based on log-odds of transition is a special case of partly-conditional

model and will be discussed in the next subsection. Figure 2.1 displays the transitions

of interest between AD stages. Several assumptions are imposed for commonly used

multi-state methods in application. The Markov assumption assumes that the future

evolution only depend on the current states and might not be valid in practice. In

addition, the model assumes equally spaced consecutive time intervals and the actual

follow-up times are not used in the modeling, which is termed ignorable observation

time process. Since AD is a slowly progressive disease and patients are typically

assessed annually, this assumption might be reasonable for studies with pre-specified

regular visits.

3.3.2 Notation

Let the intensity matrix Q be the matrix of transition intensities, with the element

in the l-th row and k-column denoting transition intensities qlk(t,X(t)) moving from

state l to state k given covariates measured at time t, X(t).
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3.3.3 Model and Estimation

Multi-state Markov models for multi-state outcomes where the states are observed

at finite series of time ti j, j = 1, . . . ,mi were described by Kalbfleisch and Lawless [6].

The full likelihood is written as the product of probabilities of transition between

all consecutive visits over all individuals i. This likelihood models the transition

intensities between stages, which can be transformed into hazard ratios. These hazard

ratios can then be used to calculate transition probabilities between disease stages of

interest.

The model can be specified with the following equations. Covariates can be time-

independent or time-dependent.

qlk(X(t)) = qlk(0)exp(X(t)T βlk) (3.2)

qlk(t,X(t)) = lim
δ t→0

P(Y (t +δ t) = k|Y (t) = l)/δ t (3.3)

qll =−∑
k ̸=l

qlk (3.4)

The likelihood for the model is calculated using the transition probability matrix.

Equation 3.2 describes the multi-state model with covariates, where qlk are the tran-

sition probabilities for previous state l and current state k. Equation 3.3 represents

the instantaneous risk of moving from state l to state k. Each row of Q sums to 0,

and diagonal probabilities are described in Equation 3.4.

Multi-state methods can handle the inclusion of time-dependent covariates, though

their inclusion complicates parameter interpretations. However, when these model

estimates are used to calculate predicted probabilities, the time-dependent covariates

should not be used. As discussed in the following section on calculating risk, pre-

dicted probabilities are calculated by raising the estimated transition matrix to the

power of the time period of interest, t years.
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3.3.4 Markov Assumption

The multi-state Markov method requires the use of the Markov assumption such

that the likelihood only includes transitions between consecutive visits. The as-

sumption states the future disease stage does not depend on previous history of

disease progression given the current stage. Written mathematically, the assump-

tion is qlk(Xi(t),F−
t ) = qlk(Xi(t)), where F−

t is full disease history up to time t. For

diseases with possible progression in a single direction, this assumption may hold.

However, when disease progression can move in multiple directions, the probability

of transition to certain states may be dependent on disease history beyond solely their

current state. It is important to be aware of this assumption in the modeling process

and determine whether it is appropriate for the disease of interest.

3.3.5 Calculating Risk

Predicted probabilities of transition between disease stages after t future time

periods can be easily calculated using the estimated transition probabilities [5]. Pre-

dicted probabilities for specific patient profiles for t time periods in the future can

be done using the formula P(t) = exp(tQ), which is calculated by taking the matrix

exponential of the scaled transition intensity matrix. Because these calculations rely

on exponential matrices, the larger number of values for l and k require more difficult

calculations. The multi-state Markov model at its simplest requires the assumption

the transition matrix does not change with time. Therefore, when the time period is

one year, calculating predicted probabilities 3 years into the future is 3 transitions,

P(3) = exp(3Q). It is important to note the risk prediction for this method is reliant

on the assumption of equally spaced visits.
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3.4 Partly Conditional Longitudinal Model

3.4.1 Introduction

Under the Markov assumption, the multi-state model only considers short time

span between consecutive visits and thus might not be used to provide long-term

risk prediction or identify long-term risk factors For progressive disease with com-

plex pathology, understanding potential heterogeneous time effects and being flexible

about different projection time spans are crucial.

