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CHAPTER 1

INTRODUCTION

Disease outbreak management has many layers of complexity. A large compo-
nent, and perhaps the most widely studied, involves modeling disease spread. After
having an understanding of disease spread, one can begin to think about disease
outbreak control strategies. Control of epidemics is relatively less studied in the
literature compared to modeling disease outbreak spread (Khouzani et al., 2011).
One layer of complexity involves defining management objectives, i.e. - what should
be achieved by management. The final control strategies are affected by how the
management objectives are specified (Probert et al., 2015). Once objectives are spec-
ified, the decision-maker then needs to determine if optimal management is a priority
(Khouzani et al., 2011). Optimal control strategies become increasingly difficult to
construct when the decision space is very large. Large decision spaces tend to arise in
the disease management literature, specifically when considering resource constraints.
Due to these layers of complexity, optimally managing a disease outbreak presents a
challenge.

This dissertation focuses on computational methods to inform disease outbreak
termination strategies. It was assumed throughout this dissertation that the disease
transmission model was correct, and all of the information about the outbreak was ob-
servable. There are several concepts that need to be introduced to better understand
the ideas and results presented in this dissertation. This remainder of this chapter
introduces some of the core concepts discussed in later chapters, and concludes with
a structural overview.

1.1 Decision Analysis
Decision analysis can be formally defined as: a quantitative method of evaluating

management options using information about uncertainties (Taylor and Sit, 1998).
This definition can be deconstructed into two main components: evaluating manage-
ment options and uncertainty. Evaluating management options requires knowledge
about the following: the objective, actions, states, and rewards. Before any manage-
ment strategies can be evaluated an objective (or objectives) needs to be defined. The
objective provides a metric to judge different decisions. In the context of foot-and-
mouth disease (FMD), which is the disease of interest in this dissertation, suppose
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the objective is to minimize the duration of the outbreak. Competing management
strategies can resultantly be evaluated based on how long the outbreak persists un-
der each respective decision. The objectives(s) also defines the environment for the
decision-making process which consists of states, actions, and rewards. States re-
fer to the measurable quantities or qualities of the environment in which a decision
is made. Naturally the more states an environment has, the more complicated the
decision. Actions refer to the possible management options a decision-maker can ex-
ecute. As with states, the more actions a decision-maker can choose from, the more
complicated the problem. Each state (or each state-action pair) is associated with
a specific reward. This reward provides a summary of how desirable it is to be in a
specific state (Sutton and Barto, 1998). The higher the reward, the more desirable
the state. These quantities are usually defined a priori through previous knowledge.
Rewards may also be expressed as costs if the objective involves some expense from
the decision-maker. To better understand this framework, an example in the context
of FMD is presented.

Suppose the objective is to minimize the cost to farmers of livestock lost during
an outbreak. Costs will only be incurred if there is an outbreak. This objective
naturally establishes the states for which a decision must be made: there is currently
an outbreak, and there is currently no outbreak. Notice that in this example, there are
only two states which implies that this decision is not particularly complex. Suppose
that in this example, the initial state of the environment is: there is currently an
outbreak. To determine whether or not the outbreak continues at the next time point,
also referred to as determining the next state, an action needs to be implemented.
It is important to note that an action need not be an intervention; doing nothing is
also an action that causes an initial state to evolve into another state. Since FMD
travels quickly between farms due to movement of livestock and other disease vectors,
a common management strategy is ring-culling: killing any livestock within a certain
radius of an infected farm. Suppose that this strategy is modified to accommodate
vaccinations: vaccinate all susceptible livestock within the pre-determined ring and
cull only the infected. This segues to the possible management actions: ring-culling,
and ring-vaccination with culling only infected livestock. In this example, costs will
be used instead of rewards, because the objective is to minimize cost to farmers.
Recall the contribution of costs to the decision-making problem: the costs provide a
summary of how undesirable it is to be in a particular state (or state-action pair).
Suppose it costs $100 to cull one livestock and $50 to vaccinate one livestock. This
means that a farmer would have to spend $100C under the culling strategy if the
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outbreak continued into the next time step, where C is the number of livestock to
be culled. Under the second strategy a farmer would need to spend $50S + $100I
if the outbreak continued into the next time step, where S represents the number
of susceptible livestock to be vaccinated, and I represents the number of infected
livestock to be culled. Figure 1.1 presents a decision tree of the possible decisions and
outcomes for this example.

Figure 1.1: Decision tree of state, action, and new state with respective costs for FMD example.

An outbreak in this example is loosely defined as having a non-zero number of
infected cases at a given time point. Thus any terminal node in the decision tree
with a “no outbreak" state will have zero new cases. The costs are calculated by
multiplying the number of infected or susceptible livestock with the associated culling
and vaccination costs. Since the objective is to minimize costs to the farmer, the
optimal action is chosen by calculating the average cost across the different branches in
the tree. Notice the role of costs in this example: under both actions, it is less desirable
to be in the subsequent “outbreak" state due to the higher associated costs. This
motivates the need to choose an action that is more likely to result in a subsequent
“no outbreak" state. This process of choosing actions that yield lower costs or higher
rewards is not trivial in larger decision spaces. One approach to accommodate larger
decision spaces is Q-learning, a reinforcement learning (RL) method.

1.2 Q-Learning
Reinforcement learning is a branch of artificial intelligence used to maximize re-

ward, or minimize costs, in a complex decision environment. Q-learning is one type of
RL method used in Markov decision processes (MDPs) to generate an optimal policy,
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denoted as π∗. An MDP is a stochastic control process defined by states, actions,
and rewards that satisfies the Markov property. This property states that a decision
must only be dependent on the current environment and not by the path the decision
process had to take to arrive at the current environment. This can be more formally
stated as:

P (st+1, rt+1 | st, at, rt, st−1, at−1, ...r1, s0, a0) = P (st+1, rt+1 | st, at) (1.1)

An optimal policy is a function that generates an optimal action given the current
state, and assumes optimal actions are taken afterwards as per the Bellman optimality
principle (Bellman, 1954). At time t, the MDP is in state st, an action at is chosen
with guidance from the current policy, and the utility rt is observed. The utility
describes how desirable it is to be in a certain state and is generally expressed as a
reward, but can also be expressed as a loss. The optimal policy cannot be constructed
without estimating the expected reward function:

Q̄∗(st, at) = Q(s, a) + α[r + γmaxa′Q(s′, a′)−Q(s, a)] (1.2)

where Q(s, a) refers to the action-value function. Once Equation (1.2) is estimated,
the optimal policy can then be constructed using the following:

π∗(s) = argmaxatQ̄
∗(st, at) (1.3)

Q-learning iteratively updates Q(s, a) using an “agent" that interacts with the
environment. The agent is a construct that stores learned information about expected
rewards from visiting a given state-action pair. The agent’s goal is to choose actions
that maximize expected reward, and this optimal behavior must be learned through
experience. An illustration of the agent interacting with its environment is provided
in Figure 1.2. The more experience the agent obtains, the better the estimates of
the expected rewards. Convergence to the optimal policy using Q-learning is well-
supported by the literature, and Jaakkola et al. (1994) presents this proof. The
complete Q-learning algorithm is presented in Figure 1.3.

One of the most popular ways to illustrate Q-learning, and other RL algorithms, is
to use a grid world example. To better understand all of the mechanics of Q-learning,
the cliff walking grid world example from (Sutton and Barto, 1998) will be discussed.
Figure 1.4 represents the grid world of interest. S is state the agent will start at the
beginning of each episode, and G is the goal state. The agent can only choose from the
following actions: up, down, left, and right. The agent also receives a reward of −1
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Figure 1.2: Agent interacting with its environment. The agent executes and action, observes the
new state and reward, and uses this new information to choose a new action from the next state
(Sutton and Barto, 1998).

Initialize all values in Q(s, a)
For each episode

Observe initial s
For each epoch

Choose a using Q(s, a)
Observe r, s′
Q(s, a) = Q(s, a) + α[r + γmaxa′Q(s′, a′)−Q(s, a)] (Q-update)
s = s′

Figure 1.3: The Q-learning algorithm for approximating the expected reward, and thus arriving at
an optimal policy based on those rewards

for every action, except for the action that results in the goal state. This encourages
choosing actions that finishes the task as quickly as possible. Choosing an action that
results in the agent moving to the cliff results in a −100 reward. Notice the large
difference in the two rewards, −100 and −1. This difference creates a prioritization in
action choice: actions that take the agent to the cliff are much less favored than any
other action. If the rewards were equal, the optimal policy would still be attained,
but more training would be required.

S Cliff G

Figure 1.4: Cliff walking grid world from Sutton and Barto (1998). S represents the starting state,
and G represents the goal state.

Using the Q-learning algorithm presented in Figure 1.3, 500 episodes of training
was implemented. The results of the trajectory of training are presented in Figure

5



1.5. Notice that in the beginning of training the agent is not sure at all of how to
act, taking nearly 450 steps to reach the goal state. However, through iterations of
episodes, the agent begins to act optimally, reaching the goal state in about 13 steps
almost every iteration.

Figure 1.5: Trajectory of training, represented by number of steps to complete episode. Red line
represents the minimum number of actions needed to reach the goal state from the start state, 13.

One advantage of Q-learning is that it is model-free. In other words the agent
does not need to know how the decision environment will change based on an action,
i.e. - know the transition probabilities P (st+1 | st, at). Instead, the algorithm uses a
Q-update, presented in Figure 1.3, which combines previous experience with current
experience to construct a new reward for a state-action pair (Dayan and Niv, 2008).
Notice there is no transition probability in the Q-update. While Q- learning has the
advantage of being model-free, it is still experiences computational storage problems
in decision spaces where the state space is large. To apply Q-learning to such a
decision space, a function approximator such as neural networks is required.

1.3 Convolutional Neural Networks
Convolutional neural networks are a sub-family of multilayer perceptrons that

allow for local feature extraction (refer to chapter 2 for an introduction to neural net-
works). Multilayer perceptrons were originally inspired from the biological mechanics
within the brain, however this process neglected the visual cortex’s sensitivity to
small sub-regions of the visual field, called receptive fields (Hubel and Wiesel, 1968).
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The visual cortex decomposes an image into a collection of receptive fields, and this
decomposition is naturally suited to capture spatial correlation structures inherent
in an image. To allow for this same local, spatial correlation in a multidimensional
input, convolutional neural networks include both locally connected and fully con-
nected layers in its architecture. Figure 1.6 provides an illustration of a traditional
fully connected network. Each node in one layer is connected to every node in the
succeeding layer.

Figure 1.6: Example of a fully connected neural network with three hidden layers, from MathWorks
(2018)

In a convolutional neural network, the input layer consists of multiple receptive
fields, otherwise known as patches, or a neighborhood of nodes. In Figure 1.7, the
patch in the input layer is denoted by the gray square. The image in the input layer
is convolved with a learned weight matrix, also known as a filter, to generate a single
activation map, represented by a white square in the first convolutional layer. Each
activation map requires a different filter. In Figure 1.7 there are four activation maps
in the first convolutional layer, thus four filters, and four different convolutions with
the initial image, are required. The number of activation maps in a convolutional layer
corresponds to the number of desired features from the preceding layer. Suppose the
input image has dimension r×c, and P features are desired for the first convolutional
layer. The following equation can be used to construct each of the p activation maps:

Zp = σ(Wp ∗X), p = 1, ..., P (1.4)

where σ() is the activation function, which is traditionally nonlinear, and the filterWp

is convolved with image X. ‘Activation map’ here refers to the matrix generated by
performing the transformation of the filter convolved with the image. The dimensions
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Figure 1.7: Example of a convolutional neural network

of the filter must be smaller than those of the initial input, call this m × m where
m < r, c. The primary goal of convolutional layers is to extract features, via activation
maps. To obtain more complex relationships between these learned features, it is
common to include fully connected layers before the output layer, also illustrated
in Figure 1.7. This would require the P activation maps to first be flattened to a
single column vector, call this c of dimension, (P ×m×m)× 1. The following final
transformation can then performed to estimate the output:

ŷ = g(Wfc) (1.5)

If the domain of the output is infinite, g() can be a linear function. Wf represents
the weight matrix associated with the fully connected layer.

As with traditional neural networks, each weight matrix is “learned" through it-
erations of training. The process begins with a random initialization of weight values
and then proceeds through forward propagation This process feeds the neural net-
work weights through the equations in (1.4) and (1.5) and predicts the outcome. The
prediction is then compared to the true outcome, and the error is calculated through
a loss function, typically squared error:

L =
K∑
i=1

(ŷi − yi)2 (1.6)

where K represents the total number of nodes in the output layer. Once forward
propagation is complete, back-propagation is implemented to readjust the weights
based on the results of forward propagation. Back-propagation consists of two steps:
1) computing partial derivatives of the loss function, and 2) adjusting the coefficients
via a gradient descent update. The following partial derivatives are taken with respect
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to the two types of coefficients using the chain rule:

δL

δWp

= δL

δZp

δZp
δWp

,

δL

δWf

= δL

δŷ

δŷ

δWf

(1.7)

Once the partial derivatives are calculated, the (r+1)st update is performed through
gradient descent using the following equations:

W (r+1)
p = W (r)

p − γ
δL

δW
(r)
p

,

W
(r+1)
f = W

(r)
f − γ

δL

δW
(r)
f

(1.8)

The number of iterations, r, and the learning rate (the degree to which new infor-
mation contributed to the estimation of the weights), γ are specified by the user a
priori. Because convolutional neural networks have yielded strong performance with
high dimensional image data, it is well suited for decision spaces where the state space
is large (Guo et al., 2015).

1.4 Structural Overview
The remainder of this dissertation is divided into three main components. Chapter

2 reviews current computational methods that act as decision support tools to guide
outbreak management, and methods that construct optimal policies to terminate an
outbreak. Each method has associated strengths and weaknesses, which are also dis-
cussed. However, none of these methods are able to scale to complex decision spaces.
Chapter 3 introduces a modified version of deep Q-networks (DQN) to optimally
manage a disease outbreak. The decision analysis framework is used in this chapter
to address structured decision-making, via defining objectives, utility, and alterna-
tive actions. DQN has recently been successful in areas such as video gaming and
robotics, however, has never been applied to disease management. Chapter 4 eval-
uates the performance of DQN and compares the outcomes to widely used, simpler
methods. In addition, Chapter 4 discusses how deep learning methods are associated
with a large degree of tuning and computational run time. These limitations need
to be considered when selecting a computational method for disease management.
The dissertation concludes with Chapter 5, which reviews the main results of the
dissertation, and highlights future areas of work.
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CHAPTER 2

A REVIEW OF COMMON COMPUTATIONAL APPROACHES TO MANAGE
DISEASE OUTBREAKS

2.1 Introduction
Disease outbreak management is a severely understudied field. While many ad-

vancements have been made with respect to modeling disease outbreak spread, less
is known about management and control (Khouzani et al., 2011). Though there is
a variety of candidate interventions for outbreak management including quarantine,
educational interventions, vaccination programs, the challenge remains in determin-
ing the optimal order in which individuals or groups of individuals should receive an
intervention.

This ordering is essential because disease outbreak management is constrained by
limited resources. The 2001 United Kingdom foot-and-mouth disease (FMD) epi-
demic illustrated the consequences of not accounting for resource constraints. During
the 2001 epidemic, the disease had already spread to multiple farms before the first
case was detected (Gibbens et al., 2001). This resulted in an immediate shortage of
veterinarians for identifying infected animals, and infected animals not being slaugh-
tered quickly enough (Eales et al., 2002). Ultimately, over six million cattle were
slaughtered by the end of the outbreak. Prioritization schemes could have provided
guidance as to where veterinarians should be sent to first, or which infected farms
should receive an intervention first. This particular epidemic highlights the need for
prioritization schemes due to resource constraints.

Some disease systems currently have suggestions for prioritization schemes. For
example, in sub-Saharan Africa prioritization of HIV/AIDS interventions is based on
demographics, i.e. - pregnant women, children, the sickest individuals, etc. (Cheek,
2010; Wilson and Blower, 2005). This recommendation targets high risk individuals,
thereby addressing how resources should be allocated. Management uncertainity can
be added to this problem: would targeting these high risk individuals generate better
outcomes compared to targeting another group of individuals? We would need to
define what it means for one intervention to be better than another, and provide a
measurable quantity that validated the superiority of one intervention over another.
A formal framework would be required to fully explore the question.

Many current disease management strategies are informed by computational meth-
ods. The literature lacks a comprehensive review of these computational approaches
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applied to disease outbreak management. Through such a review, researchers and
policy makers would be able to better identify which approach is most suitable for
their needs. They may also learn that their current practices do not achieve opti-
mal outcomes, and that other approaches may better achieve their objectives. In
this chapter, we review current computational approaches for the support of disease
outbreak management. The studies referenced in this chapter apply a specific compu-
tational method to a particular disease system. However, each computational method
can be modified to accommodate management in any disease system. This review
examines the following computational approaches: disease surveillance methods, dy-
namic programming, Monte Carlo approaches, genetic algorithms, and network-based
methods.

2.2 Disease Surveillance Methods as a Decision Support Tool
Disease surveillance has played an important role in preventing and controlling

the spread of disease (Liao et al., 2017). This method identifies groups of individuals
with high risk of transmission which can provide markers of detecting a prospective
outbreak. Once these individuals have been identified, policy makers can then decide
how to proceed in a pre-emptive management process. Disease surveillance is based
on risk modeling, which can be performed using a variety of methods (Unkel et al.,
2011). This section will focus on two forms of risk models: regression and neural
networks.

2.2.1 Regression Models
Regression models are generally used if a primary goal of management is to un-

derstand the relationship between the outcome of interest and model predictors. In
the context of disease surveillance, regression models can inform which population
characteristics are associated with disease outbreak occurrence, and provides mea-
surable quantities of association. Understanding this predictor-outcome relationship
can ultimately inform prioritization schemes. Before considering extensions of re-
gression modeling to prioritization schemes, we will first develop a methodological
understanding of regression.

Depending on the data at hand, a regression model can be specified in many
ways. In prospective outbreak detection the outcome of interest is usually binary, the
occurrence of an outbreak (yes/no) (Liao et al., 2017). The probability of a binary
outcome can be modeled using the logistic function:
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P (There will be an outbreak) = e
∑N

i=0 βixi

1 + e
∑N

i=0 βixi
(2.1)

The covariates in the model, represented by x1, ...xN , are thought to be associated
with the outcome, and β1, ...βN are coefficients associated with the respective co-
variates. Generally the inclusion of covariates in a model is informed through prior
scientific knowledge, or were previously found to be associated with the outcome using
some form of univariate analysis.

Model fit is also an important consideration. If the model is underfitting the
training data, the data used to construct the model, then there may not be enough
information from the covariates to capture a relationship between the covariates and
the outcome. If a model is overfitting the data then the model performs extremely
well in predicting the outcome in the training data, but not well in a different dataset,
i.e. - the testing data or future data. Feature selection (eliminating some covariates),
and increasing the amount of regularization (constraints on model coefficients (βi))
are common solutions for overfitting. The functional form of the covariates also need
to be specified a priori. These are also generally informed by domain knowledge.
Model specification is one of of the more challenging aspects of regression modeling
and is still under study.

As previously stated, one advantage of regression modeling is inference i.e. - un-
derstanding the relationship between model predictors and the outcome. Consider the
prospective outbreak detection model in (2.1) and let p = P (There will be an outbreak).
Using a logit transform we can rewrite the logistic regression model:

log( p

1− p) = β0 + β1x1 + β2x2 + ... (2.2)

Equation (2.2) models the log odds of the occurrence of an outbreak as a function of
covariates. We will use the results from Leung and Tran (1999) to better understand
how inferences can be made under logistic regression. They constructed a logistic
regression model to predict the occurrence of an aquaculture disease outbreak in
shrimp farms given certain covariates thought to be associated with the outcome.