Pepe and Couper [8] and Pepe et al. [9] developed partly conditional models

for continuous and binary outcomes, where the method aims to quantify predictive

distribution of Y (t), the outcome evaluated at a future time t > s using X(s), variables

of interest measured at or up to t, for a range of t and s of interests, with t > s. For

continuous outcomes, the partly conditional model is specified as E{Y (t)|Y (s),X(s)}=

X(s)T β (s, t). It allows risk factor effects to vary with follow-up time s and projection

period u = t − s. Partly conditional model with constant s and varying t examines

risk factors effect over different projection period, whereas the model with constant

u = t − s allows the use of time-dependent risk factors X(s) in predicting progression

within a fixed projection period. If X(s) is highly predictive of Y (t), the predictive

distributions involving these covariates can be used to select subjects likely to have

poor prognosis, or in the case of AD, are more likely to progress to further disease

stages. However, if some components of X(s) are found not to be predictive, less

emphasis could be placed on those follow-up measurements. These models can be

fit using existing GEE methods with some modifications to the setup of the data.

Partly conditional models can be implemented in data where the number and timing

of visits vary across individuals, which allows for their use with observational data

sets.
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3.4.2 Model and Estimation

In this section, we extend partly conditional models to ordinal outcomes de-

scribing disease progression specified as logit(P(Y (t) > k|Y (s) = l,X(s))) = αlk(s, t)+

X(s)T β (s, t). With the objective of predicting a fixed u0-year of disease progression

and approximating averaged risk factor effects over u0-years of projection period, the

model could be simplified as

logit(P(Y (s+u)> k|Y (s) = l,X(s))) = αlk + f (u)+X(s)T β , j < k (3.5)

where u = t − s is the prediction period satisfying |u− u0| < c for a constant c, and

f (·) is a function of u either completely unspecified or with simple form such as lin-

ear function of u. It should be noted that the parameters in this model (αlk,β , f (·))

is specific to u0 and are assumed to not depend on s because the interest of appli-

cation and comparison across different statistical modeling is u0-year prediction of

disease progression. Time-dependent effects parameterization could be included in

the partly conditional model to address a different scientific question of interest, but

is considered in this paper. To fit this model, the dataset must be augmented by

obtaining all possible pairs of observations from each subject within domain of in-

terests D = {(s, t) : |t − s−u0|< c}. In other words, for each subject, all pairs with

observation time difference falling in the bandwidth of c from u0 are included in the

analysis. We chose appropriate bandwidth such that sufficient number of pairs will

be included in the analysis, yet the time-invariant effect assumption with the domain

is still valid. For example, in prediction 3-year disease progression, we choose a band-

width of 1-year such that all paired observations with time difference between 2-4

years from each subject used in the analysis. The interpretation of the parameters

are specific to 3-year of risk prediction. If we choose a different projection period, e.g.

5-years, different paired observations will be chosen and the parameter estimates will

13



have interpretations for 5-year prediction. Variance of β coefficients can be estimated

using the sandwich estimator. With the data manipulation as described above, stan-

dard methods for fitting a GEE model with independence covariate structure with

robust standard errors will fit this model [8].

Partly conditional models take advantages of multiple observations per subject

and take into account time-varying risk factors values. It does not have the Markov

assumption that disease progression is independent of previous history given cur-

rent states. With hypothetical equally spaced observation times, multi-state Markov

model for transition probabilities could be considered as a special case of partly con-

ditional models where short term disease progression prediction (e.g. annually disease

progression for studies with annual visits) is of interests.

3.4.3 Calculating Risk

Calculations of u0-year predicted probabilities of progression are similar to those

with cross-sectional methods with the formula invlogit(α jk+ f (u0)+X(s)T β ) to calcu-

late the predicted probabilities of progression. Confidence intervals can be calculated

using the model-estimated covariance matrix.

3.5 Comparison between Three Methods

Cross-sectional methods model the disease stage of the patient at a specific follow-

up time, often the final visit. The disease progression within the patient is not directly

modeled or incorporated with this method, as the time at which a patient transitions

between disease states is not taken into account. The disease stage of the patient

at their final follow-up is known, but not the time at which this transition occurred.

The multi-state method directly models transition intensities between consecutive

time points, but assumes future evolution does not depend on the previous disease

history given the current disease stage. This method could account for competing risk
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of death by taking death as an absorbing state. To calculate predicted probabilities,

this model requires the transition matrix remain constant over time. Using this

method for prediction may be difficult due to this restriction, and time-dependent

covariates cannot be included if the model goal is prediction. Partly conditional

models directly model log-odds of disease progression using generalized estimation

equations. This method does not directly model transitions to death, but death can

be incorporated using inverse probability weighting. Partly conditional models can

incorporate time-dependent covariates in the realm of prediction, as the calculation

for the predicted probabilities does not require the odds of transition remain constant

over time, unlike the multi-state method.
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CHAPTER 4

APPLICATION

4.1 National Alzheimer’s Coordinating Center Dataset

The National Institute on Aging created a task force to developed a uniform set

of assessment procedures to characterize individuals with mild Alzheimer disease and

mild cognitive impairment in comparison with nondemented aging. The resulting

Uniform Data Set (UDS) defines a common set of clinical observations collected lon-

gitudinally on participants at Alzheimer Disease Centers (ADCs). The UDS was

implemented at all ADCs on September 1, 2005. Data obtained with the UDS are

submitted to the National Alzheimer’s Coordinating Center. The primary goals for

NACC are to develop a database that captures and integrates data on all ADC par-

ticipants and promotes collaborative research among the ADCs. Data needed to

be sufficiently comprehensive to allow phenotyping of each individual’s cognitive, be-

havioral, functional, and medical status, but not too burdensome for implementation.

The protocol includes detailed guidelines for administration with standard definitions

and terminology, allowing for findings to be compared over ADCs. A common set

of clinical observations were developed for use on all ADC participants, collected

longitudinally in a uniform manner. Other goals are to improve clinical assessment

and diagnosis, track change over time, provide data in support of current projects,

and stimulate research. Thirty-one ADCs are currently reporting or have reported

information to the NACC UDS in the past. Data has been collected by the ADCs

since 2005, with over 30,000 participants in the database.

Potential covariates available in NACC include time in study, cognitive complaint,

demographics, measures of general health, and neuropsychological test results. Cog-
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nitive complaint status refers to whether a participant and/or their informant notices

issues in the patient’s memory. It has four levels: “No Complaint”, “Self complaint

only”, “Informant complaint only”, and “Both complaints”. Age, education, Fram-

ingham Stroke Risk Profile (FSRP), MMSE, cognitive complaint status, sex, and

race were included as covariates in both the cross-sectional and longitudinal models.

Age, FSRP, MMSE, and cognitive complaint status are time-dependent covariates

measured at each follow-up visit. APOE E4 status (positive or negative), a genetic

covariate, is also included as a covariate [13]. For NACC, left-ventricular hypertrophy

was not collected, so FSRP is the modified FSRP definition excluding that particular

criterion, and called mFSRP throughout the results.

Time in UDS (years) is included as a covariate in cross-sectional models and the

time in UDS (years) at each visit is included in longitudinal models. Covariates

used in the models presented here are based on those included in a previous cross-

sectional model examining diagnosis as a binary outcome [2]. The cross-sectional

and multi-state methods both use only baseline values for all covariates, while the

partly conditional model uses the time-dependent values for any covariate with mea-

surements at every follow-up visit: Age, mFSRP, MMSE, and cognitive complaint.

Comparison between the three methods will be based on 3-year prediction of disease

progression.

4.2 Checking Participants with Diagnostic Reversion

The statistical methods considered in this paper assume disease progression is not

reversible. This is true in the pathological context of AD, but might not be true

in the clinical context of AD. To put the assumption in the clinical context of AD,

it is assumed that participants with clinical diagnosis of MCI will not be diagnosed

as cognitive normal in any future clinic visits. This might not be true in reality.
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There are many reasons where diagnostic reversion might happen. For example, a

participant not in a good mood at the clinic visit might be misdiagnosed as MCI, and

then correctly diagnosed as cognitive normal in the next visit.