Figure 2.1 illustrates the results of the logistic regression. The exp(β) column
presents odds ratios which can be used to make inferences. For example silt deposit
is a binary covariate in the model (yes/no), with exp(β) equal to 2.8975. This means
that the odds are 2.8975 greater of an outbreak occurring when there is silt deposit
compared to the odds of an outbreak occurring when there is no silt deposit, con-
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Table 2.1: Logistic regression results for predicting occurrence of disease outbreak in shrimp farm,
from Leung and Tran (1999). The left column includes the covariates in the model, the description
of each covariate is provided below the table of results, and the exp(β) column presents the odds
ratios of the occurrence of an outbreak conditional on covariate values.

ditional on the other covariates being fixed. This suggests that if there are resource
constraints, farms with silt deposits should be prioritized to receive an intervention
over farms with no silt deposits because they have a higher odds of experiencing an
outbreak. If a researcher or policy maker believed that there was a multiplicative
effect between water discharge and silt deposit, an interaction term could be included
in the model. This interaction term would present the odds of an outbreak when there
is water discharge compared to no water discharge given silt deposits exist, compared
to the odds of when there is water discharge compared to no water discharge given
silt deposits exist, assuming all other covariates are fixed. If this odds ratio is much
larger than one, then resources should be prioritized to farms with both silt deposits
and water discharge. These rules of thumb regarding which groups of individuals,
or in this case which types of farms, spur disease outbreaks can help policy makers
prioritize who should receive an intervention first under resource constraints.

Regression models are not just limited to binary outcomes. Linear regression
can be used for outcomes that are continuous; for example predicting the area of an
outbreak or predicting the number of infections based on certain covariates (Serfling,
1963; Stroup et al., 1989; Costagliola et al., 1991; Simonsen et al., 1997; Jackson
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et al., 2007). Regression methods also accommodate many data sources. In most
of the previous referenced studies, demographic, survey or lab data was collected
from large-scale studies conducted by government entities such as the CDC. However,
regression models have also been paired with passive reporting sources to predict the
occurrence of an outbreak (Eysenbach, 1970; Cooper et al., 2003; Hogan et al., 2003;
Polgreen et al., 2008; Althouse et al., 2011). Some examples of passive reporting
sources are internet searches for a specific keyword, or phone calls to a health hotline.

In regression models, covariates can be included that implicitly describe spatial
orientation, e.g. - distance to nearest infected site, average distance to infected sites,
etc. The literature refers to spatial model inferences as "disease mapping", or "pre-
dictive mapping" and has been widely explored in the disease surveillance (Thomson
et al., 1999; Best et al., 2005; Raso et al., 2005; Eisen and Eisen, 2008; Mondini
and Chiaravalloti-Neto, 2008). The inclusion of an explicit spatial structure allows
for another layer of complexity in regression models, specifying correlation between
sites. It is reasonable to assume that sites closer to each other are more related than
sites farther away. A kernel is a function which specifies the degree to which close-
ness is associated with outcomes that are similar. Some common kernels to define
spatial correlation structure are: linear, exponential, gaussian, spherical, and ratio-
nal. Gaussian, exponential, and spherical structures, for example, are symmetric and
are thus generally used if sites are correlated regardless of their physical directions
from one another. As an example, Clements et al. (2006) constructed a binomial risk
model to predict the number of infected children at particular schools in Tanzania.
An exponential spatial correlation structure was defined: f(dij;φ, κ) = e−(φdij)κ . The
parameter φ represents the rate of decline of correlation as distance increases, and
κ represents the degree of spatial smoothing. It is important to note that spatial
structure does not need to be used in a regression model if spatial correlation is not
needed to calculate risk. However, failure to account for spatial correlation in the
data when it is important can potentially lead to inflated significance of regression
coefficients and overestimation of the precision of predictions (Clements et al., 2006).

Risk models also appear in the remote sensing (RS) literature. RS is defined
as the science of obtaining information about an area or phenomenon via a remote
device, usually a satellite, for improved surveillance and monitoring (Kumar, 2009).
In RS, risk model inferences have been integrated with RS tools such as geographic
information system (GIS) software or Google Earth to provide map-based outputs
for policy-makers regarding where interventions should be administered (Moloney
et al., 1998; Brooker and Michael, 2000; Elnaiem et al., 2003; Rogers and Randolph,
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2003; Chansang and Kittayapong, 2007). Eisen and Lozano-Fuentes (2009) made a
distinction between presenting risk model results and presenting those results with
a disease map, "Consider first the statement ‘dengue cases were concentrated to the
northern part of the city.’ This provides a general idea of where disease cases were
most common but does not necessarily provoke further interest. By complementing
the statement ‘dengue cases were concentrated to the northern part of the city’ with
a map showing case locations ...capture the imagination of the audience.”

Other extensions of using regression models for outbreak detection have also been
explored. For example, time-series regression models have been constructed to predict
outbreaks accounting for temporal correlation (Toubiana and Flahault, 1998; Wagner
et al., 2001; Tsui et al., 2002; Magruder, 2003; Suyama et al., 2003). Less studied are
"thresholding" methods, based on the results of a regression model. If the expected
number of infected cases exceeded a pre-specified threshold by time t, then decision-
makers would be alerted to begin implementing an intervention (Farrington, 1996).

We have discussed how regression modeling heavily depends on domain knowledge
from the researcher, by means of including correct covariates, and potential spatial
structure. Assuming that the model fits the data well, valid inferences can be made.
The inferences can ultimately provide rules of thumb regarding how to prioritize
which individuals receive treatment, and RS tools have previously been used to assist
in visualizing these prioritization schemes. There are many free sources of software
that quickly fit regression models, such as glm in R and statsmodels in Python,
making them universally accessible to researchers.

2.2.2 Neural Networks
As an alternative to traditional statistical methods, like regression modeling, ma-

chine learning provides the option to fit extremely flexible models to the data. Ma-
chine learning is a rapidly growing field and has made many advancements in image
recognition and robotics. One of the most popular machine learning methods is neu-
ral networks, sometimes referred to as multilayer perceptrons (Wang et al., 2017).
We will first develop a mathematical foundation of neural networks and discuss some
example applications to disease surveillance.

Figure 2.1 illustrates a K -class classification neural network with K nodes in the
output layer. Neural networks are composed of nodes, which refer to the individual
circles in Figure 2.1. There are three types of layers: input (specified by the blue
neurons), hidden (red neurons), and the output (yellow neurons). Usually, all of the
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nodes in each layer are connected via connection weights, the individual black lines.

Figure 2.1: Sketch of a neural network, from Hastie et al. (2005).

The output layer can have multiple predicted values (multiple nodes) if the out-
come is categorical, which usually suggests a classification problem (as in Figure 2.1),
while if there is only one predicted value this suggests a regression problem. Neu-
ral networks are considered two-stage models because the hidden layer(s) Z is/are
created from a non-linear transformation, via an activation function of the linear
combinations of covariates X and the output layer transforms the linear combination
of the values T from the hidden layer(s) (Hastie et al., 2005). These relationships can
be further expressed through the following chain of equations:

Zm = σ(α0m + αTmX),m = 1, ...,M

Tk = β0k + βTk Z, k = 1, ..., K

fk(X) = gk(T ), k = 1, ...K,

(2.3)

where Z = (Z1, Z2, ...ZM), and T = (T1, T2, ..., TK). The final equation in 2.3 gen-
erates predictions for the outcome Y1, ..., YK as previously expressed in Figure 2.1.
Notice that the first equation in (2.3) is the non-linear transformation of inputs,
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and the last equation is the transformation of the linear combination of the nodes
of the final hidden layer. The output function gK(T ) does not necessarily have to
be nonlinear, particularly if the output is continuous. The coefficients in the model
(α0m, ...αm, β0k, ...βk) are represented by the connection weights in Figure 2.1. These
coefficients are "learned’" through iterations of training. The coefficient-fitting pro-
cess begins with a random initialization and then proceeds through a process called
forward propagation. This process feeds the neural network weights through the
equations in (2.3) and predicts the outcome. This prediction is then compared to
the true outcome, and an error is calculated through a loss function. One example is
squared error:

R(θ) =
K∑
k=1

N∑
i=1

(yik − fk(xi))2 (2.4)

The θ in Equation (2.4) refers to the collection of weights: (α0m, ...αm, β0k, ...βk).
Once forward propagation is complete, back-propagation is implemented to readjust
the coefficients based on the results of the forward propagation. Back-propagation
consists of two steps: 1) computing partial derivatives of the loss function, and 2)
adjusting the coefficients via a gradient descent update. The following partial deriva-
tives are taken with respect to the two types of coefficients:

δRi

δβkm
= −2(yik − fk(xi))g′k(βTk zi)zmi,

δRi

δαml
= −

K∑
k=1

2(yik − fk(xi))g′k(βTk zi)βkmσ′(αTmxi)xil
(2.5)

Once the partial derivatives are calculated, the (r + 1)st coefficients’ update is per-
formed through gradient descent using the following equations:

β
(r+1)
km = β

(r)
km − γr

N∑
i=1

δRi

δβ
(r)
km

α
(r+1)
ml = α

(r)
ml − γr

N∑
i=1

δRi

δα
(r)
ml

(2.6)

The number of iterations, r, and the learning rate (the degree to which new infor-
mation contributes to the estimation of the coefficient), γ are specified by the user a
priori. There are many neural network parameters to tune along with r and γ: num-
ber of nodes per hidden layer, number of hidden layers, type of activation function,
number of epochs (the amount of forward and backward passes of all the training
samples in one iteration). Thus finding the combination of parameters to achieve
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optimal performance can be a source of computational complexity.
More recently, neural networks have been incorporated into disease surveillance

(Husin et al., 2008; Zhang et al., 2012; Luma et al., 2014; Zhang et al., 2014; Wang
and Deng, 2016). Referring back to the shrimp farm example referenced in Leung
and Tran (1999), a neural network was used for prospective outbreak detection. The
input layers consisted of 68 covariates describing farm site selection and design and
farm management practices. The output layer consisted of two nodes: presence or
absence of disease. Neural networks have also been used in the RS literature (Curran
et al., 2000; Kiang et al., 2006; Wang et al., 2008; Akil and Ahmad, 2016; Muharam
et al., 2017). As an example, Wang et al. (2017) constructed a neural network to
predict the number of human brucellosis cases at the county level in Inner Mongolia,
China. The input layer consisted of ten covariates and the output layer contained
one node: log-transformed number of human brucellosis cases at the county level.
The estimates from the neural network were then integrated with GIS software to
construct map-based outputs.

2.2.3 Inference, Prediction, and Decision Support
Neural networks and regression modeling both address the same goal: prospective

outbreak detection. However, the choice of which to use depends on preferences of
inference or prediction. The main advantage to regression modeling is the ease of
interpreting coefficients, as previously demonstrated with odds ratios in logistic re-
gression. Inferences from the regression model can then inform prioritization schemes.
The main advantage of neural networks is flexible modeling, by means of layers of
non-linear transformations and series of interaction terms (Tu, 1999). A logistic re-
gression model uses one non-linear transformation of a linear combination of data,
but neural networks perform multiple non-linear transformations. Something to con-
sider before using neural networks for disease surveillance, is that a large amount of
data are required for training. For example Yu et al. (2014) used a neural network
to predict incidence of hand-foot-mouth disease in China. Four years of data, over
90,000 cases, were used to train the neural network. Less data is required to fit a
regression model.

If it is suspected that there is a complex relationship between the covariates and
the outcome, then a neural network may achieve better performance. A complicated
risk model is not always necessary to achieve superior performance. In Leung and
Tran (1999) model accuracy was improved by only 8.13% when a neural network was
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used compared to logistic regression. While model coefficients can be extracted from
the neural network, they do not yield the same interpretations as odds ratios. A
policy-maker would be able to generate predictions of prospective outbreaks, but not
rules of thumb for how to prioritize which individuals receive an intervention.

Disease surveillance methods are a decision support tool. General rules of thumb
for which groups of individuals should be prioritized for an intervention can easily
be extracted from the results of regression models. These individuals were identified
due to their increased probability of causing an outbreak to occur. In cases where
more flexible models better fit the data, neural networks can improve predictive per-
formance.

Regression models and neural networks do not inform policy makers about optimal
decisions. It is unclear if administering an intervention to one group of individuals
results in a smaller cost or a smaller outbreak duration than administering an inter-
vention to another group of individuals. Furthermore, it is unclear if a prioritization
scheme informed from a regression model is the best prioritization scheme. Decision
analysis would need to be incorporated to address this concern. If a policy-maker at-
tempts to be proactive in managing a potential disease outbreak, then disease surveil-
lance methods are sufficient. Often times however, policy makers are interested in
achieving some objective as an outbreak is occurring.

2.3 Optimal Control Theory
2.3.1 Decision Analysis

If it is of interest to construct the best prioritization scheme, or the best general
management strategy, decision analysis could provide a tool to compare the manage-
ment strategies. Decision analysis can be formally defined as a quantitative method
of evaluating management options using information about uncertainties (Peterman
and Anderson, 2012). Evaluating management options requires knowledge about the
following ideas: the objective, actions, states, and utility. The objective provides a
metric to evaluate different decisions, for example minimizing cost or minimizing the
duration of an outbreak. States refer to the measurable quantities or qualities of the
environment in which a decision is made. One common example of a state in dis-
ease management is the number of infected individuals. Actions, or controls, refer to
the possible management options a decision maker can execute. Each state (or each
state-action pair) is associated with a specific utility, which describes how desirable
it is to be in a specific state. The primary goal in decision analysis is to maximize
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utility according to the specified objective. This component was missing from disease
surveillance. Inferences from regression models could guide prioritization of which in-
dividuals should receive an intervention, but there is no measure of utility associated
with a particular control. Thus, one would not be able to conclude that one control
generated better outcomes, i.e. - a higher utility, than another control. The optimal
control yields the highest average utility, defined by the following equation:

R̄(a) =
∑
s

P (s′ | s, a)R(s, a) (2.7)

The term R or R(s, a) in Equation (2.7) denotes a reward, which is one form of
utility. They are also specified a priori by the decision-maker. P (s′ | s, a) represents
a transition probability, the probability that the subsequent state s′ is observed given
control a is implemented. Synthesizing the components of Equation (2.7) yields the
following interpretation: the average utility of a control a is the sum of the utilities
of the resulting states weighted by the states’ transition probabilities. Compartment
models are required to define transition probabilities.

2.3.2 Compartment Models
In the context of disease dynamics, compartment models describe the rates at

which individuals move among disease states. Compartment models are not optimal
control models, but are defined a priori to simulate outbreaks and construct optimal
controls for some computational methods. These models are usually expressed as
a collection of deterministic differential equations. One such compartment model is
SIR, represented using the following collection of differential equations:

δs

δt
= −β I(t)S(t)

N
δi

δt
= β

I(t)S(t)
N

− µI(t)
δr

δt
= µI(t)

(2.8)

The quantities S(t), I(t), and R(t) in (2.8) refer to the number of susceptible indi-
viduals, infected individuals, and recovered individuals at time t, respectively. The
first equation refers to the rate at which susceptible individuals are removed from the
population, where β represents a rate of infection. The second equation represents
the difference between the rate at which susceptible individuals are removed from
the population and the rate at which infected individuals become recovered, where
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µ is the rate of recovery. The third equation refers to the rate at which infected
individuals become recovered. The appropriate type of compartment model depends
on the characteristics and dynamics of the disease. For example measles, mumps and
rubella traditionally follow an SIR model, whereas influenza traditionally follows an
SIS model - a susceptible individual becomes infected, then susceptible again (Keeling
and Rohani, 2007).

While deterministic compartment models are traditionally used for optimal con-
trol theory, the components can also be expressed as stochastic entities. In a study by
Yaesoubi and Cohen (2011a), a stochastic compartment model was used to describe
the dynamics of an influenza outbreak in a British boarding school. Following the
decision analysis framework, the state was defined by two parameters: XS(t), the
number of susceptible individuals at time t and XI(t) the number of infected individ-
uals at time t. There were two types of interventions: number of boys to vaccinate (0
to 763), and whether or not a transmission-reducing intervention (e.g. school closure,
hygienic interventions, isolation, etc.) should be implemented. Thus any one action
would consist of a combination of a discrete value, number of kids to vaccinate, and a
binary value, implement or do not implement the transmission-reducing intervention.
The primary goal of this study was to find the optimal combination of interventions.
The reward was quantified by a combination of: the policy maker’s willingness to pay
for the intervention, the cost of the intervention, and the loss in health due to in-
fections (quantified by quality-adjusted life years). A stochastic compartment model
was used to generate the number of new infections. It followed a binomial distribution
with the probability of a susceptible individual becoming infected defined as:

PI(t)(i | XS(t), XI(t)) =


(
XS(t)
i

)
φ(t)i(1− φ(t))XS(t)−i 0 ≤ i ≤ Xs(t)

0 otherwise
(2.9)

where φ(t) represented the overall probability that a susceptible person became in-
fected. The transition probabilities were calculated using Equation (2.9):

P (s′ | s, a) =

 PI(t)(xI | XS(t), XI(t)) xS + xI = XS(t)
0 otherwise

(2.10)

Notice that the compartment model was directly related to calculating transition
probabilities.

Many previous studies have leveraged another component of the compartment
model, the basic reproductive number, to make general rules of thumb for manage-
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ment (Driessche and Watmough, 2001; Ferguson et al., 2005; White and Pagano,
2008; Boëlle et al., 2009; White et al., 2009). The basic reproductive number, de-
noted by R0 describes the average number of secondary infections caused by a single
infected individual in a completely susceptible population (Miller Neilan et al., 2010).
If R0 > 1 then the disease is considered an epidemic. In a study conducted by Fer-
guson et al. (2001) different culling scenarios to manage the United Kingdom foot
and mouth disease outbreak were explored. It was found that a small reduction in
slaughter times results in a disproportionate reduction in R0, suggesting that rapid
slaughter achieves R0 < 1. In another study, control measures and general rules of
thumb were informed by R0 to manage a severe acute respiratory syndrome (SARS)
outbreak in Singapore (Lipsitch et al., 2003). This study found that due to low val-
ues of R0 a combination of shortening the time from symptom onset to isolation and
contact tracing can be effective in containing SARS. In addition, this study found
that if SARS spread over a long period, with R0 > 1 the quarantine would impose a
large burden on the population with individuals needing to be quarantined multiple
times over the course of the outbreak. Thus an aspect of the compartment model,
R0 can help provide general rules of thumb and lessons learned that can be applied
to future management. Disease management using the compartment model directly,
has been explored in other capacities as well. For example, compartment models have
previously been combined with classical optimization techniques to explore optimal
control methods, due to the fact that compartment models are generally expressed as
a system of differential equations (Castilho, 2006; Barrett and Hoel, 2007; Yan and
Zou, 2007; Blayneh et al., 2009; Okosun et al., 2011).

When the decision space has a relatively small number of actions and states, the
optimal control can be found through exhaustive search. This is not the case with the
example presented in Yaesoubi and Cohen (2011a), thus the state and action space
was further discretized. In general, challenges arise when controls are continuous, or
if there are many controls, or many states.

2.3.3 Dynamic Programming
The decision analysis framework is designed to allow policy-makers to optimize

an average utility and achieve a given objective. As previously mentioned, optimizing
the average utility is not always straightforward - particularly in complex decision
spaces. Dynamic programming incorporates the decision analysis framework, and is
based upon the Bellman optimality principle, which states that an optimal policy has
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the property that whatever the initial state and decisions are, the remaining decisions
must constitute an optimal policy with regard to the state resulting from the first
decisions (Bellman, 1954). In other words, sub-sequences of an optimal policy are
also optimal. A policy provides a mapping from a current state to an action:

π(s) = argmaxaR̄(a) (2.11)

It was previously discussed that optimal actions were chosen based on the largest
utility. An optimal policy fits this definition as well, but also assumes that after the
optimal action at time t is taken, optimal actions continue to be taken.

Dynamic programming depends on the Bellman optimality equation, presented
in Equation 2.12. Because the Bellman optimality equation requires the immediate
utility from the current state and the calculation of the average utility of the next
state, dynamic programming is inherently a backwards iterative process (Yaesoubi
and Cohen, 2011a). The intuition to using a backwards iterative process is to ensure
that for any given time point, the selected action generates the highest expected
utility by the end of management. If forward iteration is used, an unknown expected
value will be in the formula, indicated by equation 2.12. That is, assuming we know
the expected utility for time T , the action we choose at time T − 1 will maximize the
utility for the current time step and the future time step.