Participants with diagnostic reversion might have different characteristics com-

pared to participants without diagnostic reversion. If we ignore such potential het-

erogeneous underlying patient characteristics, risk factors effects estimation from dis-

ease progression modeling might be biased, especially for multi-state Markov model

using consecutive observations. In addition, the Markov assumption might be vio-

lated because a cognitive normal participant with previous diagnosis of MCI might be

more likely to progress comparing to participants without clinical diagnosis of MCI in

the past. To check this assumption, statistical analysis were conducted using NACC

participants who are cognitively normal or MCI at enrollment and diagnosed with

normal cognition at any time in their follow-up. The first clinic visit with cognitive

normal clinical diagnosis was used as the new “baseline’’ to create a hypothetical

“baseline’’ cognitive normal cohort. Proportional odds regression model was used to

assess “baseline’’ risk factor effects in relation to the cross-sectional clinical diagnosis

(Normal, MCI or AD) at the last clinic visits. In addition to the covariates consid-

ered in section 4.1, an indicator variable for previous diagnosis of MCI was included

as the variable of interest. Table 4.1 shows the odds ratios, 95% confidence inter-

vals, and p-values from this analysis. Patients with a previous history of MCI are

2.1(p-value=0.0002) times more likely to progress compared to those without previous

diagnosis of MCI. Results from additional analysis stratified by previous diagnosis of

MCI (Table 4.2) showed that the effect of sources of complaint differs between two

different cohort. Based on these results, in order to make the three statistical methods

comparable, participants with diagnostic reversion will be excluded from the analysis

dataset.
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Table 4.1: Parameter Estimates from Proportional Odds Model Adjusting for Previ-
ous History of MCI

Estimate 95% CI P-value
Time 1.12 (1.04, 1.20) 0.002
Baseline Age 1.07 (1.05, 1.10) <0.0001
Female (vs Male) 1.00 (0.76, 1.33) 0.99
White (vs Non-white) 1.16 (0.81, 1.68) 0.41
Education 0.97 (0.93, 1.02) 0.24
APOE4+ 1.86 (1.42, 2.43) <0.0001
MMSE 0.79 (0.72, 0.86) <0.0001
mFSRP 1.04 (0.99, 1.08) 0.06
Complaint: ref=No Complaint

Self Complaint Only (vs No Complaint) 1.97 (1.41, 2.76) <0.0001
Informant Complaint Only (vs No Complaint) 2.20 (1.24, 3.93) 0.007
Both Complaints (vs No Complaint) 3.38 (2.29, 4.99) <0.0001

Previous History of MCI 2.18 (1.44, 3.28) 0.0002
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Table 4.2: Parameter Estimates for Proportional Odds Model, Stratified by Previous History of MCI

No Previous History of MCI, N = 2750 Previous History of MCI, N = 199
Estimate 95% CI P-value Estimate 95% CI P-value

Time 1.10 (1.03, 1.19) 0.007 1.37 (1.03, 1.81) 0.03
Age 1.07 (1.04, 1.10) <0.0001 1.05 (0.98, 1.12) 0.20
Female (vs Male) 0.96 (0.71, 1.30) 0.79 1.38 (0.62, 3.06) 0.42
White (vs Non-white) 1.14 (0.76, 1.71) 0.51 1.47 (0.57, 3.83) 0.43
Education 0.97 (0.92, 1.02) 0.20 1.00 (0.89, 1.13) 0.91
APOE4+ 2.00 (1.50, 2.67) <0.0001 1.00 (0.46, 2.23) 0.98
MMSE 0.79 (0.71, 0.88) <0.0001 0.74 (0.58, 0.93) 0.01
mFSRP 1.04 (0.99, 1.08) 0.12 1.11 (0.99, 1.23) 0.07
Complaint: ref=No Complaint

Self Complaint Only 2.16 (1.51, 3.11) <0.0001 0.89 (0.36, 2.22) 0.80
Informant Complaint Only 1.90 (0.98, 3.69) 0.057 3.94 (0.91, 17.03) 0.07
Both Complaints 3.80 (2.49, 5.82) <0.0001 1.99 (0.73, 5.42) 0.18
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4.3 Analysis Dataset

Those missing covariates at baseline or follow-up were excluded for this applica-

tion, leaving a sample size of 2750 baseline normal participants with information for

all methods examined. Table 4.3 gives basic demographics of participants included

in the applied methods. The majority of the participants are white, female, and have

more than 3 follow-up visits. The analysis sample was restricted to those with a base-

line diagnosis of normal cognition with more than one follow-up visit, and excluding

those with medical conditions or a history of head trauma. The baseline normal par-

ticipants have an average follow-up time of 4.4 years. 30% of the participants are

male, and there are statistically significant differences between all of the cognitive

scores of and 85% of participants are white.

Table 4.3: Descriptive statistics for participants

Variable N Descriptive Statistics

Baseline Age 2750 66.00 72.00 78.00 (71.63 ± 7.93)

Sex 2750

Male 30% 823
2750

Female 70% 1927
2750

Race 2750

Non-white 15% 420
2750

White 85% 2330
2750

Education 2750 14.00 16.00 18.00 (15.74 ± 2.87)

Baseline mFSRP 2750 7.00 10.00 14.00 (10.75 ± 4.41)

Baseline Complaint 2750

No complaint 77% 2121
2750

Self complaint only 13% 370
2750

Informant complaint only 3% 87
2750

Both complaints 6% 172
2750
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Table 4.3: (continued)

Variable N Descriptive Statistics

N = 2750

Baseline MMSE 2750 29.00 29.00 30.00 (29.11 ± 1.16)

Time in Study 2750 3.09 4.37 6.33 (4.73 ±1.90)

CDR Global 2750

0 94% 2578
2750

0.5 6% 172
2750

4.4 Cross-sectional Model

A proportional odds model was used as the cross-sectional model for comparison.

The clinic visit closest to 3-years of followup was used to determine the cross-sectional

outcome of clinical diagnosis. Table 4.4 shows the odds ratios, 95% confidence inter-

vals, and p-values for the proportional odds model. Those with an self-complaint had

2.2 times the odds of disease progression than someone with no complaint. These

odds increase for those with an informant complaint (2.3) and for those with both

types of complaint (4.4).

4.5 Multi-state Markov Model

A multi-state Markov model was fit to examine consecutive transitions between

disease stages. For the counts of these consecutive transitions, 93% involve baseline

normal participants remaining at normal cognition. 3% of consecutive observations

involve a transition from normal cognition to MCI and only 0.5% involve a participant

transitioning directly from normal cognition to AD.

Table 4.5 shows the hazard ratios and 95% confidence intervals for the multi-state

model illustrated in Figure 2.1. All covariates included in the model are baseline
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Table 4.4: Estimates from Proportional Odds Model with Follow-up of 3 Years

Odds 95% CI p-value
Age 1.08 (1.05, 1.11) <0.0001
Female (vs Male) 1.12 (0.78, 1.56) 0.54
White (vs Non-white) 1.13 (0.71, 1.80) 0.62
Education 0.987 (0.93, 1.04) 0.65
APOE4+ 1.801 (1.29, 2.52) 0.001
MMSE 0.78 (0.69, 0.88) <0.0001
mFSRP 1.04 (0.99, 1.09) 0.12
Follow-up Time 1.96 (1.43, 2.70) <0.0001
Complaint: ref=No Complaint

Self Complaint Only 2.23 (1.47, 3.37) 0.0001
Informant Complaint Only 2.28 (1.10, 4.73) 0.03
Both complaints 4.40 (2.74, 7.07) <0.0001

covariates in order to calculate risk prediction appropriately. See section 3.3 for

details. For the transitions between NC to MCI, each level of cognitive complaint

has an increased hazard of disease progression compared to the referent group of ”No

complaint”. Those with an initial self complaint has a hazard of 1.96 progressing from