Q̄∗(st, at) = maxat [
∑
i

P (Hi)[R(at | st) +
∑
st+1

P (st+1 | st, at)Qi(st+1, at+1)]] (2.12)

The termQ(st, at) in Equation 2.12 is the action-value function, a function of expected
reward. The term, P (Hi) represents a policy maker’s belief that a pre-defined set of
criteria defining the decision environment are true. For example, the policy maker
may have a 40% belief that sheep are more susceptible to FMD than cows. Based
on these beliefs the measures of uncertainty can be incorporated into the Bellman
optimality equation, P (H1) = .40, and P (H2) = .60, and the expected utility can be
calculated incorporating that uncertainty. Using the Bellman optimality principle,
and the previously discussed intuition to backwards iteration, the optimal action
determined at time T − 1 constitutes part of the optimal policy. This process can
be repeated again for time T − 2, T − 3, ..., t, where t is the desired time point. The
complete collection of actions generates the optimal policy. The construction can be
written by the following:
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t = T : Q̄(aT , sT )

t = T − 1 : Q̄(aT−1, sT−1 | aT , sT )
...

t = T : Q̄(at, st | at+1, st+1)

(2.13)

Since the dynamic programming framework starts at the terminal point, Q̄(sT , aT )
needs to be defined. Fortunately, the terminal action-value quantity can be chosen
arbitrarily because the action value function will be updated iteratively, and converge
to the true action value function in the limit (Q(s, a) = 0 for all s is one common
example of arbitrary assignment). Most of the time, however, Q̄(sT , aT ) is chosen
informatively to improve convergence.

Dynamic programming has been previously studied in applications to disease man-
agement (Clancy and Green, 2007; Yaesoubi and Cohen, 2011b; Deng et al., 2013;
Ludkovski and Niemi, 2013; Zhu et al., 2016). In the wildlife management literature,
a stochastic implementation of dynamic programming tends to be used (Shoemaker,
1981; Shea, 1998; Baxter et al., 2007; Valetta, 2007; Marescot et al., 2013). Yaesoubi
and Cohen (2011a) implemented a dynamic programming approach with a relatively
small decision space: two state parameters, and two action parameters. As the num-
ber of states increase, the dynamic programming algorithm begins to lose efficiency.
This phenomenon refers to the curse of dimensionality: the number of operations
needed to arrive at an optimal decision tends to grow exponentially with the number
of state variables. It is not always possible to generate exact solutions when the state
or action space is continuous, thus a common approach to generate approximate solu-
tions is to discretize the decision space. However by employing discretization, the dy-
namic programming approach may not yield an exact optimal solution. Compared to
an exhaustive search approach, dynamic programming is exponentially faster because
direct search would require manual examination of each policy to ensure optimality
(Sutton and Barto, 1998). As the decision space becomes more complex it becomes
harder to present and visualize results. Expected rewards are usually stored as a
"look-up" table with states as rows and actions as columns, with each cell populated
by the expected reward for the corresponding state-action pair. However, this table
can present computational storage problems when there are many states (Ge et al.,
2010).
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2.4 Heuristics for Disease Outbreak Management
Heuristics are an alternative to optimal control methods. As previously discussed,

optimal control methods present computational storage and computational expense
challenges in larger decision spaces. Heuristics are more easily derived in comparison
to optimal control methods, however they do not guarantee an optimal policy will
be constructed. If it is sufficient to generate a policy that is close to optimal, and
computational time is more valuable, then heuristics may be the better approach for
the decision-maker. The next two sections discuss two heuristics that are commonly
used in the disease outbreak management literature.

2.4.1 Monte Carlo Methods
Various heuristics for calculating expected rewards have been investigated in ap-

plications to disease management. Monte Carlo (MC) methods are a collection of
algorithms that use repeated sampling to generate estimates (Eckhardt, 1987). This
method is popular in many fields due to its ease of implementation and ability to
capture the randomness inherent in real-life systems (Kroese et al., 2014). Through
repeated simulation, a researcher can also quantify uncertainty of a particular control
on expected utilities. This method also allows for many competing interventions to be
quickly and easily compared. For example, (Merl et al., 2009) was interested in man-
aging an influenza outbreak in a British boarding school. Using a decision analysis
framework, the objective for this study was to minimize the cost of the intervention.
The state was specified by the number of susceptible and infected individuals, and
the control consisted of a combination of: the fraction of susceptible individuals to
vaccinate, and the number of susceptible individuals that had to be left in other to
terminate the campaign. The utility was defined by a combination of the cost units
per dose of vaccine and the cost of treating an infected individual. There were 100
competing control strategies: ten ranges of proportion of individuals to vaccinate, and
ten ranges of the number of susceptible individuals to stop the intervention. Thus 100
types of simulations of the disease outbreak were conducted using different control
combinations and the intervention that produced the lowest average cost was defined
as the optimal intervention.

Figure 2.2 illustrates the cost surface associated with the 100 types of simulations.
In this example Monte Carlo was used as an exhaustive search method to choose the
best control, vaccinating 30% of susceptible individuals at each each time step until
the number of susceptible individuals falls below 150. In another study the 2001
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Figure 2.2: Cost surface generated from simulation of different combinations of control (Merl et al.,
2009)

United Kingdom foot and mouth disease outbreak was managed using a vaccination
annulus, defined by an inner and outer ring (Tildesley et al., 2006). Once a combi-
nation of inner and outer radii were chosen then vaccination priority was given to
farms within the annulus that were farthest away from the infected premises. The
choice of combination of inner and outer radius distances were chosen via Monte Carlo
simulation. There were fifty values of inner radii and outer radii that were explored.

Figure 2.3: Cost surface generated from simulation of different combinations of control Tildesley
et al. (2006)

The combination chosen achieved the smallest number of total infected and culled
farms as denoted by the white dot in Figure 2.3.

In the examples discussed so far, Monte Carlo methods used exhaustive search
to estimate expected utilities, and thus generate an action. This implementation of
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Monte Carlo as an exhaustive search tool has been widely used to evaluate manage-
ment strategies (Keeling et al., 2001; Morris et al., 2001; Keeling et al., 2003; Tildesley
et al., 2009, 2010). Monte Carlo methods can also be used to generate a policy based
on the calculated approximate rewards, as an alternative to dynamic programming.
Policy construction via Monte Carlo has not been explored in managing disease out-
breaks. To construct a policy using Monte Carlo, states and actions would need to
be visited an infinite number of times. Expected utility would then be calculated by
taking the average of all of the rewards from a given state-action pair.

Each simulation of the outbreak is defined as an "episode." Convergence to the op-
timal policy is guaranteed with an infinite number of episodes since the changes to the
action-value function decrease over time, but a large number of episodes will approx-
imate the optimal policy (Sutton and Barto, 1998). Expected rewards are updated
based on the results, the new state and the observed reward, of each episode. A larger
number of episodes results in more opportunities to visit each state-action pair, s, a,
reducing MC error. Just as with dynamic programming, Monte Carlo methods are
also limited in complex decision spaces. For example, if there are many states and ac-
tions it may be computationally impossible to generate and store expected rewards.
It may also be difficult for each state-action pair to be visited during simulations.
However, this method provides a straightforward implementation of "learning from
experience" to estimate expected rewards and thus approximate the optimal policy
based on those rewards.

2.4.2 Genetic Algorithms
Genetic algorithms are another family of heuristics for optimal control that has

been explored in disease outbreak management. They are biologically motivated,
simulated systems based on natural selection and genetic recombination to achieve
the ’fittest’ solutions (Baluja and Caruana, 1995). The main components of a genetic
algorithm are: a fitness function, a population of chromosomes, a selection operator
to choose which chromosomes reproduce, a crossover function to produce the next
generation of chromosomes, and mutation of chromosomes in the new generation. To
better understand these components, they will be discussed in the context of disease
management under limited resources.

Suppose there is an impending outbreak and it has been identified that n cities
should receive the first wave of intervention. However, there are only enough resources
to intervene at one city per day. The goal of management is to choose the sequence
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in which the n cities should receive an intervention such that the outbreak has the
shortest duration. When n is small, the sequence of interventions can be determined
through exhaustive search. However, the number of computations needed to arrive
at the optimal solution increases on a factorial scale as the number of cities increases.
Because genetic algorithms do not evaluate each control, they are a faster alternative
to exhaustive search.

To simplify this management problem, suppose that there are five cities that were
identified a priori to receive an intervention in the first wave of management. To
further simplify this example, we will also assume that the outbreak spreads the
same way in every iteration. Thus we attempt to find the optimal sequence of actions
for a given outbreak spread. One example of a chromosome for this scenario is:
{5, 2, 1, 4, 3}, where each element in the chromosome, referred to as a gene, represents
one of the five cities. A chromosome can be thought of as a control in the decision
analysis framework. The goal is to find the chromosome that achieves optimal fitness.
In this example, the fitness could be calculated through a function of duration of the
epidemic, since the goal is to minimize duration of the outbreak. Fitness in the
genetic algorithm is equivalent to expected utility in the decision analysis framework,
and also must be specified by the user. The genetic algorithm process begins with a
random set of chromosomes, this is the initial population. In this case there are 120
combinations of the five cities (5!), so the initial population can consist of some subset,
let’s say 20, of these 120 chromosomes. The fitness, a function of outbreak duration, is
then calculated for each of the 20 chromosomes. A subset of the 20 chromosomes are
chosen to reproduce via a selection operator, let’s say 10 are chosen to reproduce. The
most common selection operator chooses chromosomes proportional to their fitness,
F :

P (chromosome) = F (chromosome)∑N
i=1 F (chromosomei)

(2.14)

The chromosomes chosen via the selection operator, referred to as parent chromo-
somes, will ideally pass on their favorable characteristics to the next generation. The
most common processes of creating diversity in the new chromosomes are: crossover
and mutation. Crossover takes a sub-sequence of each parent chromosome after a par-
ticular gene, and switches them. For example, suppose the two parent chromosomes
are: {4, 1, 5, 3, 2}, {3, 4, 2, 1, 5}, and crossover occurs after the second gene. The two
offspring are shown in the right-most column of Table 2.2. In this example there
is an issue with the new offspring, they have repeated genes. "Cycle" crossover can
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Parent Chromosome Crossover Offspring
4 1 5 3 2 4 1 | 5 3 2 4 1 2 1 5
3 4 2 1 5 3 4 | 2 1 5 3 4 5 3 2

Table 2.2: Example of Crossover with Issues

be implemented to ensure that the two new offspring each contain five unique genes
(Haupt and Haupt, 1998). The process begins with choosing a single gene in the

Parent Chromosome Offspring
(step 1)

Offspring
(step 2)

4 1 |5| 3 2 4 1 2 3 |2| 4 1 2 3 5
3 4 |2| 1 5 3 4 5 1 |5| 3 4 5 1 2

Table 2.3: Example of "Cycle" Crossover

two parent chromosomes and switching them. In Table 2.3, the first switch occurs at
the second gene. The first offspring now has two 2’s, thus a second switch occurs at
the fifth gene, yielding the two offspring in the right-most column. Notice that each
of these offspring now have five unique genes, thus ending the cycle crossover pro-
cess. Mutation provides another source of genetic diversity: two genes are randomly
switched in a chromosome of the new generation. Search algorithms for a decision
space must balance exploitation and exploration. Crossover exploits previous chro-
mosomes by passing on a subsequence to the next generation. Mutations allow the
decision space to be further explored by generating chromosomes that may not have
been considered through crossover. A mutation usually occurs with a small proba-
bility to allow iterations of exploitation within the new decision subspace generated
by the mutation. This process of: calculating fitness for the chromosomes, choosing
parent genes, implementing crossover, and implementing mutation is repeated many
times until convergence in fitness is reached.

Genetic algorithms have previously been investigated in generating optimal disease
control strategies (de Souza and T., 1993; Caetano and Yoneyama, 2001; Yan and Zou,
2008; Liu and Zhao, 2009; Wang et al., 2009). For example, Patel et al. (2005) used
genetic algorithms to obtain competitive vaccination strategies to combat influenza
epidemics using two historical outbreaks as examples: the Asian pandemic in 1957 and
the the Hong Kong pandemic in 1968. There were five age groups that were considered
in this study: pre-school, school, young adults, middle adults, and old adults. The
goal was to determine, constrained by a limited amount of vaccine, which age groups

29



to target. The chromosome consisted of five genes, five proportions representing the
fraction of individuals to vaccinate for each age group. Fitness was defined as a loss
function describing a weighted proportion of vaccinated and unvaccinated individuals
in an age group that ultimately became sick over the course of the epidemic; thus
lower fitness values were preferred. This method was shown to yield better results
than random vaccination.

Genetic algorithms have also been implemented in disease surveillance (Peterson
et al., 2004; Levine et al., 2004; Peterson et al., 2005; Blackburn et al., 2007; Ducz-
mal et al., 2007). For example, Husin et al. (2012) used a combination of genetic
algorithms and neural networks to predict the number of dengue cases in Malaysia
over time. A genetic algorithm was used to determine optimal weights in the neural
network, and the neural network predicted disease occurrence. This hybrid model
yielded better performance compared to standalone models.

Genetic algorithms are heuristics for optimal control. Unlike dynamic program-
ming, it is possible for genetic algorithms to be trapped in local minima or maxima.
This can be addressed by increasing the amount of mutation, increasing the number
of chromosomes in each generation, changing the initial population, or implement-
ing additional constraints in the fitness function (Haupt, 1995) . For this reason,
some degree of tuning may be required to optimize genetic algorithm performance
and speed. Even after tuning, genetic algorithms may not yield an optimal action.
Genetic algorithms do not assume the Markov property, as with dynamic program-
ming and some Monte Carlo methods. There has been some exploration in using
genetic algorithms to generate policies, but this has not been implemented in disease
outbreak management (Chin and Jafari, 1998).

2.5 Network-Based Approaches
One assumption of methods that use compartment models is that the population

is fully mixed, meaning every individual has an equal chance of spreading the disease
to every other individual (Meyers et al., 2004). If a researcher is unable to make this
assumption then a contact structure can be created via a graphical model, known as
network analysis. A network is usually expressed through three components: a set
of vertices, or nodes (V ), a set of edges (E), and weights for each edge (J. Newman,
2006).

Figure 2.4 illustrates a network with seven vertices, V = {A,B,C,D,E, F,G} and
nine edges, E = {AB,AC,AE,BC,BD,CD,CE,DE,EF}. By convention, because
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Figure 2.4: Example of a small network with seven vertices (nodes) and nine edges.

no weights are denoted, it can be assumed that each edge is equally weighted. Weights
represent the extent of connection between two vertices. For example, suppose that
each vertex in the network represented an individual, and an edge was drawn between
two individuals if they got into physical contact. A weight representing the number of
times the two individuals got into contact with each other could be assigned to each
edge. A network is connected if each node can reach every other node by a series of
edges. The network in Figure 2.4 is not connected because vertex G is not connected
to any of the other vertices.

Networks used in contact tracing and social networks tend to have many nodes
and edges. Both of these types of networks are commonly used in disease surveil-
lance. Contact tracing is a retrospective effort, one can determine how an initial
case spread the disease (Kretzschmar et al., 1996; Eames and Keeling, 2003; Fraser
et al., 2004; Lloyd-Smith et al., 2005; Kiss et al., 2006). This information can be used
to target particular individuals, modes of transportation, or particular locations for
future outbreaks. Since both of these types of networks tend to be quite large it is
impractical to answer questions such as, which node would most affect the network if
removed, since there would be too many nodes to feasibly explore. Instead, one could
ask what proportion of vertices need to be removed to prevent a large-scale outbreak
(J. Newman, 2006). This type of question targets characteristics of the network such
as clustering, node degrees, and resilience. Clustering describes the connectedness of
nodes. For example, if an infected individual came into contact with a susceptible
individual, and the susceptible individual frequently contacts individuals at a com-
munity center, then there is a high probability that the individuals in the community
center will become infected. The infected individual, susceptible individual, and the
individuals at the community center are all connected in a cluster. By understand-
ing this pathway, policy-makers would be encouraged to target individuals within a
cluster that are connected to a large number susceptible individuals. The degree of
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a node refers to the number of edges that is connected to that particular node, and
individuals with a higher degree would ideally be targeted first for an intervention
because they highly affect the network. Resilience refers to how the network responds
if a particular node is removed. Researchers may find that if certain individuals were
to become infected, then the rate of spread of the disease may increase. Targeting
these individuals would potentially prevent an even more wide scale outbreak.

Policy-makers can change the structure of a contact network through targeted
interventions (Edmunds et al., 1997; Meyers et al., 2004; Eames, 2008; Salathe and
Jones, 2010; Preciado et al., 2013). As an example, Salathe and Jones (2010) traced
disease spread using friendship data collected from Facebook. Nodes in the net-
work were ranked using measures of centrality. Random walk centrality, for example,
determines the amount of times a node was passed in a random walk. Stochastic
algorithms were also explored in this study, specifically determining which neighbor-
ing nodes should be vaccinated when a particular node was infected. This concept
of identifying "bridging” nodes is one advantage of network-based approaches. This
study found that targeting individuals that bridge communities was more effective
than targeting highly connected individuals. In another study, a social network was
constructed based on the question, "who are your playmates?” to monitor the spread
of influenza (Cauchemez et al., 2011). This study suggested that boys were more
likely to transmit the disease to other boys than to girls. This study also found that
there were waves of transmission between schools and households. Like with regres-
sion models, network-based approaches help construct general rules for management
and disease spread.

One shortcoming of this method is that full contact networks relevant to the spread
of infectious diseases are generally not known. For example, in the United States the
structure of regional farm and livestock movement networks are not known, including
missing data about farm size, location, and animal movements. (Craft, 2015). This
method can be used as a decision support tool, as with other disease surveillance
methods, however this method has no measure of utility. One extension to network
analysis that may allow for exploration in optimal control is agent-based modeling.
Agent-based modeling simulates interactions between individuals, or agents, in a com-
munity using an assumed network structure (Shiflet and Shiflet, 2014). This approach
has been implemented in investigations of modeling disease spread assuming certain
rules, and may have a future in exploring optimal disease outbreak control methods
(Eubank et al., 2004; Situngkir, 2004; Rahmandad and Sterman, 2008; Perez and
Dragicevic, 2009; Ajelli et al., 2010)
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2.6 Discussion
This chapter reviewed various computational methods for managing disease out-

breaks. Each present their own strengths and weaknesses as outlined in Table 2.4.
The primary split between the previously discussed methods is the goal of construct-
ing optimal strategies. Many computational approaches have been investigated for
optimal disease outbreak management (Dasaklis et al., 2012). This review focused
on three methods: dynamic programming, Monte Carlo methods, and genetic algo-
rithms. Dynamic programming (and exhaustive search) is the only method discussed
that has the ability to achieve optimal policies in small, finite spaces, and Monte
Carlo methods and genetic algorithms are heuristics for generating optimal controls.
This brings into question whether or not it is worth searching for optimal solutions.
Yan and Zou (2007) were interested in finding the optimal combination of rate of
quarantine and rate of isolation to manage the SARS outbreak in Beijing, 2002. Two
approaches were compared: classical optimization and genetic algorithms. Both ap-
proaches yielded virtually the same number of infected individuals and costs. In
addition the controls generated from the genetic algorithm were much simpler to
implement from a policy standpoint; the rates of quarantine and isolation decrease
in a stepwise manner however the classical optimization approach required the rates
to change every day. Thus it may be easier and more practical to use heuristics in
generating a decision. However, it is important to note that the construction of opti-
mal policies have not been investigated in genetic algorithms or Monte Carlo in the
context of disease outbreak management.

After presenting some of the strengths and weaknesses of each method it is natural
to ask which method is the best. The answer to this question depends on the policy
makers’ and researchers’ goals. The flowchart in Figure 2.5 may provide some insight
to choose a method. The primary distinguishing characteristic is whether or not the
policy maker is interested in pre-emptive management. This separates out many of
the disease surveillance methods, and other methods for constructing rules of thumb
for prioritization schemes. Fitting a model is another separating characteristic; a re-
searcher may be interested in generating quantifiable relationships between covariates
and the outcome which would suggest the use of regression or neural networks.