NC to MCI. Those with an initial informant complaint only have a hazard of 1.72,

and 3.16 for those with both types of complaint at baseline. For MCI-AD transitions,

only the baseline both complaint level has statistically significant difference in the

hazard of disease progression compared to no complaint. This suggests the baseline

complaint for a patient is a better predictor of disease progression for those in the

earlier stages of the disease than later.
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Table 4.5: Estimates for Multi-state Markov Model Results for Normal - MCI and
MCI - AD Transitions

NC - MCI MCI - AD
Baseline Age 1.08 (1.06,1.10) 1.07 (1.02,1.13)
Female (vs Male) 1.08 (0.85,1.36) 1.04 (0.59,1.83)
White (vs Non-white) 1.15 (0.84,1.57) 1.11 (0.50,2.46)
Education 0.97 (0.94,1.01) 0.99 (0.91,1.08)
APOE4+ 1.95 (1.56,2.44) 2.08 (1.23,3.52)
Baseline MMSE 0.86 (0.80,0.93) 0.89 (0.74,1.07)
Baseline mFSRP 1.02 (0.99,1.06) 0.96 (0.89,1.04)
Baseline Complaint: ref=No Complaint

Self Complaint Only 1.96 (1.49,2.58) 1.21 (0.62,2.38)
Informant Complaint Only 1.72 (1.03,2.88) 1.24 (0.42,3.63)
Both Complaints 3.16 (2.32,4.30) 2.18 (1.15,4.11)
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4.6 Partly Conditional Longitudinal Model

4.6.1 Construction of Augmented Dataset

An augmented dataset was created to fit the model for u0 = 3, i.e. 3-year risk

prediction. For each participant, all possible paired observations with 2 to 4 years of

time difference were included.

4.6.2 Partly Conditional Model Results

Covariates from the first observation within each pair are used in the model.

Table 4.6 provides the odds ratios, 95% confidence intervals, and p-values for a partly

conditional model based on a 3-year time period. A patient with self complaint has

2.41 the odds of disease progression after 3 years than someone with no complaint.

Someone with informant complaint has 8.58 times the odds, and someone with both

complaints has 8.46 times the odds, of disease progression after 3 years compared to

someone with no complaint.

Table 4.6: Estimates from Partly Conditional Model

Odds Ratio 95 % CI p-value
Age 1.12 (1.04,1.12) 0.002
Female (vs Male) 1.37 (0.65,2.89) 0.41
White (vs Non-white) 1.93 (0.60,6.22) 0.27
Education 0.91 (0.82,1.00) 0.07
APOE4+ 3.79 (1.83,7.84) 0.0003
MMSE 0.73 (0.62,0.86) 0.0002
mFSRP 1.00 (0.91,1.11) 0.96
Time Difference 1.56 (1.11,2.31) 0.013
Self Complaint Only 2.41 (0.98,5.96) 0.056
Informant Complaint Only 8.58 (3.90,18.88) <0.0001
Both Complaints 8.46 (3.68,19.46) <0.0001
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4.7 Comparison Across Methods

It is difficult to directly compare effects across methods, as the interpretation

of parameters are different for the cross-sectional method, the multi-state Markov

model, and the partly conditional model. Therefore, the predicted risk probabilities of

disease progression are used for comparison. Figure 4.1 shows the calculated predicted

probabilities of each model over a time period of 2 to 4 years for each level of cognitive

complaint. Figure 4.1a shows the curved line formed by the predicted probabilities

for the cross-sectional model, with both complaints at baseline having the highest

probability of disease progression as expected. Figure 4.1b shows linear predicted

calculations, as expected based on the calculations discussed in section 3.5 and the

assumption of a constant transition matrix between time points. Both the cross-

sectional and multi-state models show the similarity in predicted probability of disease

progression for self complaint and informant complaint. The partly conditional model

(Figure 4.1c) shows there is a closer similarity in the predicted probabilities for the

informant complaint only and both complaint levels.