One limitation of all the presented methods is the ability to generate optimal
controls in a complex decision space. Dynamic programming suffers from the curse
of dimensionality in large decision spaces and storage limitations with large look-up
tables. Monte Carlo methods and genetic algorithms tend to be trapped in local
minima or not explore enough of the decision space. Complexity in disease outbreak
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Figure 2.5: Flowchart for use of method
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Method Strengths Weaknesses

Disease Surveillance Methods

- Inferences from regression models
can aid prioritization schemes
- Easy to implement
- Model flexibility with neural networks

- Model specification
- Parameter tuning for neural networks
- Decision support tool,
does not generate optimal controls
- Used for prospective outbreak detection,
not during the outbreak itself

Dynamic Programming - Generates optimal policy - Computational and storage issues
as decision space becomes more complex

Monte Carlo Methods - Understand uncertainty of control measure
- Easy to implement for small decision spaces

- Computational and storage issues as
decision space becomes more complex
- Heuristic
- Has not been explored in generating optimal polices
in context of outbreak management

Genetic Algorithms
- Can be paired with other methods
to improve performance
- No need to explore every control strategy

- Computational and storage issues as
decision space becomes more complex
- Heuristic, can be trapped in local optima
- Has not be explored in generating optimal policies
in context of outbreak management
- Parameter tuning may be required
to improve performance/speed

Network-Based Approaches

- Does not assume population is
homogeneously mixed
- Provides retrospective approach to trace
progression of disease

- Decision support tool,
does not generate optimal controls
- Contact networks generally not known

Table 2.4: Strengths and Weaknesses of Each Method

management arises when constructing an optimal policy under resource constraints.
Due to the limitations of the aforementioned methods, a different approach would be
required for management in this more complex scenario. Deep Q-networks (DQN)
have previously shown strong performance in complex decision spaces. This method
has not yet been explored in disease outbreak management, and will be explored in
the next chapter.
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CHAPTER 3

ON USING DEEP Q-NETWORKS TO MANAGE THE 2001 UNITED KINGDOM
FOOT-AND-MOUTH DISEASE OUTBREAK

3.1 Introduction
Optimal decision-making presents computational challenges in complex decision

spaces. As discussed in the previous chapter, one common method for optimal control,
dynamic programming, encounters computational storage problems while updating
the expected utility function in large decision spaces (Ge et al., 2010). In simple
Backgammon game situations using a look-up table for expected rewards, as with
dynamic programming, results in an agent to be trained perfectly. However, training
an agent to the full game scenario would require a look-up table of approximately
1020 states. Rather than pursue methods which calculate exact expected utility, it
may be easier and more feasible from a logistical standpoint to pursue methods that
estimate expected utilities (Yan and Zou, 2007). Deep Q-networks (DQN) have been
historically successful in complex decision spaces. Tesauro (1995) successfully trained
a DQN agent to play Backgammon better than world-class human professionals. This
method has also recently been explored in complex decision spaces. Mnih et al. (2015)
used DQN to train an agent to play the Atari 2600 games better than a trained human
professional.

Complex decision spaces also arise in disease outbreak management under resource
constraints. Disease outbreak state spaces traditionally consist of discrete covariates,
such as the number of infected premises at time point t, which is well-suited for
look-up tables (Ge et al., 2010). However, this state space does not capture spatial
correlations inherent in disease spread. A more complex state space, such as an
illustrative map of the disease outbreak at time t, would be required to capture
spatial relationships between locations. In addition, a policy-maker may only have
the resources to provide interventions to x out of n locations. This action space
construction would require

(
n
x

)
columns in a look-up table. This action space coupled

with a complex state space would overwhelm the storage capacity of look-up tables
used in dynamic programming. Because DQN has been successful in applications
with high dimensional decision spaces, e.g. - video games, I investigated this method
in its ability to manage the 2001 United Kingdom foot-and-mouth disease (FMD)
outbreak under resource constraints in four different scenarios.
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3.2 Deep Q-Networks
The goal of DQN is the same as that of Q-learning: construct an optimal policy

for a given Markov decision process (MDP). DQN combines Q-learning, to update
the action value function based on experiences, with convolutional neural networks
(CNN) to estimate and store network weights. As previously mentioned in the in-
troduction chapter, CNN architecture is well-suited for image data because low-level
feature information can be easily extracted and combined with other low-level features
to utlimately construct more abstract concepts (Deshpande, 2016). The algorithm
begins with a simplified version of the Bellman optimality equation:

Q∗(s, a) = Es′ [r + γmaxa′Q∗(s′, a′)|s, a] (3.1)

By incorporating convolutional neural networks into the Q-learning algorithm, the
optimal action-value function is approximated, Q∗(s, a) ≈ Q(s, a; θ) where θ rep-
resents the collection of convolutional neural network weights. As with traditional
Q-learning, the estimate of Q∗(s, a) improves with increased agent experience. The
improvement in the estimate mainly occurs through improvement of the convolutional
neural network weights, θ. With each iteration of training, the squared error loss is
calculated:

L(θ) = Es,a,r(Es′(r + γmaxa′Q∗(s′, a′; θ−))−Q(s, a; θ))2 (3.2)

where θ− refers to a previous set of weights. Following the convolutional neural
network algorithm, partial derivatives of Equation (3.2) are calculated with respect
to θ, and stochastic gradient descent can be performed to update the network weights.

There are two additional components to the DQN algorithm that assist with
convergence: experience replay and target updating. With experience replay, an
agent can experience the effects of taking "realistic" actions from given states without
having to execute those actions in real time (Lin, 1993). These actions are realistic
because they were previously taken from the same given state. Experience replay
saves the experience (st, at, rt, st+1) from each time step in a double ended queue, or
"deque", E of pre-specified length, N . Each time the convolutional neural network
is fit, a random sample of experiences from E is drawn, and is used in the weight
updating process. The deque E contains only the N most recent experiences to ensure
the estimates are using the most relevant data. Consecutive experiences are highly
correlated, thus randomizing previous experiences reduces correlation in the estimates
of Q(s, a; θ) (Mnih et al., 2015).
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Target updating refers to using a separate network for the target, or the true
observation, Q(s′, a′; θ−). The target network and the Q-network, for Q(s, a, θ), ini-
tially have the same weights, θ. The Q-network weights are updated with each time
step, while the target network weights remains the same. After C time steps, the
Q-network is cloned and equated to the target network for the next C time steps,
as illustrated in Figure 3.1. This method may require more episodes of training and

Figure 3.1: Structure of target updating in DQN

can be computationally expensive, but can greatly improve the stability of training
and prevent optimal policy divergence (Lillicrap et al., 2016). The complete DQN
algorithm is presented in Figure 3.2.

Initialize experience replay memory E to capacity N
Initialize action-value function Q with random weights θ
Initialize target action-value function Q̂ with random weights θ− = θ
For each episode

Initialize s
Until s is terminal

Select action at randomly with probability ε
otherwise select at using at = argmaxaQ(s, a; θ)

Implement at and observe rt, st+1
Store (st, at, rt, st+1) in E
Sample random mini batch of (si, ai, ri, si+1) from E
Set yi = ri if episode terminates at i+ 1

otherwise, yi = ri + γmaxai+1Q̂(si, ai+1; θ)
Perform stochastic gradient descent on (yi −Q(si, ai; θ))2

w.r.t network parameters, θ
Every C steps let Q̂ = Q

Figure 3.2: The DQN algorithm (Mnih et al., 2015)
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3.3 Methods
3.3.1 States, Actions, Rewards

In this study, our primary goal was to simulate the management of the 2001
United Kingdom FMD outbreak using DQN in different scenarios. As with any
MDP, the states, actions, and rewards were pre-specified. To better capture the
spatial relationships between farm locations, I defined the state at time t using a
map of the disease outbreak. Figure 3.3 illustrates the construction of the state for a
given epoch of training. I first plotted the farm locations and identified the farm-level
infection status on an m×m kilometer space (represented in the left panel in Figure
3.3, black represents an infected farm, and white represents a susceptible farm). I
then overlaid a grid on the plot to create "pixels," i.e.- grid squares (represented by
the second panel in Figure 3.3). Traditionally, a state in DQN with image data is
defined by the red-green-blue (RGB) values for each pixel (Mnih et al., 2015). In this
study, I used the infection status of the farm in a given pixel. I used the following as a
key to construct the state: susceptible farm- 0, infected farm- 1, culled farm/no farm-
2 (represented in the right panel in Figure 3.3). I implemented this construction of
state generation at every epoch of training. Each pixel has no more than one farm.
This constraint helped determine potential dimensions of each grid square. In this
example, on a 10 × 10 kilometer space, each grid square had dimension 1 × 1, to
ensure that no more than one farm occupied a grid square. The grid square dimension
can easily be smaller to better capture relative distance between farms, however this
creates a larger 2-D array, causing computational challenges with stochastic gradient
descent and the serial updating nature of DQN.

Figure 3.3: Constructing the state at a time point consists of three steps 1) plot the points of the
farm locations and color code by infection status (black- infected, white- susceptible), 2) overlay a
grid on the previous plot, 3) trichotomize the infection status

At each epoch of training, I tasked the DQN agent with determining which farms
should be culled under resource constraints. In Figure 3.3 there are 30 farms in the
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10 × 10 kilometer space. Suppose that there are resources to cull all of the cattle in
any five farms, per day. Rather than defining the action space with

(
30
5

)
possibilities

at time t, I presented the agent with a smaller action space. At time step t, the DQN
agent chose one farm out of the 30 to cull. In that same time step, the DQN agent
chose a second farm to cull out of the remaining 29. Once the DQN agent chose five
separate farms to cull, then the outbreak evolved and a new state and reward were
observed. This action space construction reduced the number of possible actions in
the first day of management from

(
30
5

)
to 140 (30 + 29 + 28 + 27 + 26). There

are other approaches to accommodate decision spaces with large action spaces, such
as least squares policy iteration with multi-action (Wang and Yu, 2016). However,
techniques to accommodate decision spaces with large state and action spaces are
still under study.

The immediate rewards, r are closely tied to the objectives of disease management.
Ideally, an outbreak should be terminated as quickly as possible with minimal costs.
For this reason I included multiple components to the immediate reward structure.
A -100 reward was observed for every farm culled, which encouraged conservative
culling in the management process. A terminal reward of the number of cows alive
at the end of an episode was also observed, which encouraged cost-effective behavior.
Because FMD has a latent period of five days, it was possible for outbreaks to resurge.
This would cause policy-makers to have to wait to ensure that the outbreak was truly
terminated. For this reason there was a -500 reward associated with the agent assum-
ing the outbreak was terminated, when in truth an outbreak resurgence was about
to occur. I used this immediate reward structure for each of the four investigated
case studies. I chose the values of the immediate rewards through prioritization of
objectives; diminishing outbreak resurgence was the highest priority and was thus
given a more negative reward for not being met. In a realistic setting, specification
of objectives can impact the final policy. Probert et al. (2015) illustrated that final
controls can differ based on the metric that defines success. For this reason, it is
imperative that a decision-maker constructs clear objectives prior to management.

3.3.2 Outbreak Generation
I incorporated the 2001 United Kingdom FMD dynamics with the DQN algorithm

to generate the next state after an action was implemented. The 2001 United King-
dom FMD outbreak was characterized with a susceptible-exposed-infected-recovered
(SEIR) compartment model at the farm level. There was a five day latent period
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before a susceptible farm became infected, represented by the exposed compartment.
I simulated the outbreak using an individual-based FMD model as specified by Keel-
ing and Rohani (2007). The rate at which a susceptible farm became infected was
represented by:

λi = Niscow
∑

j∈infectious
NjτcowK(dij) (3.3)

where N represents the number of cows at a farm, s represents a cow’s susceptibility
to the disease, τ represents a cow’s transmissibility of the disease, K represents the
transmission kernel, and dij represents the distance between the susceptible farm i

and the infectious farm, j. I selected the following parameters, s, τ, and K, for each
case study to better accommodate the characteristics of each landscape (e.g. - size of
the space, positioning of farms, etc). If s or τ were too large, then the outbreak would
spread too quickly, preventing any type of intervention under resource constraints to
be effective. If the transmission kernel was a distribution with very large tails, then
there would be a larger chance for farms that were very far away to become infected in
a single time step. This may be feasible in practice due to cattle movement, movement
of equipment, etc. The code to implement the simulated outbreak is presented by
Keeling and Rohani (2007).

I combined the DQN algorithm from Figure 3.2 with the 2001 United Kingdom
FMD outbreak dynamics, to construct a modified DQN algorithm, (Figure 3.4). The
functions to implement action selection, experience replay, and target updating in
Python using keras and tensorflow are presented in Appendix A.

3.4 Case Studies
I investigated four different cases studies. The first case is a proof of concept

that DQN can be used to optimally terminate a disease outbreak. The succeeding
two cases present small-scale examples that address particular aspects of outbreak
management under resource constraints. The final case explores scaling the decision
problem. For each case study, I did not change the initial state between episodes of
training. In practice, a policy-maker would provide the initial state of the outbreak
and request the best sequence of actions for management. Thus, this method overfits
to the starting state of the outbreak. Although the starting state for each case is the
same, the outbreak progression will vary due to the stochastic nature of the outbreak
algorithm. This stochasticity makes the decision problem more challenging for the
DQN agent.
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Initialize experience replay memory E to capacity N
Initialize action-value function Q with random weights θ
Initialize target action-value function Q̂ with random weights θ− = θ
For each episode

Initialize and pre-process s
Until s is terminal

Select action at randomly with probability ε
otherwise select at using at = argmaxaQ(s, a; θ)

Implement at and observe rt
If the daily culling capacity has not been reached

then st+1 is determined by new farm cull and pre-processing
If the daily culling capacity has been reached

then evolve the outbreak and pre-process to observe st+1
Store (st, at, rt, st+1) in E
Sample random mini batch of (si, ai, ri, si+1) from E
Set yi = ri if episode terminates at i+ 1

otherwise, yi = ri + γmaxai+1Q̂(si, ai+1; θ)
Perform stochastic gradient descent on (yi −Q(si, ai; θ))2

w.r.t network parameters, θ
Every C steps let Q̂ = Q

Figure 3.4: The DQN algorithm, modified to accommodate the 2001 United Kingdom FMD man-
agement environment (modifications represented in red).

3.4.1 Case 1: Which infected farm to leave out?
In the first case study I placed 30 farms randomly on a 10 × 10 kilometer grid.

The initial pixelated state is provided in Figure 4.3. The number of cattle on each
farm was uniformly distributed between 25 and 500, with a total of 6965 cows in the
entire landscape. The range of cattle reflected realistic farm sizes in Cumbria, United
Kingdom in 2001 (Tildesley et al., 2010). A cow’s susceptibility to the disease, s, and a
cow’s transmissibility of the disease, τ , were both chosen to be 6.3× 10−5. I selected
transmissibility to be slightly larger than specified by Keeling and Rohani (2007)
to accommodate a more realistic spread on a smaller landscape. The transmission
kernel in this case was: K(distance) = 1

distance+400 . This kernel has a large tail over
the possible distances, meaning that farms farther away have a higher probability
of becoming infected, relative to a narrower-tailed kernel. This will present some
challenges for the DQN agent, because there may not be a "learnable" culling pattern
for management. "Learnable" here refers to discovering rules that would guarantee
the management objectives to be met. I chose six farms at random to be initially
infected, represented by the black points in Figure 4.3. Because there were initially
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Figure 3.5: Initial state for the first case study. Black points represent locations of initial infected
farms. Dot size is proportional to the number of cattle present at the farm (range: 25 - 500).

six infected farms, this case can be thought of as: which infected farm to leave out.
Intuitively, the outbreak can be terminated by culling all six infected farms. However,
if the first five infected farms were incorrectly chosen then the neglected infected farm
could create secondary infections on the second day.

Figure 3.6 illustrates an instance of the actions suggested by the DQN agent after
1,200 episodes of training. The first five panels represent the five culls (represented
by the red x’s) in the first day of management. The sixth panel represents the result
after the five culls and evolving the outbreak. In the seventh panel, the second day of
management, the outbreak is terminated. With this sequence of culls, the outbreak
never spreads. The left panel in Figure 3.7 illustrates the smoothed trajectory of total
reward over the 1,200 episodes of training. It is common to present smoothed training
trajectories using a moving average to better represent the progression of learning,
and mitigate the uninformative oscillations, (Figure 3.7).

At the beginning of training, the total reward was about -3,000. This suggests
that nearly every farm was culled at the beginning of training. With the pre-specified
immediate reward structure and the DQN algorithm, the agent learns how to opti-
mally terminate the outbreak while meeting all of the objectives. The trajectory of
training begins to plateau at about 800 episodes. This suggests that the DQN model
has begun to stabilize. Once the DQN agent was trained, the outbreak was simulated
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Figure 3.6: One instance of how DQN agent optimally terminates the outbreak in the first case
study after model is trained. The first five panels represent an action (represented by the red x’s).
The sixth panel represents the result of outbreak evolution after the first five culls. The seventh
panel represents the final cull on the second day.
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Figure 3.7: The left panel presents the raw total reward after each episode in the first case study. The
right panel presents the moving average (smoothed over 10 episodes). The smoothed total reward
better illustrates agent improvement, without being preoccupied in the individual oscillations.

2,000 times with management decisions informed by the policy from the DQN. Table
3.5 in Appendix B illustrates that the outbreak never spreads; there were always six
farms culled. In addition, the DQN agent never assumes that the outbreak is termi-
nated when in fact there are exposed farms (average outbreak resurgence: 0, 95%CI
(0, 0)).

3.4.2 Case 2: Faster outbreak and conservative resource constraints
In the second case study, I explored a more challenging decision problem. The

initial state was the same as the first case study: 30 farms, six farms initially infected,
with the number of cattle per farm unchanged from the first case. However, in this
second case study, I assumed that all of the cattle at any one farm could be culled per
day. It was almost guaranteed that there would be at least one additional infected
farm before the end of an episode. Recall FMD has a latent period of five days. If
only one farm could be culled per day, then each of those five days will have a chance
of at least one farm becoming exposed. In fact, in 2,000 simulations of testing the
trained DQN agent, an average of 5 farms were exposed after the first cull (95%CI
(3, 6)). I also slightly increased a cow’s transmissibility of FMD to 8.4× 10−5. Both
the increase in transmission and a lower daily culling capacity presented more of a
challenge for the DQN agent.

Based on the trajectory of total reward during training, the DQN agent was able
to successfully terminate the outbreak (Figure 3.8). However, there is increased vari-
ation in the trajectory of total reward, even after smoothing with a moving average,
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Figure 3.8: Smoothed total reward trajectory for second case study over 10,000 episodes of training.

compared to the total reward trajectory in the first case study. This is due to the
higher degree of stochasticity of the outbreak caused by the increase in transmission
and decrease in daily culling capacity. Even if the DQN agent implemented the same
set of actions in two realizations of the disease outbreak, the outbreak progression
between those two instances may be vastly different. Despite this, the trajectory of
total reward continued to increase over the course of training. Also notice in Table
3.5 that there were some outbreak resurgences (mean = 1, 95%CI = (1, 2)), in com-
parison to the first case study. However, this phenomenon was expected due to the
complexities of this decision problem compared to the first case study.

Figure 3.9 illustrates an instance of the sequence of actions suggested by the
DQN agent, after 10,000 episodes of training. Each of the orange points represents
an exposed farm. Recall that although we are working with an SEIR compartment
model, the DQN agent only receives labels regarding if a farm is susceptible to the
disease, infected, or culled/no farm, and the agent needs to determine what these
labels mean. The DQN agent never received information regarding whether or not
a farm was exposed, because this information was not available in the state. In a
realistic setting, decision-makers will not know if cattle are exposed to the disease,
they will only know if the cattle are infected. This presents an additional feature that
the DQN agent had to learn: exposed farms will eventually become infected. Figure
3.9 illustrates that some exposed farms and susceptible farms were culled. In some
cases the DQN agent correctly predicts which farms were exposed and culls them.
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Figure 3.9: One instance of how DQN agent optimally terminates outbreak for case 2 after model
is trained. Every other panel represents an action (represented by the red x’s). After an action is
implemented the outbreak evolves, represented by the remaining panels.
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In some instances, the DQN agent calculates a higher utility in culling a susceptible
farm than an infected farm (7th and 15th panels in Figure 3.9). This result could be
sensitive to the amount of training. I pre-specified number of episodes for training.
To investigate if management differences were based on different numbers of episodes
of training, I performed a sensitivity analysis.

Figure 3.10: Sensitivity analysis for second case study based on different durations of training.
Top left panel illustrates trajectory of training, with moving average of total reward on the y-
axis. Horizontal black line represents the maximum total reward obtained from training for 20,000
episodes. Top right panel presents the total reward collected from 2,000 episodes of testing. Bottom
left panel presents the number of cows saved after 2,000 simulations of testing. Bottom right panel
presents the number of farms culled after 2,000 simulations of testing.

I originally trained the DQN agent in this case study for 10,000 episodes, which
took about half a day to run in serial. To assess sensitivity to stopping criteria, I
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trained the DQN agent separately for 20,000 and 30,000 episodes (which took a day
to run in serial, and a day and a half to run in serial, respectively) with all other
Q-learning and convolutional neural network parameters remaining the same. The
results of this sensitivity analysis are presented in Figure 3.10. The top left panel of
Figure 3.10 presents the moving averages of total reward under each stopping criteria.
When the DQN agent was trained for 20,000 episodes, the trajectory begins to plateau
but there is a higher degree of variation toward the end of training. When the DQN
agent was trained for 30,000 episodes, the total reward was never higher than that
of the total reward from 20,000 episodes of training, represented by the horizontal
black line. In addition, under 30,000 episodes of training there was a high degree of
instability in the last 10,000 episodes of training. The total reward oscillated between
-2000 and 2000. After each DQN model was trained, 2,000 simulations of testing
was implemented. Referring to top left panel of Figure 3.10, the histograms of total
reward for 10,000 and 30,000 episodes of training were very similar. Decomposing the
elements of total reward into: number of farms culled (bottom right panel), total cows
saved (bottom left panel), and number of outbreak resurgences (average # outbreak
resurgences: 1, 95%CI (0,2) for all three stopping criteria) the results from 10,000
and 30,000 episodes of training were still very similar. The proportions of susceptible
farms, exposed farms and infected farms culled over the course of 2,000 simulations of
testing are presented in Table 3.1. Under more episodes of training, there is a small
decrease in the number of susceptible farms are culled, resulting in more infected
farms culled.

Iterations of Training Susceptible Farms Exposed Farms Infected Farms
10,000 21 (7, 41) 18 (9, 31) 61 (45, 73)
20,000 12 (4, 23) 16 (11, 25) 72 (59, 81)
30,000 19 (6, 38) 18 (9, 29) 64 (48, 74)

Table 3.1: Proportions of susceptible, exposed, and infected farms culled over 2,000 simulations of
testing. The results are presented as average proportion (95% confidence interval).

The results from 20,000 episodes of training generated worse outcomes in compari-
son to the other two stopping criteria. The total reward was generally lower, and more
farms were culled overall. This sensitivity analysis highlights one of the challenges
of using DQN, high sensitivity to hyperparameter values. Sprague (2015) illustrates
this point as well in an investigation to train a DQN agent to play the Atari 2600
games. Different values of step size and discount rate were separately used to train a
DQN agent and the resulting total reward trajectories were were highly sensitive to
choices of hyperparameters.
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DQN successfully halted the FMD outbreak under the conditions specified for the
second case study. The management objectives were successfully met with a small
number of episodes of training. I performed an additional sensitivity analysis to assess
the use of a "no action" management option. Decision-makers may want to have a
choice to wait and see if there are additional infections, rather than cull non-infected
farms.

3.4.3 Case 2: Investigating the "no action" management option
In this section I investigated the use of a "no action" management option for

the second case study. The results of the second case study illustrate that, in some
instances, the DQN agent found a higher utility in culling susceptible farms over
exposed or infected farms. It may be possible that the DQN agent was waiting to
see if more infected farms arose, by means of culling susceptible farms. Recall, there
was a higher negative reward for the DQN agent incorrectly assuming the outbreak
was terminated, -500 reward, versus -100 reward for culling a single farm. Thus,
in this section I evaluated the utility of taking no action over culling non-infected
farms. The choice to not cull a farm had the same reward as culling a farm at a
given time point. It should not be assumed a priori that no action is preferable over
culling a farm, this would be determined through training the DQN agent. Under this
construction, the action space changed to {1, 2, 3, ..., N,N + 1} to accommodate the
additional action of doing nothing. The no action management option was limited
to six consecutive times. This constraint accommodated the five-day latent period
of the FMD outbreak. If the DQN agent chose to do nothing six consecutive times,
I then forced the agent to choose another action in the next time step because new
infections would arise. All other states, rewards, and hyperparameters remained the
same as the second case study.

Based on the trajectory of training in Figure 3.11, using a no action management
option resulted in slightly slower learning. This was expected because when the
agent chose to do nothing, it still received a -100 reward. This caused the agent to
reach a total reward lower than -3,000, the minimum total reward when a no-action
management option was not considered. One distinct feature of Figure 3.11 is that
the total reward trajectories are nearly similar toward the end of training. Once the
DQN agent under the no-action scenario was trained, I performed 2,000 simulations
of testing. A closer examination of the frequency chart of no action revealed the
reasoning behind the similar tail-end behavior of the total reward trajectories. Table
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Figure 3.11: Case 2: trajectory of training represented by total reward, over 10,000 episodes with a
no action management option (green) to without a no action management option (purple).

3.2 illustrates that in 2,000 simulations of testing, no-action was chosen less than 30
times across all of the epochs of 2,000 simulations of testing. These results suggest
that there is very little additional value in choosing to do nothing as opposed to
culling non-infected farms. For this reason, I did not implement a no-action option
in the succeeding two case studies.

# Times No Action was used
within a simulation Frequency

0 1993
1 1
2 0
3 3
4 0
5 1
6 2

Table 3.2: Frequency chart of the number of times no action was chosen within a simulation of
testing

3.4.4 Case 3: Identifying "bridging" farms
In the third case study, I targeted a specific feature of disease spread, network

structure. Network structure refers to how individuals in a community are connected
to each other. For example, suppose that a community consisted of three individuals:
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A, B, and C. If individuals A and B came into frequent contact, then it could be
concluded that A and B are connected. If individual C never had the opportunity to
meet individuals A or B, then it could be concluded that C is not connected in the
community. Salathe and Jones (2010) exploited network structure to trace disease
spread using friendship data collected from Facebook. They found that targeting indi-
viduals that "bridge" communities was more effective than targeting highly connected
individuals, i.e.- individuals that were in contact with many others. In this third case
study, I used bridging farms to incorporate an inherent network structure. Figure
3.12 illustrates the initial state. These quantities were also uniformly distributed be-
tween 25 and 500 as in the first and second case studies with a total of 7922 cows
in the entire space. The two farms in the middle of the grid space, not belonging to
either cluster of farms, are the bridging farms that connect the two clusters of farms
in the corners of the 10× 10 kilometer space. To accommodate the bridging farms, I
implemented an additional constraint to the transmission kernel. The upper cluster
of farms could only become infected if either of the bridging farms became infected.
This emphasized the behavior of the two farms "bridging" the two clusters of farms.

Figure 3.12: Initial state for case 3. Dot sizes reflect the number of cattle at a farm.

A cow’s transmissibility of the disease and the transmission kernel were the same
as in the second case study. This case study also had the same daily culling capacity
constraints as the second case study: all of the cattle at any one farm could be culled
per day. This presented an additional challenge to the DQN agent. Similar to the
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second case study, there would be more exposed farms due to the conservative daily
culling capacity. Thus, the DQN agent had to learn that exposed farms were going
to become infected. In addition, the DQN agent had to learn the specific disease
dynamics: if one of the bridging farms became infected, then the upper cluster of
farms would begin to observe infections.

Figure 3.13: Smoothed total reward trajectory over 10,000 episodes of training, for third case study.

After 10,000 episodes of training, the DQN agent was successfully trained. Figure
3.13 shows the trajectory of total reward over the 10,000 episodes. The trajectory
begins to plateau, suggesting that the training has begun to stabilize. Just as with
the first and second case studies, the DQN agent began its training by culling nearly
every farm, and over time the agent learned to behave in a manner that met all of
the objectives.

Figure 3.14 illustrates an instance of the best sequence of actions determined by
the trained DQN agent. The bridging farms were not immediately culled, the first
bridging farm was culled on the third day. After the bridging farms were culled,
the DQN agent focused on culling the exposed and infected farms in the lower clus-
ter. Once the DQN agent was trained, I performed 2,000 simulations of testing. On
average, two susceptible farms were culled within a simulation (95%CI (1,2)), three
exposed farms (95%CI (2,3)), and ten infected farms (95%CI (8,12)). Similar to the
second case study, in some instances the DQN agent calculated a higher value in
culling susceptible farms over infected farms, refer to the fifth panel in Figure 3.14.
In all 2,000 simulations, the outbreak never spread to the upper cluster of farms. This
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Figure 3.14: One instance of how DQN agent optimally terminates the outbreak for case 3 after
model is trained. Every other panel represents an action (represented by the red x’s). After an
action is implemented the outbreak evolves, represented by the remaining panels.
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case study illustrates that the DQN agent successfully met the management objec-
tives, represented by the stabilization of training, while learning about the network
structure of the farms. This third case study could easily get more challenging. For
example, rather than include two clusters of farms, one cluster of infected farms could
be bridged to many other clusters of susceptible farms. In addition, the transmission
kernel could be relaxed to allow farms in other susceptible clusters to observe infec-
tions without the bridging farms needing to become infected first. This third case
study suggests that the DQN agent could be successfully trained to accommodate
these types of future examples.

3.4.5 Case 4: Scaling
In the fourth case study, I investigated DQN under a larger FMD decision problem.

In the previous three case studies, there were 30 farms under consideration. In this
case study, I attempted to terminate the outbreak with 120 farms. Because more
farms were considered in this case study, the size of the landscape increased to 15×15
kilometers. Each grid square still had the same dimension, 1 × 1 kilometers, as in
the previous case studies. The number of cattle per farm was uniformly distributed
between 25 and 500 as as with the previous case studies, with a total of 33,638 cows
in the entire space. In addition, in this case study, I used physical landscape features
to influence the positioning of farms. In the United Kingdom lakes, rivers, and large
highways are some examples of physical landscape features that separate farms into
clusters. Figure 3.15 provides an illustration of the initial state. Notice that the farms
are separated into clusters, however, not as distinct as the clusters of farms in the
third case study. The gaps between the clusters of farms, were intentionally placed to
represent some of the aforementioned physical landscape features. The initial state
in this case study has two clusters of infected farms. This reflects the initial state of
the 2001 United Kingdom outbreak. By the time the outbreak was detected, infected
livestock had already been transported to different areas of the United Kingdom,
resulting in several foci of infection (Gibbens et al., 2001).

The transmission kernel denoted in Equation (3.4) was adjusted from the kernel
used in the previous three case studies, to reflect a less random spread of infection,
with constraints reflecting those used by Keeling and Rohani (2007). Figure 3.16
illustrates the transmission kernel behavior for this case study and the three previous
case studies. There was a higher chance for closer farms to become infected under
the kernel used for the fourth case study. However, the kernel used in the three
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Figure 3.15: Initial state for fourth case study. Dot sizes are proportional to the number of cattle
at the farm.

previous case studies assigned almost equal probability to farms becoming infected
regardless of distance. Thus in the previous case studies, it was not uncommon to
observe infections that were far from the index infected farm. This previous kernel
created a challenging environment for the agent to learn, because the outbreak was
more unpredictable. While this may still happen in the fourth case study, it is not as
likely. The kernel used in the fourth case study presents a more realistic transmission
kernel. A cow’s susceptibility to the disease, s, and a cow’s transmissibility of the
disease, τ , were both decreased to 4.9 × 10−6 to allow for more gradual spread and
a chance for an intervention to take place during the outbreak. The previous rates
of susceptibility and transmission would have caused the outbreak to progress too
quickly, rendering an intervention ineffective. Because the number of farms in this
case study increased by a magnitude of four, to 120 farms, the daily culling capacity
was also increased. Each day, it was assumed there were resources to cull all of the
cattle at any five farms.
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K(distance) =

 0.3093 distance < 0.0138
1

π(1+distance) otherwise
(3.4)

Figure 3.16: Transmission kernels used for each case. The blue line represents the transmission
kernel used in the first three case studies, and the green line represents the kernel used in the fourth
case study.

Figure 3.17: Smoothed total reward trajectory over 8,000 episodes of training, for fourth case study.
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I trained the DQN agent for 8,000 episodes (Figure 3.17). Notice that the total
reward continues to increase over training, but does not distinctly plateau as with the
first and third case studies. This behavior is expected because of the complexity of
the decision problem. This case study and the second case study were not targeting
specific features of the outbreak, i.e. - the farm that could be left to cull on the
second day of management (first case study), or identifying bridging farms (third
case study).

Figure 3.18: One instance of how DQN agent optimally terminates the outbreak for case 4 after
model is trained. Every panel represents the state after five culls. The states after evolutions are
not included. The S, E, I at the top of each panel represent the number of susceptible, exposed, and
infected farms culled during that day.

Figure 3.18 presents the sequence of culling actions the trained DQN agent thinks
is optimal. Each panel presents the five farms to be culled, and is annotated by the
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types of culls: susceptible (S), exposed (E), and infected (I). Some panels do not have
five farms culled (refer to the 12th, 15th and 16th panels) because the agent assumes
the outbreak is completed. There is a high degree of susceptible farms culled. In
2,000 simulations of testing, on average 48 susceptible farms were culled within a
simulation (95%CI (29, 75)), 9 exposed farms (95%CI (4, 14)), and 31 infected farms
(95%CI (20, 44)). Particularly noticeable from these results was the large number of
susceptible farms culled compared to infected farms. This was investigated further
through hyperparameter tuning.

Many of the DQN and decision environment components were tuned: immediate
reward structure, daily culling capacity, experience replay size, batch size, learning
rate, episodes of training. The results of the last four listed components are presented
in Figure 3.19. In each panel, the value of one hyperparameter was changed with all
other hyperparameters fixed at the values listed in Tables 3.6 and 3.7 in Appendix B.
One of the immediate responses to improve DQN performance is more training. In
the top left panel of Figure 3.19, I trained the DQN agent for 8,000, 10,000, 20,000
and 50,000 episodes (which took 2 and a half days, 3 days, 6 and a half days, and two
weeks to run in serial, respectively). Interestingly, the DQN agent performed best
under the least amount of training. These results could be influenced by the lack of
exploration and becoming trapped in local minima. Bent et al. (n.d.) suggest that
modifications to experience replay size and batch size can assist with exploration. The
top right and bottom left panel present these results under 8,000 episodes of training.
The experience replay size and batch size used to generate the previous results (2,500
and 36 respectively) generated the best total reward trajectories. Similar results
were obtained when varying both the number of episodes and experience replay size
or batch size. I also decreased the learning rate to allow the DQN agent to more
gradually explore the space, and not be trapped in local minima. However, according
to the trajectory in the bottom right panel, the decrease in learning rate did not
improve the trajectory of training. Similar results were obtained with an increase in
the number of episodes and a lower learning rate.

I also increased the daily culling capacity to seven farms per day, in an attempt
to construct a policy which culled a smaller number of susceptible farms. Culling
five farms per day may not have been sufficient enough to keep up with the spread
of the outbreak. In an attempt to increase speed in computations, I scaled the
immediate reward structure. Rather than penalize the DQN agent with 100 points
for culling a farm, it received -1 points. Similarly, the agent received -5 points for
incorrectly assuming an outbreak was finished as opposed to -500 points. The terminal
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Figure 3.19: Trajectory of total reward based on hyperparameter. Top left panel changes the number
of episodes of training, with all other parameters fixed. 8,000 episodes of training performed best,
so that was chosen. Top right panel changes the size of the experience replay deque with all other
parameters the same. 2,500 performed best, so that was chosen. Bottom left panel changes the batch
size with all other parameters fixed. Batch size 32 performed best, so that was chosen. Bottom right
panel changes the learning rate with all other parameters fixed. A learning rate of 0.0001 performed
best, so that was chosen.

reward, of number of cows saved, was also scaled by 100. After many iterations
of hyperparameter tuning, the best outcome was generated with 20,000 episodes of
training, with all other hyperparameters unchanged (unfortunately, the time taken
to train the agent in serial did not severely change from three days). Figure 3.20
illustrates the reward trajectory during the 20,000 episodes of training. There is a
large increase in rewards during the end of training. A closer inspection of this showed
that in some episodes, the agent chose to cull eleven to thirteen farms to halt the
outbreak. However, there is a high degree of variation, the rewards towards the end
of training range from -100 to 150. Figure 3.21 presents an instance of the suggested
sequence of actions from trained DQN agent. The first two days of management show
promising results; all of the infected farms are culled. However, on the seventh day of
management, represented by the third panel, many susceptible farms are culled. This
behavior continues, and nearly all of the farms are culled by the end of management,
represented by the sixth panel. Thus increasing the daily culling capacity, even with
additional hyperparameter tuning, does not improve DQN performance for the fourth
case study.

This case study has illustrated another DQN challenge, management with a larger
decision problem. There is a higher degree of state variation compared to the previous
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Figure 3.20: Trajectory of total reward after truncating rewards for fourth case study. There is a
large increase in the trajectory towards the end of training, suggesting favorable behavior, however,
the variance is very high.

case studies due to the larger number of farms. This may be addressed through more
training, which would require parallel computing.

3.4.6 Case 4: Sensitivity Study
I made two modifications to the fourth case study to further investigate DQN

performance in larger decision problems. The first modification was to simplify the
decision problem. The first three case studies suggested that DQN could excel in
managing FMD outbreaks. Thus, I used the same decision environment components
and hyperparameter values in this modification to the fourth case study. The initial
state is presented in Figure 3.22. There were 60 farms under consideration, as opposed
to 30 in the first three case studies. There was also a more conservative daily culling
capacity, all of the the cattle at any one farm could be culled, similar to the criteria
of the second and third case studies. The transmission kernel was the same as the
first three case studies, but a cow’s susceptibility and transmissibility to the disease
were decreased to 3.5×10−5. Recall, if these parameters are too high, then it may be
impossible to implement an intervention to terminate the outbreak. All other DQN
hyperparameters were unchanged from the original fourth case study.

I trained the agent under many combinations of hyperparameters to optimize
performance. The results of training under 10,000 and 20,000 episodes, with all
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Figure 3.21: The first few actions suggested by the DQN agent when the daily culling capacity is
increased. Notice that the DQN agent has found good beginning behavior, al of the initial infected
farms were culled in the first two days of management. However, the DQN agent manages poorly
the rest of the time, and by the end of management, nearly all farms are culled.

of hyperparameters unchanged from the original fourth case study are presented in
Figure 3.23. The left panel, with 10,000 episodes of training illustrates an early
plateau with negative rewards. In an effort to determine if more training is needed,
20,000 episodes of training was implemented. However, the total reward trajectory
continued to be negative and plateau at a negative total reward. This suggests that
the DQN agent was not able to learn effectively and meet the management objectives.
Although the agent was successfully able to halt the outbreak in the second and third
case studies, it was not able to do the same in a larger decision problem.

I also investigated a second modification to the fourth case study. Based on
the sequence of actions illustrated in Figure 3.18, there were many susceptible farms
culled that were far away from the majority of the infections. This could be attributed
to the fact that, using the kernel in Equation (3.4), it was possible for farms farther
away to become infected. Thus this modification to the fourth case study investigated
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Figure 3.22: Initial state of modified version of fourth case study. 60 farms are used as opposed to
120.

Figure 3.23: Total reward trajectory for the modified fourth case study, with 60 farms. The trajectory
in the left panel is from 10,000 episodes of training, and the right panel is from 20,000 episodes of
training.
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DQN under a different transmission model. In the new transmission model, I scaled
Equation (3.4) by 0.025, resulting in a lower risk for farms farther away to become
infected. All other decision environment components (initial state, 120 farms in the
space, five farms could be culled per day, etc.) and hyperparameter values were
unchanged from the original fourth case study.

As with the previous modification to the fourth case study, I trained the agent
under many combinations of hyperparameters to optimize performance. The results
of training the agent under 20,000 and 50,000 episodes, with all of hyperparameters
unchanged from the original fourth case study are presented in Figure 3.24. In the left
panel with 20,000 episodes of training, the total reward trajectory gradually increases
to a total reward of about 20,000 and begins to be unstable. There is a high degree
of variation in the total reward for the remainder of episodes. To investigate if more
training was needed, 50,000 episodes of training was implemented, and the same
results were observed. This high degree of variation also resulted in a poor optimal
policy. Upon testing the trained DQN agent in each instance, nearly every farm was
culled. This large variation in training could be attributed to the high degree of
stochasticity of disease spread in the landscape. In some instances, there were not as
many additional infections. However in other instances, there were a large number of
additional infections. In addition, the DQN agent still chose to cull a large number of
susceptible farms that were farther away from the primary congregation of infections.
This was further investigated by adjusting the immediate reward structure.