Each of the results of the methods show similar trends for the relationship between

predicted probabilities of disease progression and complaint. The cross-sectional and

multi-state methods show those with baseline self complaint only and informant com-

plaint only are quite similar. However, the partly conditional model shows there is a

closer similarity in the estimates for the predicted probability of disease progression

for the informant complaint only and both complaint groups. The confidence inter-

vals for the predicted probabilities of the cross-sectional methods, shown in Figure

4.1a, are much larger than either of the other two methods. Due to the use of base-

line measurements and the reduction of information, this method is less efficient in its

estimation of standard errors compared to longitudinal methods, and the standard er-

rors are larger, as expected. Figure 4.1b displays the predicted probabilities of disease

progression over time, but due to the need to exponentiate the transition probability
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matrix, with follow-up time as the exponent, this was calculated only at 2, 3, and 4

years. Therefore, the predicted probabilities appear linear with time. The partly con-

ditional model results are shown in Figure 4.1c. In Table 4.6, the partly conditional

model results show larger odds ratios for complaint compared to the cross-sectional

method, as shown in Table 4.4. The incorporation of the time-dependent complaint

measurement in the partly conditional model results in the larger odds of disease pro-

gression for the informant complaint and both complaint groups. As shown in Table

4.3, the patient population used here is majority white, female, and college-educated,

and therefore these results cannot be extended to the general public. These results

are shown here for the purposes of comparing different methods for modeling disease

progression.
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Figure 4.1: Three-year Predicted Probabilities by Complaint Level for Cross-sectional, Multi-state, and Partly Conditional
Models
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CHAPTER 5

DISCUSSION

Examining the differences in statistical modeling of disease progression is impor-

tant to determining how different risk factors contribute to the disease pathology.

With the increasing use of electronic health records data and only sources of longi-

tudinal patient data, comparing cross-sectional methods with differing longitudinal

methods is important to support the use of methods to best answer questions about

disease progression. Three general methods were applied to an AD dataset to ex-

plore the differences in methods of disease progression. Because the model estimates

cannot be directly compared and the eventual goal is to build predictive models for

disease progression, the predicted probabilities were calculated for each model for

comparison.

Using cross-sectional models to examine transitions between disease stages, while

popular and easy to perform, results in large amounts of information loss. It models

the disease stage of the patient at a specific follow-up time, with an adjustment for

follow-up time, giving the estimated model parameters a specific interpretation based

on the follow-up time period chosen. This method does not take the disease progres-

sion within the patient into account. For example, a baseline normal participant can

progress to MCI and then AD, but the cross-sectional model does not differentiate be-

tween the time at which a patient transitions between disease states. Only the disease

stage of the patient at the end of their follow-up is known. Markov transition models

allow for the examination of consecutive transitions, but rely on several assumptions

in both the modeling process and calculating predicted risk. The Markov assumption

is the strongest assumption required for the fitting of the model, assuming the entire

disease history is known based on the current disease stage. The multi-state model can
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directly model transitions between the disease stages and death, which is a strength

of the method, especially when modeling disease progression in AD, as death is a

major competing risk with the disease progression. Predictions based on this model

requires the assumption the transition matrix remains constant over time, which may

not be the reality of the disease. Eventually using this method for prediction may be

difficult due to this restriction, and though time-dependent covariates can be used

with this method, due the to requirements to calculate predicted probabilities, they

cannot be used if the model is for prediction purposes. The partly conditional model

directly models odds of disease progression using generalized estimation equations,

which have been used in the statistical literature for several decades now, but have

not yet been applied to disease progression. Unlike the multi-state method, this

method does not directly model transitions to death, but there are additional ways

to incorporate death information into the model, like inverse probability weighting.

Partly conditional models can incorporate time-dependent covariates in the realm of

prediction, which is important in AD due to the dynamic nature of its biomarkers.

The existing methods examined here rely on stratification by baseline diagnosis,

with baseline normal participants modeled and baseline MCI participants excluded.

Baseline MCI participants and their transition to AD are either excluded from models,

or analyzed separately. This loss of information affects the coefficients and may lead to

inaccurately determining the risk factors of transition [14]. Partly conditional models

allows for the inclusion of baseline MCI participants in the model, which could lead

to better prediction of participants at highest risk for transition, especially for the

transition between MCI and AD.

Due to the nature of AD and the study population, death should be considered as

a competing risk. Future work accounting for competing risk for the cross-sectional

method and partly conditional methods are needed.
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