Figure 3.24: Total reward trajectory for the modified fourth case study, with a less sporadic disease
spread. The trajectory in the left panel is from 20,000 episodes of training, and the right panel is
from 50,000 episodes of training.

A -1000 reward was added for an agent culling a farm that was at least five
kilometers away from any infected farm. This negative reward would ideally encourage
the DQN agent to cull farms that were closer to the primary congregation of infections.
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Recall that because the transmission kernel was scaled in this second modification to
the fourth case study, I would not expect farms farther away to become infected. The
total reward trajectory under 20,000 episodes of training is presented in Figure 3.25.
There is a gradual increase in rewards during training, as with Figure 3.24, and a
large degree of variation after about 5,000 episodes of training. While there are times
that the agent achieves high rewards during training, there are also many times where
the agent achieves very negative rewards during training.

Figure 3.25: Total reward trajectory for the modified fourth case study, with a less sporadic disease
spread and an additional negative reward for culling farms at least five kilometers away from any
infected farm.

Figure 3.26 presents an instance of the first ten days of the suggested sequence
of actions from the trained DQN agent. The sequence of actions suggested in the
beginning of management suggests that the DQN agent understood this new objective.
Many of the culled farms were close to the index infected farms. However, the DQN
agent is unable to identify exposed farms and cull them, and instead culls susceptible
farms that are close to the index infected farms. This sensitivity analysis to the fourth
case study illustrates the challenges of using DQN to manage a larger decision space.
Even with more training, and hyperparameter tuning the agent is unable to halt the
outbreak while meeting the objectives. However, the agent was able to successfully
meet a very specific objective of culling farms that were close to infected farms.
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Figure 3.26: An instance of the suggested actions from the DQN agent for the 2nd modified fourth
case study with the additional negative reward for culling farms at least five kilometers away from
any infected farm. The last panel presents the final state after management. Notice the promis-
ing behavior at the beginning of management, farms close to the index infected farms are culled.
However, the agent is not able to keep up with the outbreak with its policy.
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3.5 Challenges of Deep Q-Networks
3.5.1 DQN Parameter Selection

There are two main components to DQN: Q-learning and CNN. Both components
require choices to be made a priori about the value and/or functional form of hyper-
parameters. Some of the primary hyperparameters involved in Q-learning and CNN
are provided in Tables 3.3, and Table 3.4 respectively. Selection of hyperparameters
may affect DQN performance. For example, it is strongly recommended to imple-
ment target network updating to improve stability and prevent divergence (Mnih
et al., 2015). This was not implemented in the first case study due to the simplicity
of the decision problem. However, the other three case studies implemented target
updating during training. Figure 3.27 illustrates the differences in the trajectory of
total reward over 10,000 episodes of training with and without target updating, in
the second case study. When target updating is not used, the total reward trajectory
plateaus at a lower value earlier on in training. This one binary decision, with all
other hyperparameters unchanged, can result in a sub-optimal final policy.

Hyperparameter Description
Immediate reward function Immediate reward for taking action a from state s at time t
Initial and final ε Initial and final value of ε in ε-greedy algorithm
Epsilon decay function Function describing how epsilon decays with each time step
Experience replay start size #times policy is run before experience replay begins
Experience replay memory size #sample stored with each experience replay
Target network update frequency #times target network is matched with current network
Discount rate Degree of important of long/short term rewards
Stopping criteria Criteria to stop training

Table 3.3: Parameters to Tune in Q-learning/ DQN

One of the most important decisions with DQN is input specification. Input fea-
tures are typically chosen a priori with guidance from domain knowledge. States
in a decision problem represent a decision-maker’s belief of which inputs are most
important for the agent to learn about. However, DQN will only achieve good perfor-
mance if it is provided with informative features to train upon (Boone, 1997). In this
investigation, I constructed the state using an image pixelated by farm-level infection
statuses, inspired by the RGB values typically used in CNN. However, this choice of
just using farm-level infection status may have limited the DQN agent’s ability to
learn more about the decision space. One extension to this state space could be to
have each value within each pixel on a continuous spectrum. Each pixel could contain
a risk value of infection determined by other farm level parameters, such as area of
a farm, or number of cattle at a farm. The DQN agent may need more episodes
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Figure 3.27: Trajectory of total reward over 10,000 episodes of training for the second case study.
The trajectory without target updating is in blue, with target updating is in red. Notice the early
plateau without target updating.

Hyperparameter Description
Inputs Features to describe state space
# hidden layers # times nonlinear transformations occur on input
#nodes in dense layers #variables in linear combination
#filters in convolutional layers #features to be extracted
Patch size Dimensions of window in a convolutional layer
Activation function Function (linear/nonlinear) to transform previous layer of data
Mini batch size #samples for model fit
Learning rate Rate of abandoning old beliefs
Optimizer Process used to search parameter space
Epochs #times sample is forward and backwards propagated

Table 3.4: Parameters to Tune in CNN

of training to explore the wide range of state values, but may ultimately generate
different and potentially better policies due to the increase in information.

Parameter selection in deep reinforcement learning methods is still understudied.
Mnih et al. (2015) mentioned that, in their study, the hyperparameters were selected
by performing an informal search, and a systematic grid search would result in high
computational costs. Referring to Tables 3.3, and 3.4, there are many hyperparame-
ters to tune, and this excludes searching for a proper functional form of continuous
hyperparameters. This investigation used an informal hand-tuning method for the
first case study, and similar hyperparameters as Mnih et al. (2015) for the remaining
case studies. The choices of hyperparameters are presented in Tables 3.6 and 3.7 in
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Appendix B. Manual parameter tuning is highly subjective. It is almost guaranteed
that if two individuals were given the same initial data, the final tuned models would
be very different due to the large number and functional forms of hyperparameters.
The alternative to manual tuning and grid search methods are formal optimization
methods. There have been some advances in optimizing neural network hyperpa-
rameters, such as using genetic algorithms or expected improvement in Gaussian
Processes (Fridrich, 2017; Bergstra et al., 2011). However, these approaches have not
been implemented in a DQN environment.

3.5.2 Real Outbreaks
One distinguishing characteristic of this study was the use of a grid to create

"pixels" of a given image of the outbreak. This study never used more than a 15× 15
grid, or 225 kilometers2. Recall, that the number of pixels to use was determined by
ensuring there was no more than one farm per pixel, or grid square. This allowed for
the agent to gain spatially explicit information from each pixel of the image, by means
of farm-level infection statuses. While I have shown that the agent was able to meet
all of the objectives given this input, overlaying a grid on a realistic landscape may
not be as straightforward. For example, Cumbria, a county in the United Kingdom,
was severely affected during the 2001 United Kingdom FMD outbreak. It also has
a land area of about 6,767 kilometer2. This area is significantly larger that those
investigated in this study, and would thus require more grid squares. However, an
increase in grid squares results in a larger matrix to be interpreted by the DQN agent.
In a previous study by Chavez et al. (2015) it was determined that the frame width
of an image had a quadratic relationship with run time in CNN calculations. Thus
larger matrices may result in computational complexities. This could be addressed
using parallelization approaches, discussed in another section.

Due to the size of the United Kingdom, and the computational limitations of the
number of pixels that can be used in this method, each pixel in the overlaid grid
may not be able to capture at most one farm. DEFRA (2011) conducted a census
in 2000 regarding the number of cattle in the UK. Even after using 5 × 5 kilometer
grid squares to represent density of cattle, each grid square captured information
from more than one farm. This is one of the tradeoffs of using this method on a real
landscape. Rather than use spatially explicit information on a farm-level, spatially
explicit information may need to be obtained on a land area level. The process
would still begin by dividing the area of interest into grid squares, to the extent
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of computational resources available. Each grid square would represent the number
of cattle that were infected in that particular land area. Or, using the extension
mentioned in the previous section, each grid square could represent the risk of that
particular land area observing an infection.

One approach to potentially decrease computational complexity could be to coarsen
the grid to allow for more than one farm per pixel. The action space, and decision
environment would then need to be modified. Rather than calculate the expected
utility for culling a single farm, the expected utility would need to be calculated for
culling all of the farms in a given grid square. A decision-maker would need to de-
termine a priori if regional-level interventions would be economically and practically
sufficient to terminate the outbreak.

3.5.3 Generalizability
The goal of this investigation was to implement DQN to halt a FMD outbreak, by

specifically using the dynamics of the 2001 United Kingdom FMD outbreak. However,
this method can be generalized to any type of disease or disease dynamics. The key
element to implement this method to a different historical FMD outbreak or to a new
disease entirely, is the disease dynamics. Disease dynamics can be decomposed into
two main components: the disease transmission model, and the compartment model.
The disease transmission model generates a new state after an action(s) has been
implemented. The more accurate the transmission model, the more reliable the final
policy will be to the decision-maker. A rigorous transmission model for the 2001 UK
FMD outbreak provided by Keeling and Rohani (2007), was used for this study.

The state space is also affected by the disease dynamics. In this investigation, the
disease progression followed an SEIR compartment model and the pixels represented
the observable statuses of the farms: susceptible to the disease, infected, or culled.
A culled farm was considered "recovered" in this study. It was assumed that a culled
farm would not be able to observe another infection. However, a different investigation
may consider implementing vaccinations, which would create another compartment
in the model. If a vaccination scheme was implemented in an FMD context, the new
compartment model would be SEITR, where T represents a "treated" compartment
(Brauer et al., 2008). The state would thus need to be modified to accommodate the
new compartment. In reality, vaccinations do not guarantee that an individual will
become recovered. Vaccinations reduce the risk of an individual becoming infected,
but it is still possible to observe infections. If a study were to use an SEITR model,
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the decision environment would need to incorporate the possibility that treated in-
dividuals could later become infected. Constructing a computational package to
implement this method to any disease may pose some challenges, due to the fact that
different disease dynamics can affect a decision environment very differently. It is
recommended to use the functions provided in Appendix A. to implement DQN, and
manually construct the decision environment based on the disease dynamics.

This method may present some challenges in generalizing policies to any initial
state, given the disease dynamics. Recall that in this investigation, I fixed the initial
state and overfit the final policy to that initial state. This was intentionally done
because in practice, a decision-maker would provide the current status of a disease
outbreak and request the best sequence of actions. However, in the instance where
disease monitoring can occur and updates in state information is received, it may be
more useful to have a policy that does not depend on the initial state. As previously
mentioned, DQN may require many iterations of hyperparameter tuning for optimal
performance. Having to do this every time new data is collected would be impractical.
However, generalizing this method to any initial state may require more episodes of
training and potentially, a more complex CNN. Figure 3.28 illustrates the total reward
trajectory for the first case study when the initial state is fixed, and when the initial
state changes from episode to episode, and all other hyperparameters are unchanged.
The total reward trajectory is nearly constant when the initial state changes from
episode to episode, compared to the fixed initial state scenario. Neural networks
traditionally require a large amount of data for optimal performance. Le (2013)
constructed a neural network to recognize faces using image data from YouTube
videos. 10 million images were required to train this neural network on a completely
different test set. For this reason, if the initial state changes with every episode of
training, more data and thus more computational resources may be required to train
the DQN agent.

3.5.4 Scaling
The fourth case study revealed another limitation of using DQN to halt disease

outbreaks: the larger the decision problem, the less likely the agent will be able
to successfully meet management objectives. Increasing the number of farms by
a magnitude of four, resulted in poor performance. In an attempt to make the
decision problem easier for the agent, by reducing the number of farms, and changing
the outbreak spread to be less sporadic, the agent was still unable to learn. An
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Figure 3.28: Trajectory of total reward over 1,200 episodes of training for the first case study. The
trajectory when the initial state is changed at the beginning of every episode is in blue, and the
trajectory when the initial state is fixed at the beginning of every episode is in red. All other
parameters are exactly the same. Notice the lack of improvement in the trajectory when the initial
state changes with every episode.

intuitive solution to this problem would be to train the agent for a larger number of
episodes. Recall that DQN involves a Q-update, i.e. updating the expected reward
based on: the immediate reward obtained from visiting the most recent state, and
an estimate of the expected reward for the next state using the current model. Due
to this architecture, DQN is serial in nature. Thus serially training an agent for a
larger number of episodes would present some challenges on run time. Chavez et al.
(2015) explored a parallelization alternative for DQN, involving Downpour stochastic
gradient descent. This process involves an omniscient parameter server that stores a
global copy of the DQN model. It also has "worker nodes" to perform the following:

1. Get the most updated model from the parameter server

2. Use model to generate an action

3. Update local model using stochastic gradient descent

4. Deliver the updated local model to the omniscient parameter server

Chavez et al. (2015) used this parallelization method with two worker nodes to
train a DQN agent to play the Snake game in Python. The DQN agent was able to
meet objectives much faster than a serial approach. However, if this parallelization
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method was used in disease outbreak management with many farms, then more worker
nodes would be required. This could potentially create bottlenecks in communication
between the worker nodes and the parameter server. Furthermore, worker nodes may
be using outdated models due to those bottlenecks in communication, i.e. gradient
staleness.

Another contributor to longer run time in a larger decision problem is model
complexity. Chavez et al. (2015) suggests that complexity is O(d2Fk2N2LC+H2LB+
H2
dN) where d is frame width, F is frame count, k is patch size, N is patch count,

LC is convolutional layer count, H is node count, and LB is hidden layer count.
Frame width, d, in particular will be affected in a disease management problem with
a larger number of farms. GPU computation, or sparse matrix computation, could be
incorporated to speed up matrix computation for scenarios with larger frame widths,
i.e. - larger matrices.

3.5.5 High Variance
DQN also tends to have a high degree of variance during training, and thus the

final policy. Figure 3.29 illustrates the total reward trajectory of the first case study
under three different instances of training with all hyperparameters unchanged. Even
when all of the hyperparameters are the same, the trajectories can be very different.
The blue line represents the trajectory of the instance that was used in this analysis.
For each case study the training was implemented three separate times, and the
best trajectory was used in the analysis. Anschel et al. (2017) suggests that one of
the contributors to high variance is target approximation error, which refers to the
difference in the estimated expected reward and the true target. Some hypotheses
as to why target approximation error occurs is: estimation of CNN weights due to
inexact minimization, limited representation of a state via a CNN, and the finite size
of the experience replay (Anschel et al., 2017). For this reason, the results of DQN
should not be over-interpreted. The DQN agent may have a successful final policy
due to chance. Some methods have recently been investigated to reduce the high
degree of variance, such as averaged-DQN and double DQN (DDQN).

While DQN itself is known to have a high level of variance, there are also other
sources of randomness that may contribute to policy deviations. Firstly, the DQN
network weights are randomly initialized at the beginning of training. Secondly, this
algorithm is ε-greedy, meaning that actions are randomly selected an ε proportion
of the time. These choices of action will also change between instances of training.
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Figure 3.29: Trajectory of total reward over 1,200 episodes of training for the first case study. Three
separate instances of training was performed with all hyperparameters unchanged. The blue line
represents the total reward trajectory for the instance that was used in this study’s analysis. Notice
the other two instances of training resulted in very different trajectories.

Thirdly, recall that a random sample of N state, action, reward, new state obser-
vations are chosen from the experience replay deque to update the network weights.
Finally, the outbreak itself is stochastic. All of these components in addition to the
DQN’s inherent high variance behavior may require many instances of training to
estimate an optimal policy.

3.6 Discussion
Deep Q-networks have recently been used with high dimensional input data in

applications such as video games and robotics. This method has never been explored
in a disease management context, but I adapted the algorithm to do so in our study.
Traditionally, deep Q-networks are tasked with winning a game, as is the case in
video games. This idea of winning a game was evident in our study, where "winning"
corresponded to the agent successfully meeting all of the management objectives. I
have illustrated that deep Q-networks could be used in simple cases of disease man-
agement. However, there are some areas that would need further development before
implementation. As previously stated, optimal hyperparameter tuning, modifications
to accommodate real landscapes, generalizability, scaling, and high variance have all
illustrated some limitations to DQN.

Based on our findings, there are also many opportunities for further research.
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For example, parameter selection may be overwhelming for someone new to DQN.
There are many blogs regarding neural network and reinforcement learning parameter
selection. However, a synthesis of this information, and perhaps a flowchart of how to
make decisions on parameter tuning, may help individuals construct more informative
DQNs. In addition, there are computational issues associated with allocating a single
farm to a "pixel." Under this arrangement, a very large number of pixels would be
required for a real outbreak. Some approaches to this would be to coarsen the grid,
allowing for more farms to occupy a pixel, and possibly use a GPU to assist with
stochastic gradient descent computations on a larger matrix. A larger landscape
would also require more data to train the DQN. This presents an opportunity to
investigate parallelization in DQN training. Another area for potential future research
is exploration of a generalizable DQN to any disease outbreak. As previously stated,
our study aimed to generate an optimal policy for a given initial state. A more
flexible policy could be created, to prevent iterations of retraining as additional data
is collected. Because DQN is associated with many challenges, one might question
whether alternative methods such as epidemiological methods, or simpler models can
be just as effective. This question is investigated further in the next chapter.

75



3.7 Appendix A. Functions to implement DQN
def chooseAction(currentState,epsilon,original_farm_inds):

#########################
#currentState- flattened 2-D array of infection statuses

#currentState = 0, Susceptible
#currentState = 1, Infected
#currentState = 2, Culled/ No Farm

#epsilon- value of ε at given epoch
#original_farm_inds- indicies of non-culled farms
#########################
farm_mat = np.c_[list(range(N)),original_|farm_inds,

currentState[original_farm_inds]]
#Subset the farms that are not culled
sub_farm_mat = farm_mat[farm_mat[:,2] != 2]
#Choose your action
if np.random.rand() <= epsilon:

currentAction = np.random.choice(sub_farm_mat[:,0])
return(currentAction)

else:
# Size- number of grid square in 1-D
mat = currentState.reshape(Size,Size,1)
prediction = model.predict(np.array([mat]))
currentAction_ind = np.argmax(prediction[0][sub_farm_mat[:,0]])
#Make sure you cull a non-culled farm
currentAction = sub_farm_mat[:,0][currentAction_ind]
return(currentAction)

def train_replay(batch_size, discount_factor,state_size):
#########################
# batch_size- # samples to take from E
# discount_factor- degree of impact of future rewards
# state_size- Size**2
#########################
#No replay until E (memory) has at least train_start samples
if len(memory) < train_start:

return
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batch_size = min(batch_size, len(memory))
mini_batch = random.sample(list(memory), batch_size)
#Create lists of s,a,r,s’, episode done in batch
update_input, update_target,action, reward, done =

[], [], [], [], []
for i in range(batch_size):

update_input.append(mini_batch[i][0])
action.append(mini_batch[i][1])
reward.append(mini_batch[i][2])
done.append(mini_batch[i][3])
if len(mini_batch[i]) == 5:

update_target.append(mini_batch[i][4])
#Convert s, s’ from batch to numpy arrays
update_input = np.stack(update_input,axis=0)
update_target = np.stack(update_target,axis=0)
target = model.predict(update_input)
target_val = target_model.predict(update_target)
#Keep track of indices in lists, length s and s’ differ
else_counter2 = 0
for i in range(batch_size):

if done[i] == 1:
target[i][action[i]] = reward[i]

else:
#Perform the Q-update
target[i][action[i]] = reward[i] + discount_factor * np.amax

(target_val[else_counter2][inds_to_cull[else_counter2]])
else_counter2 += 1

model.fit(update_input, target, batch_size=batch_size, epochs=1)

def update_target_model(modelweights):
#########################
#modelweights- result of model.get_weights()
#########################
target_model.set_weights(modelweights)
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3.8 Appendix B. Additional results

Total
Reward

#Cows
Saved

#Farms
Culled

#Outbreak
Resurgences

Case 1 4737
(4737, 4737)

5336
(5336, 5336)

6
(6, 6)

0
(0, 0)

Case 2 502
(-1973, 2427)

2522
(878, 3727)

19
(13, 26)

1
(1, 2)

Case 3 3138
(2173, 3605)

4590
(3994, 4905)

14
(13, 16)

0
(0, 1)

Case 4 -97
(-9586, 10342)

9319
(2210, 16834)

86
(59, 110)

2
(0, 4)

Table 3.5: Results of 2000 simulations with each cell containing the average and the 95% confidence
interval.

Case 1 Case 2 Case 3 Case 4
Initial epsilon 1 1 1 1
Final epsilon 0.01 0.01 0.01 0.01
Epsilon decay function Exponential Linear Linear Linear
Experience replay start size 100 100 100 100
Experience replay memory size 500 2000 2000 2500
Target network update frequency N/A After every episode After every episode After every episode
Discount rate 0.99 0.99 0.99 0.99
#Episodes for training
(Stopping criteria) 1200 10000 10000 8000

Table 3.6: Q-learning parameter values for each case as specified by Table 3.3.

Case 1 Case 2 Case 3 Case 4
#Hidden layers 4 4 4 4
#Nodes in dense layers 55 155 155 155
#Filters in convolutional layers 15, 15, 30 32, 64, 64 32, 64, 64 32, 64, 64
Patch size 3x3 3x3 3x3 3x3
Activation function relu, linear relu, linear relu, linear relu, linear
Mini batch size 64 32 32 32
Learning rate 0.001 0.0001 0.0001 0.0001
Optimizer RMSprop RMSprop RMSprop RMSProp
Epochs 1 1 1 1

Table 3.7: CNN parameter values for each case as specified by Table 3.4
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CHAPTER 4

MANAGING THE 2001 UNITED KINGDOM FOOT-AND-MOUTH DISEASE
OUTBREAK: A COMPARISON OF METHODS

4.1 Introduction
Deep reinforcement learning (RL) methods have recently illustrated strong per-

formance in decision spaces with high dimensional input. In the field of robotics,
these methods have been successfully used to teach robots to perform simple tasks
such as walking or picking up objects (Schulman et al., 2016; Levine et al., 2016).
One particular deep RL method, deep Q-networks (DQN) is well-suited for image
data due to its use of convolutional neural networks (CNN). This method success-
fully trained DQN agents to play video games, such as Atari 2600 or Snake, using the
red, green and blue (RGB) values from screenshots of the game (Mnih et al., 2015;
Chavez et al., 2015; Sprague, 2015). While DQN has shown promise with high di-
mensional inputs, there have been several challenges with this method. For example,
DQN is composed of many hyperparameters, related to CNN and Q-learning, and all
need to be tuned to ensure optimal performance. In training a DQN agent to play
the Atari 2600 games, Mnih et al. (2015) mentioned that the hyperparameters were
selected by performing an informal search, and a systematic grid search would result
in high computational costs. Furthermore, choice of hyperparameter values can affect
the final policy. Sprague (2015) illustrated this point in a separate investigation to
train a DQN agent to play the Atari 2600 games. Different values of the step size
and discount rate hyperparameters were separately used to train a DQN agent, and
the resulting learning trajectories were highly sensitive to choices of hyperparameters.
In addition, DQN tends to have a high degree of variance during training and thus
the final policy. Anschel et al. (2017) suggested that one of the contributors to high
variance is target approximation error, which refers to the difference in the estimated
expected reward and the true target. Some hypotheses as to why target approxima-
tion error occurs are: estimation of CNN weights due to inexact minimization, limited
representation of a state via a CNN, and the finite size of experience replay.

These are only some of the challenges using DQN. Thus, one must question if
a simpler approach may yield similar or adequate results. In this investigation, I
extended the use of DQN to the management of disease outbreaks. I specifically
investigated management of the foot-and-mouth disease (FMD), which is a highly
transmittable disease that affects cloven-hoofed animals. The disease dynamics I
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used reflected those of the 2001 United Kingdom FMD outbreak, where over six
million cattle were culled in order to manage the epidemic. I compared the results
of management using DQN to simpler alternatives: culling farms at random, culling
only infected farms, and using a risk model to choose which non-infected farms to
cull in four separate case studies.

4.2 Overview of Deep Q-Networks
As with any reinforcement learning problem, DQN assumes that the decision

problem of interest follows a Markov decision process (MDP). An MDP assumes
that the decision only depends on the current environment and not on the path the
decision process had to take to arrive at the current environment. All reinforcement
learning problems require the objectives, states, actions, and utilities (also expressed
as rewards or losses) to be defined a priori. These components are combined in the
Bellman optimality equation which calculates the expected reward of being in state
s and executing action a.

Q∗(s, a) = Es′ [r + γmaxa′Q∗(s′, a′)|s, a] (4.1)

DQN combines Q-learning, as a means to explore the decision space and update
the expected reward, with CNN. As discussed in Chapter 2, methods to construct
optimal policies such as dynamic programming experience computational storage lim-
itations in large decision spaces. CNN serves as a function approximator for the ex-
pected reward, where the expected reward is stored in a function as opposed to a
large look-up table. In Q-learning, an agent uses Q∗ to choose an action from the
current state, resulting in a new state and the corresponding reward to be be observed
following the state dynamics that result from the decision. This information is used
in a Q-update, presented in Equation (4.2), to update the expected reward function
with the new information.

Q(s, a) = Q(s, a) + α[r + γmaxa′Q(s′, a′)−Q(s, a)] (4.2)

When the Q-update equation is combined with CNN, a new expected reward function
is expressed using, Q(s, a; θ) where θ represents the collection of convolutional neural
network weights. With each iteration of training, the squared error loss is calculated:

L(θ) = Es,a,r(Es′(r + γmaxa′Q∗(s′, a′; θ−))−Q(s, a; θ))2 (4.3)
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where θ− refers to the previous set of weights. Following the convolutional neural
network algorithm, partial derivatives of Equation (4.3) are calculated with respect
to θ, and stochastic gradient descent can be performed to update the network weights.

There are two additional components to the DQN algorithm that help with con-
vergence: experience replay and target updating. With experience replay, an agent
can experience the effects of taking actions with which the system has had experi-
ence. (Lin, 1993). This is accomplished by saving experiences (st, at, rt, st+1) from
each time step in a list, E of pre-specified length, N . Each time the convolutional
neural network is fit, a random sample of experiences from E is drawn, and is used in
the weight updating process. The list E contains only the N most recent experiences
to ensure the estimates are using the most relevant data. Consecutive experiences are
highly correlated, thus randomizing previous experiences reduces correlation in the
estimates of Q(s, a; θ) (Mnih et al., 2015). Target updating refers to using a separate
network for the target, Q(s′, a′; θ−). As previously described in Chapter 3, the target
network and the Q-network, for Q(s, a, θ), initially have the same weights, θ. The
Q-network weights are updated with each time step, while the target network weights
remain the same. After C time steps, the Q-network is cloned and equated to the
target network for the next C time steps. This method may require more episodes of
training, but can greatly improve the stability of training and prevent optimal policy
divergence (Lillicrap et al., 2016).

4.3 Methods
The 2001 United Kingdom FMD outbreak was managed using a combination of

culling infected premises and pre-emptive culling (Tildesley et al., 2009). However,
under limited resources, the decision problem requires an additional layer of com-
plexity, intervention prioritization. The FMD contingency plan published by the
Department for Environment, Food and Rural Affairs (DEFRA) currently addresses
a need to prioritize identification of the source of an outbreak, but there are currently
no guidelines specifying which premises should be prioritized to receive an interven-
tion (DEFRA, 2004). Previous studies have examined prioritization in pre-emptive
strategies, i.e. - reactive vaccination programs which identify contiguous premises
and direct contacts, or premises that would contribute most to future transmission
(Tildesley et al., 2006; Keeling et al., 2003). I explored four different methods to
construct a prioritization scheme regarding how farms should receive an intervention:
random culls, cull infected premises, a risk model using logistic regression, and DQN.
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All four methods required a six-day monitoring period to ensure that the outbreak
was terminated to account for the latent behavior of the disease. According to Keeling
and Rohani (2007), farms can experience a latent period of five days, where the live-
stock may not exhibit disease symptoms but will ultimately become infected. Thus
on the sixth day, it may be possible for farms to observe infections. If this event
happened in any of our simulates outbreaks, I resumed management of the outbreak.

4.3.1 Random Culls
Random culling is the simplest of the four investigated methods to simulate. For

each day of management I implemented the following process: if the daily culling
capacity is x farms, choose x non-culled farms at random to cull. This approach does
not consider any farm-level attributes such as the number of cattle at a farm, distance
to an infected farm, or even a farm’s infection status in the decision-making process.
Keeling et al. (2003) used random farm selection to simulate management of the 2001
United Kingdom FMD outbreak, and compared the results to other methods, e.g. -
intervene at the largest farms, intervene at infected premises, intervene at farms with
direct contact (DC) of infected premises, and intervene at farms near infected farms,
contiguous premises (CP). Of the explored interventions, random action yielded the
longest epidemics and the largest total number of infected farms. Motivated by these
results, I let random culling serve as a baseline to compare the performance of the
three other methods.

4.3.2 Cull Infected Premises
Previous research has examined prioritization of pre-emptive outbreak strategies,

however less is known about prioritizing interventions to infected premises. Keeling
and Rohani (2007) constructed an algorithm to simulate the 2001 United Kingdom
FMD outbreak, and there were two main contributors to a farm becoming infected:
the number of cattle at a farm, and the distance to an infected farm. Intuitively, the
more cattle there are at a farm, the more likely the farm is to become infected. Using
this intuition, I implemented a "cull-infected-premises" approach, where farms were
ranked based on their respective number of cattle. Every day in the management
process, I implemented the following steps:

1. Identify all of the infected farms

2. Rank the farms based on the number of cattle, regardless of when an infection
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was reported

3. If daily culling capacity is x, choose the x top-ranked farms to cull

4. Repeat steps (1) - (3) until there are no more infected farms for six consecutive
days

McLaws and Ribble (2007) conducted a survey of 24 FMD epidemics that occurred
between 1992 and 2003, and investigated the relationship between time to detection
and epidemic size. Time to detection was defined as the difference between the
estimated date of infection and the date the infection was reported. It was concluded
that there was no direct relationship between the time to detection and the epidemic
size, i.e. - the total number of infected premises or livestock culled. I assumed
there was no lag time between when the virus was contracted and when the infection
was reported in our simulated outbreaks. Furthermore, the findings by McLaws
and Ribble (2007) motivated the decision to rank farms based on number of cattle
regardless of when the infection occurred.

This method of ranking infected farms based on number of cattle has previously
illustrated better outcomes in comparison to a random action approach (Keeling et al.,
2003). However, this method may not be adequate to manage epidemics where the
rate of transmission is high (Woolhouse, 2003). Keeling et al. (2001) illustrated that
if only infected premises were culled, the 2001 United Kingdom FMD outbreak would
have been much larger. Pre-emptive measures of intervening at non-infected farms
may need to be combined with infected premises interventions to better manage the
outbreak.

4.3.3 Logistic Regression
I constructed a logistic regression model to determine which non-infected farms

were most at risk to become infected in the future. As previously discussed in Chap-
ter 2, regression is often paired with disease surveillance in the literature as a means
of pre-emptive disease outbreak planning. However, regression can also be used in
a decision analysis framework. We can easily calculate the immediate utility of a
control strategy suggested by the regression model. Logistic regression provides more
opportunity for inference and exploration of the covariate-outcome relationship in
comparison to a random culling approach or a cull infected premises strategy. In ad-
dition, logistic regression provides a simpler modeling alternative to our last method,
DQN.
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To account for the stochasticity of the disease spread, the data set used in the
logistic regression was generated through many simulations of the FMD outbreak. I
executed the following steps 1,000 times:

1. Begin in the initial state of the outbreak

2. Collect all of the predictor information of non-infected farms at baseline

3. Simulate the disease and monitor for six days

4. Collect the infection statuses of all farms on the sixth day

Thus, if there were x non-infected farms under consideration, the data set contained
1, 000x observations. The following predictors were considered in the logistic regres-
sion: distance to the nearest infected farm, number of cattle at the nearest infected
farm, and number of cattle at the current farm. The final model was selected using
Akaike information criterion (AIC). Equation (4.4) presents the logistic regression
model used to predict the risk, p, of a susceptible farm becoming infected in six days.

log( p

1− p) = β0 + β1(Distance to nearest infected farm)

+ β2(#Cows at nearest infected farm)

+ β3(#Cows at current farm)

+ β4(Distance to nearest infected farm) ∗ (#Cows at nearest infected farm)
(4.4)

Once the regression coefficients from Equation (4.4) were estimated, the non-
infected farms at baseline could then be ranked. Infected farms were ranked as well,
based on the number of cattle. Infected and non-infected farms were culled according
to rank order every day until the daily culling capacity was met. More resources were
given to non-infected farms to preemptively terminate the outbreak. For example,
if there were resources available to cull all of the cattle at any five farms per day,
three of the culled farms would not be infected, and two of the culled farms would be
infected.

Continuing to use the initial risk quantities calculated for the farms at baseline as
the disease progressed, would result in stale estimates. Thus, using the same logistic
regression coefficients calculated at baseline, I updated the risk quantities in real time
using the most recent data. Figure 4.1 illustrates the complete sequence of events
used to implement the logistic regression management method.
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Figure 4.1: Sequence of steps needed to implement FMD management using a combination of logistic
regression and culling infected farms based on number of cattle. Notice that the model it fit only
once, using the predictor information collected at baseline. The risk estimates, and the culling order
of the infected farms are updated every δ days, using the most recent information.

4.3.4 Deep Q-Networks
The DQN method does not choose which farms to cull based on infection status,

as with the cull infected premises or the logistic regression methods. Rather, DQN
chooses which farms to cull based on a trained convolutional neural network. As
with any MDP, the states, actions, and rewards were pre-specified. To better capture
the spatial relationships between farm locations, the state at time t was defined by a
map of the disease outbreak. Figure 4.2 illustrates the construction of the state for
a given epoch of training. The first step consisted of plotting the farm locations and
identifying the farm-level infection status on an m×m kilometer space (represented
in the left panel in Figure 4.2, black represents an infected farm, and white represents
a susceptible farm). A grid was then overlaid on the plot to create "pixels," i.e.-
grid squares (represented by the second panel in Figure 4.2). Traditionally, a state
in DQN with image data is defined by the RGB values for each pixel (Mnih et al.,
2015). In this study, the infection status of a farm in a pixel was used. The following
was used as a key to construct the state: susceptible farm- 0, infected farm- 1, culled
farm/no farm- 2 (represented in the right panel in Figure 4.2). This construction of
the state was implemented at every epoch of training. In this example, on a 10 × 10
kilometer space, each grid square had dimension 1 × 1, to ensure that no more than
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one farm occupied a grid square. The grid square dimension can easily be smaller
to better capture relative distance between farms, however this creates a larger 2-
D array, causing computational challenges with stochastic gradient descent and the
serial updating nature of DQN.

Figure 4.2: Constructing the state at a time point consists of three steps 1) plot the points of the
farm locations and color code by infection status (black- infected, white- susceptible), 2) overlay a
grid on the previous plot, 3) trichotomize the infection status

At each epoch of training, the DQN agent is tasked with determining which farms
to cull under resource constraints. In Figure 4.2 there are 30 farms in the 10 × 10
kilometer space. Suppose that there are resources to cull all of the cattle in any
five farms, per day. Rather than defining the action space with

(
30
5

)
possibilities at

time t, the agent is presented with a smaller action space. At time step t, the DQN
agent chooses one farm out of the 30 to cull. In that same time step, the DQN agent
chooses a second farm to cull out of the remaining 29. Once the DQN agent chooses
five separate farms to cull, then the outbreak evolves and a new state and reward
are observed. This action space construction reduces the number of possible actions
in the first day of management from

(
30
5

)
to 140 (30 + 29 + 28 + 27 + 26). There

are other approaches to accommodate decision spaces with large action spaces, such
as least squares policy iteration with multi-action (Wang and Yu, 2016). However,
techniques to accommodate decision spaces with large state and action spaces are
still under study.

The immediate rewards, r are closely tied to the objectives of disease management.
Ideally, an outbreak should be managed as quickly as possible with minimal costs. For
this reason there were multiple components to the immediate reward structure. A -100
reward was observed for every farm culled, which encouraged conservative culling in
the management process. A terminal reward of the number of cows alive at the end of
an episode was also applied, which encouraged cost-effective behavior. Because FMD
has a latent period of five days, it was possible for outbreaks to resurge. This would
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cause policy-makers to have to wait to ensure that the outbreak was truly terminated.
For this reason there was a -500 reward associated with the agent assuming the
outbreak was terminated, when in truth an outbreak resurgence was about to occur.
This immediate reward structure was used for each of the four scenarios investigated
in this study. Selection of immediate rewards was made through prioritization of
objectives; diminishing outbreak resurgence was the highest priority and was thus
given a higher negative reward for not being met. In a realistic setting, specification
of objectives can impact the final policy. Probert et al. (2015) illustrated that final
controls can differ based on the metric that defines success. For this reason, it is
imperative that a decision-maker explicitly considers what they want to accomplish
with outbreak management.

DQN requires some degree of hyperparameter tuning. In this study, an informal
search method was used to choose the best combination of hyperparameters. The
starting set of hyperparameters were nearly identical to that of Mnih et al. (2015).
DQN is also known to have a high degree of variance during training, and thus with
the final policy. For this reason, each combination of hyperparameters were trained
three separate times and the model with the best reward trajectory, defined by being
the most stable, and achieving the highest rewards, was used for the final policy.

4.4 Outbreak Generation
A model of the 2001 United Kingdom FMD disease dynamics was used to gen-

erate the next state after an action(s) was implemented. The 2001 United Kingdom
FMD outbreak was characterized by a susceptible-exposed-infected-recovered (SEIR)
compartment model at the farm level. Following exposure to the virus, there was a
five-day latent period. The outbreak in this study was simulated using an individual-
based FMD model as specified by Keeling and Rohani (2007). The rate at which a
susceptible farm became infected was represented by:

λi = Niscow
∑

j∈infectious
NjτcowK(dij) (4.5)

where N represents the number of cows at a farm, s represents a cow’s susceptibility
to the disease, τ represents a cow’s transmissibility of the disease, K represents the
transmission kernel, and dij represents the distance between the susceptible farm i

and the infectious farm, j. The following parameters, s, τ, and K were individually
selected for each case study in this investigation to better accommodate the charac-
teristics of each landscape (e.g. - size of the space, positioning of farms, etc). If s or
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τ were too large, then the outbreak would spread too quickly, preventing any type of
intervention under resource constraints to be effective. If the transmission kernel was
a distribution with very large tails, then there would be a larger chance for farms that
were very far away to become infected in a single time step. This may be feasible in
practice due to cattle movement, movement of equipment, etc.

4.5 Case Studies
There were four cases investigated in this study. The first case represents a proof

of concept that DQN can be used to manage a disease outbreak. The succeeding
two cases present small-scale examples that address particular aspects of outbreak
management under resource constraints. The final case explores scaling the decision
problem. For each case, the initial state did not change between episodes of training.
In practice, a policy-maker would provide the initial state of the outbreak and request
the best sequence of actions for management. Thus, this method overfits to the start-
ing state of the outbreak. Although the starting state for each case is the same, the
outbreak progression will vary due to the stochastic nature of the outbreak algorithm.
This stochasticity makes the decision problem more challenging for the DQN agent.
For each of the four case studies, I trained the DQN agent in three separate instances
and chose the DQN agent that generated the best stability in training. As previously
mentioned, DQN is known to have a high degree of variance during training, thus I
used the most stable DQN agent to test in each of the four case studies. If more in-
stances of training instances were implemented, it could be possible to observe agents
with better performance, refer to Chapter 3.

4.5.1 Case 1: Which infected farm to leave out?
In the first case study I placed 30 farms randomly on a 10×10 kilometer grid. The

initial pixelated state is provided in Figure 4.3. The size of each point in Figure 4.3
represents the number of cattle at the corresponding farm. The number of cattle was
uniformly distributed between 25 and 500, with a total of 6965 cows in the entire land-
scape. The range of cattle reflected realistic farm sizes in Cumbria, United Kingdom
in 2001 (Tildesley et al., 2010). A cow’s susceptibility to the disease, s, and a cow’s
transmissibility of the disease, τ , were both chosen to be 6.3× 10−5. Transmissibility
was slightly larger than specified by Keeling and Rohani (2007) to accommodate a
more realistic spread on a smaller landscape. The transmission kernel in this case was:
K(distance) = 1

distance+400 . This kernel has a large tail over the possible distances,
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Figure 4.3: Initial state for case 1.

meaning that farms farther away have a high probability of becoming infected, rela-
tive to a narrower-tailed kernel. This will present some challenges for the DQN agent,
because there may not be a "learnable" culling pattern for management. "Learnable"
here refers to discovering rules that would guarantee the management objectives to be
met. I selected six farms at random to be initially infected, represented by the black
points in Figure 4.3. In this case study, I assumed that each day there were resources
to cull all of the cattle at any five farms. Because there were initially six infected
farms, this case can be thought of as: which infected farm should not be included in
the first day of culling. Intuitively, the outbreak can be terminated by culling all six
infected farms. However, if the first five infected farms were incorrectly chosen then
the neglected infected farm could create secondary infections on the second day of
management.

For the logistic regression method, recall that more resources were provided to
cull non-infected farms as a pre-emptive management measure. For this method, if
there were at least two infected farms, I culled the two highest ranked infected farms,
according to number of cattle, first. Then I culled the three highest ranked non-
infected farms, according to the logistic regression. Once five farms were culled, the
outbreak evolved and the next state was observed. If there were less than two infected
farms, those infected farms were culled and a six day monitoring period occurred
to ensure the outbreak was terminated. Table 4.1 presents the logistic regression
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Variable Estimate of β Standard Error Exp(β) 95% CI
(Odds Scale)

Distance to nearest infected farm -3.1607 0.046 0.0423 (0.0388, 0.0464)
#Cows at nearest infected farm -0.0704 0.001 0.9320 (0.9302, 0.9338)
#Cows at current farm 0.0110 0.000 1.0110 (1.0106, 1.0115)
(Distance to nearest infected farm)*
(#Cows at nearest infected farm) 0.0263 0.000 1.0266 (1.0260, 1.0273)

Constant 2.8360 0.081
LR χ2 20427
AIC 21914

Table 4.1: Case 1: Regression coefficients used for the logistic regression model. Model selection was
performed using AIC and previous information. Notice that distance to the nearest infected farm is
highly associated to the outcome of a farm becoming infected.

coefficients used to rank the non-infected farms. These regression estimates were
fixed over the course of management, however the risk estimates were updated every
six days as new data were collected. The magnitude of the regression coefficient for the
distance to the nearest infected farm predictor, suggests that this predictor is highly
associated with a farm becoming infected in six days. The regression coefficients for
all four case studies were used primarily for predictive purposes and not inferential
purposes. However, these regression coefficients suggest that under this transmission
kernel, distance may be highly associated with the outcome.

After fitting the logistic regression to the data, and training the DQN agent for
1,200 episodes, I performed 2,000 simulations of testing. The best trajectory begins to
plateau after about 800 episodes suggesting model stability. DQN yields the highest
total reward of the four methods, due to the fact that DQN never culled more than
six farms. The cull infected premises approach resulted in an average of eight farms
to be culled. The lower reward from the cull infected premises approach occurred
because after the first day of management, and a period of monitoring, at least one
exposed farm appeared. This suggests that it matters which farm is neglected by the
end of the first day of management. In the DQN approach, the farm with 453 cattle
was always saved for the second day of management. However, in the cull infected
premises approach, this farm was always culled in the first day of management.

The logistic regression approach had a lower total reward overall compared to
the cull infected premises approach. This suggests that ranking non-infected farms
according to the fitted model provides no additional support for management. As
expected, the random culling intervention had the lowest total reward compared to
the other three methods. This first case study suggests that DQN could successfully
be used to manage a simulated disease outbreak and outperform other methods.
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Figure 4.4: Comparison of results for first case study across 2,000 simulations of testing. Top left
panel presents the trajectory of total reward during the 1,200 episodes of training. Top right panel
presents histograms of total reward across the four different methods from 2,000 simulations of
testing. Bottom left panel presents histograms of number of cattle saved across the four different
methods from 2,000 simulations of testing. Bottom left panel presents histograms of total number
of farms culled across the four different methods from 2,000 simulations of testing. Notice that the
DQN method performs the best of the four methods.

Total
Reward

#Cows
Saved

#Farms
Culled

#Outbreak
Resurgences

Random Culls -2643
(-3500, -671)

393
(0, 1769)

29
(22, 30)

1
(0, 2)

Cull Infected Premises 3802
(3393, 3841)

5014
(4733, 5041)

8
(7, 8)

1
(1,1)

Logistic Regression 3584
(3143, 3688)

2173
(1234, 2488)

13
(12, 14)

1
(0, 1)

DQN 4737
(4737, 4734)

5336
(5336, 5336)

6
(6, 6)

0
(0, 0)

Table 4.2: Statistics for each of the four methods for the first case study: averages (95% CI). Notice
that the DQN method outperforms the other three methods.
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4.5.2 Case 2: Faster outbreak and conservative resource constraints
In the second case study, I explored a more challenging decision problem. The

initial state was the same as the first case study: 30 farms, six farms initially infected,
with the number of cattle per farm unchanged. However, in this case study, I assumed
all of the cattle at any one farm could be culled per day. A cow’s transmissibility was
also slightly increased to 8.4× 10−5. Both the increase in transmission and the lower
daily culling capacity presented more of a challenge for the DQN agent.

Notice that even though the transmission constant was increased from the first case
study, distance to the nearest infected farm is highly associated with a farm becoming
infected, Table 4.3. In this second case study, the logistic regression management
method still prioritized resources to non-infected farms as a pre-emptive management
measure. However, because only one farm could be culled per day, I used a cyclic
culling sequence. The culling cycle began with culling an infected farm on the first
day, followed by culling another infected farm on the second day. I then culled three
non-infected farms over the next three days, according to the rankings from the
logistic regression model. Then the cycle started over, two infected farm was culled
over the next two days.

Variable Estimate of β Standard Error Exp(β) 95% CI
(Odds Scale)

Distance to nearest infected farm -0.7056 0.018 0.4938 (0.4767, 0.5115)
#Cows at nearest infected farm -0.0117 0.000 0.9884 (0.9879, 0.9888)
#Cows at current farm 0.0024 0.000 1.0020 (1.0023, 1.0027)
(Distance to nearest infected farm)*
(#Cows at nearest infected farm) 0.0049 0.000 1.0050 (1.0047, 1.0050)

Constant 0.2953 0.046
LR χ2 5194
AIC 53259

Table 4.3: Case 2: Regression coefficients used for the logistic regression model. Model selection was
performed using AIC and previous information. Notice that distance to the nearest infected farm is
highly associated to the outcome of a farm becoming infected.

The total reward trajectory continues to increase over the 10,000 episodes of train-
ing, Figure 4.5. There is an increased variation in the trajectory compared to that of
the first case study, even after smoothing with a moving average. This is due to the
higher degree of stochasticity of the outbreak caused by the increase in transmission
and decrease in daily culling capacity. Even if the DQN agent implemented the same
set of actions in two realizations of the disease outbreak, the outbreak progression
between those two instances may be vastly different. Despite this, the trajectory of
total reward continued to increase over the course of training. There were some out-
break resurgences (mean = 1, 95%CI = (1, 2)), in comparison to the first case study,
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Table 4.4. However, this phenomenon was expected due to the complexities of this
decision problem.

Figure 4.5: Comparison of results for second case study across 2,000 simulations of testing. Notice
that the DQN method performs the best of the four methods the majority of the time. In some
scenarios of testing, the other three methods perform just as well or better than DQN.

These results illustrate that DQN generated the highest total reward of the four
compared methods, Figure 4.5. However the distributions of total reward were not as
distinct as in the first case study; there was some overlap between the DQN and cull
infected premises distributions of total reward. This was due to DQN occasionally
culling more farms than the cull infected premises approach. In some instances, the
DQN agent would calculate a higher utility in culling a susceptible farm as opposed
to culling an infected farm. This resulted in occasionally more farms being culled
compared to the cull infected premises or logistic regression approaches. These results
reflect the management objectives specified. If there were a higher negative reward
associated with each cull, then the final policy may be slightly different.

As with the first case study, the logistic regression approach generated a lower
average total reward compared to the cull infected premises approach. Also as ex-
pected, all three methods generated a higher average total reward than the baseline
approach, random culling.
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Total
Reward

#Cows
Saved

#Farms
Culled

#Outbreak
Resurgences

Random Culls -2939
(-4000, -1363)

247
(0, 1254)

29
(24, 30)

1
(0, 2)

Cull Infected Premises -874
(-2561, 1293)

1554
(412, 3156)

22
(15, 27)

1
(0, 2)

Logistic Regression -1568
(-3025, 814)

937
(87, 2875)

24
(16, 28)

1
(0, 3)

DQN 502
(-1973, 2427)

2522
(878, 3727)

19
(13, 26)

1
(1, 2)

Table 4.4: Statistics for each of the four methods for the second case study: averages (95% CI).
Notice that the DQN method outperforms the other three methods.

4.5.3 Case 3: Identifying "bridging" farms
In the third case study, I targeted a specific feature of disease spread, network

structure. Network structure refers to how individuals in a community are connected
to each other. For example, Salathe and Jones (2010) exploited network structure to
trace disease spread using friendship data collected from Facebook. They found that
targeting individuals that "bridge" communities was more effective than targeting
highly connected individuals, i.e.- individuals that were in contact with many others.
In the third case study, I used bridging farms to incorporate an inherent network
structure. Figure 4.6 illustrates the initial state. The number of cattle per farm was
uniformly distributed between 25 and 500, as in the first and second case studies, with
a total of 7922 cows in the entire space. The two farms in the middle of the grid space,
with 129 and 85 cattle, are the bridging farms that connect the two clusters of farms
in the corners of the 10 × 10 kilometer space. To accommodate the bridging farms,
there was an additional constraint to the transmission kernel. The upper cluster of
farms could only become infected if either of the bridging farms became infected.
This emphasized the behavior of the two farms "bridging" the two clusters of farms.

A cow’s transmissibility of the disease and the transmission kernel were the same
as in the second case study. This case study also had the same daily culling capacity
constraints as the second case study: all of the cattle at any one farm could be culled
per day. This presented even more of a challenge to the DQN agent. Similar to the
second case study, there would be more exposed farms due to the conservative daily
culling capacity. Thus, the DQN agent had to learn to manage the outbreak with
states that were not observable. Moreover, the DQN agent would need to also learn
specific dynamics of the outbreak: if one of the bridging farms became infected, then
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Figure 4.6: Initial state for case 3, dot size is proportional to the number of cattle at the farm.

the upper cluster of farms would begin to observe infections.

Variable Estimate of β Standard Error Exp(β) 95% CI
(Odds Scale)

Distance to nearest infected farm -6.8845 0.260 0.0010 (0.0006, 0.0017)
#Cows at nearest infected farm -0.0331 0.001 0.9674 (0.9653, 0.9695)
#Cows at current farm -0.0165 0.000 0.9836 (0.9827, 0.9845)
(Distance to nearest infected farm)*
(#Cows at nearest infected farm) 0.0094 0.001 1.0094 (1.0081, 1.0107)

Constant 21.4058 0.554
LR χ2 36503
AIC 14246

Table 4.5: Case 3: Regression coefficients used for the logistic regression model. Model selection was
performed using AIC and previous information. Notice that distance to the nearest infected farm is
highly associated to the outcome of a farm becoming infected.

I trained the DQN agent for 10,000 episodes, Figure 4.7. Notice that the total
reward trajectory begins to plateau at about 8,000 episodes, suggesting that the
training has begun to stabilize. Just as with the first and second case studies, the
DQN agent began its training by culling nearly every farm, and over time the agent
learned to behave in a manner that met all of the objectives. The DQN policy suggests
that the bridging farms should be culled early in the management process, however
these farms should not be the first to be culled. DQN had the best performance of the
four methods after 2,000 episodes of testing, Figure 4.7. While DQN was successfully
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able to identify and cull the bridging farms, the cull infected premises approach was
not. Because the bridging farms were smaller, they were ranked lower on the culling
order. This resulted in the outbreak spreading to the upper cluster of farms.

Figure 4.7: Comparison of results for third case study across 2,000 simulations of testing. Notice
that the DQN method performs the best of the four methods the majority of the time. Notice
that DQN almost always has the best outcomes, and sometimes the cull infected only method is
comparable.

Because only one farm could be culled per day, culling was performed using the
same cyclic sequence of culls as in the second case study. The logistic regression
approach sometimes outperformed the cull infected premises approach, in contrast to
the previous case studies. In some instances of testing, the logistic regression approach
identified that the non-infected bridging farms were at high risk of becoming infected
in the next six days. In turn, under this method there were many instances of testing
with shorter outbreak durations and a smaller number of farms culled. However, in
some instances, the logistic regression failed to cull the bridging farms early enough
resulting in a larger outbreak, represented by the bi-modality in the total reward
distribution.
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Total
Reward

#Cows
Saved

#Farms
Culled

#Outbreak
Resurgences

Random Culls -2886
(-3000, -2016)

89
(0, 784)

30
(27, 30)

0
(0, 0)

Cull Infected Premises 1115
(-2243, 3404)

3623
(1359, 5104)

17
(12, 25)

2
(0, 3)

Logistic Regression 1319
(-1922, 2010)

3179
(1109, 3610)

19
(16, 26)

1
(0, 1)

DQN 3138
(2173, 3605)

4590
(3994, 4905)

14
(13, 16)

0
(0, 1)

Table 4.6: Statistics for each of the four methods for the third case study: averages (95% CI). Notice
that the DQN method outperforms the other three methods.

4.5.4 Case 4: Scaling
In the fourth case study, I investigated a larger FMD decision problem. In the

previous three case studies, I considered a landscape with 30 farms. In this fourth case
study, I attempted to manage a simulated FMD outbreak with 120 farms. Because
more farms were considered in this case study, the size of the landscape increased to
15×15 kilometers. Each grid square still had the same dimension, 1×1 kilometers, as
in the previous case studies. The number of cattle per farm was uniformly distributed
between 25 and 500 as as with the previous case studies, with a total of 33,638 cows
in the entire space. In addition, this case study used physical landscape features to
influence the positioning of farms. In the United Kingdom lakes, rivers, and large
highways are some examples of physical landscape features that separate farms into
clusters. The farms are separated into clusters, however, not as distinct as the clusters
of farms in the third case study (Figure 4.8). Also notice that the initial state has two
clusters of infected farms. This reflects the initial state of the 2001 United Kingdom
outbreak. By the time the outbreak was detected, infected livestock had already
been transported to different areas of the United Kingdom, resulting in several foci
of infection (Gibbens et al., 2001).

The transmission kernel denoted in Equation (4.6) was adjusted from the kernel
used in the previous three case studies, to reflect a less random spread of infection,
with constraints reflecting those used by Keeling and Rohani (2007). The kernel used
in this case study assigns a higher probability for closer farms to become infected. A
cow’s susceptibility to the disease, s, and a cow’s transmissibility of the disease, τ ,
were both decreased to 4.9× 10−6 to allow for more gradual spread and a chance for
an intervention to take place during the outbreak. The previous rates of susceptibility
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Figure 4.8: Initial state for fourth case study.

and transmission would have caused the outbreak to progress too quickly, rendering
an intervention ineffective. Because the number of farms in this case study increased
by a magnitude of four, to 120 farms, I also increased the daily culling capacity. Each
day, I assumed there were resources to cull all of the cattle at any five farms.

K(distance) =

 0.3093 distance < 0.0138
1

π(1+distance) otherwise
(4.6)

The top left panel Figure 4.9 presents the trajectory of training the DQN agent
for 8,000 episodes. The total reward continues to increase over training, but does not
distinctly plateau as with the first and third case studies. This behavior is expected
because of the complexity of the decision problem. This fourth case study and the
second case study did not target specific features of the outbreak, such as the farm
that could be left to cull on the second day of management (first case study), or
identifying bridging farms (third case study). This instability was reflected in testing
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Variable Estimate of β Standard Error Exp(β) 95% CI
(Odds Scale)

Distance to nearest infected farm -0.7554 0.011 0.4670 (0.4598, 0.4801)
#Cows at nearest infected farm -0.0068 0.000 0.9932 (0.9929, 0.9935)
#Cows at current farm 0.0011 0.000 1.0011 (1.0010, 1.0013)
(Distance to nearest infected farm)*
(#Cows at nearest infected farm) 0.0008 0.000 1.0008 (1.0007, 1.0009)

Constant 0.8131 0.032
LR χ2 27592
AIC 116506

Table 4.7: Case 4: Regression coefficients used for the logistic regression model. Model selection was
performed using AIC and previous information. Notice that distance to the nearest infected farm is
highly associated to the outcome of a farm becoming infected.

the DQN model, as the cull infected premises approach performed the best of the
four proposed methods, Figure 4.9. The cull infected premises approach yielded the
highest total reward, culled the lowest number of farms, and saved the most cattle.

Figure 4.9: Comparison of results for fourth case study across 2,000 simulations of testing. Notice
that the culling-infected only method performs the best of the four methods the majority of the
time. DQN rarely does better than the logistic regression approach.

DQN, in contrast, performed worse than the logistic regression and the cull in-
fected premises approach. Even after extensive manual hyperparameter tuning, and
adjusting the total reward structure, DQN was not able to outperform logistic regres-
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sion or the cull infected premises approach. These results suggest that DQN may need
more modifications before it can be implemented in a larger decision problem. In ad-
dition a simpler model, such as logistic regression, seems to yield better performance
and less tuning in comparison to DQN.

Total
Reward

#Cows
Saved

#Farms
Culled

#Outbreak
Resurgences

Random Culls -11855
(-12500, -10899)

124
(0, 884)

120
(117, 120)

1
(0, 1)

Cull Infected Premises 24600
(19630, 28046)

27777
(24333, 30065)

23
(15, 33)

2
(1, 3)

Logistic Regression 10161
(-2646, 17916)

16972
(7558, 22536)

59
(39, 91)

2
(1, 3)

DQN -97
(-9586, 10342)

9319
(2210, 16834)

86
(59, 110)

2
(0, 4)

Table 4.8: Statistics for each of the four methods for the fourth case study: averages (95% CI).
Notice that the DQN performs poorly compared to logistic regression and the cull infected premises
approaches.

4.6 Discussion
In this study, I investigated two primary concepts: use DQN to manage a disease

outbreak online, and compare the performance of DQN to other simpler approaches.
I found that DQN could be used to manage disease outbreaks with a small number of
farms. The first three case studies investigated management with 30 farms. In each
of these case studies, DQN generated high total reward during testing and illustrated
stability in training. However, DQN did not perform as well in a larger manage-
ment setting. This is likely due to two main factors: the need for more training, and
hyperparameter optimization. DQN is serial in nature, due to stochastic gradient
descent and experience replay. A larger number of episodes of training would require
a more sophisticated form of parallelization. Chavez et al. (2015) has investigated an
alternate form of parallelization with DQN involving Downpour stochastic gradient
descent. This process involves an omniscient parameter server that stores a global
copy of the DQN model. It also uses "worker nodes" to generate local DQN models,
while sending and receiving the most up-to-date parameter weights from the param-
eter server. However, this approach would require further study, because it has been
previously shown to experience bottlenecks in communication between the parame-
ter server and worker nodes. As previously mentioned, hyperparameter tuning has
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illustrated limitations to DQN. There have been some advances in optimizing neu-
ral network hyperparameters, such as genetic algorithms or expected improvement in
Gaussian Processes (Fridrich, 2017; Bergstra et al., 2011). However, these approaches
have not been implemented in a DQN environment.

DQN generated overall higher total reward in simulation of testing, compared to
the other proposed methods in three out of the four case studies. It may be possible for
DQN to improve in performance with increased training or a more sophisticated hy-
perparameter tuning algorithm. However, one would need to consider the additional
time and resources this would require. The first case study illustrated the greatest
disparity between the four proposed methods. DQN had a total reward about twice
that of logistic regression. A decision-maker would need to consider if this difference
was worth the time and effort involved with optimizing DQN. For example in the
fourth case study, the DQN agent was trained for 8,000 episodes, or serially for about
one week. Optimal decisions, in reality, may need to be made faster than a week’s
time. For this reason, while DQN illustrates strong outbreak management potential
in simulated outbreaks, one would need to consider the trade-off of implemented a
simpler model.
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CHAPTER 5

CONCLUSION

This dissertation consisted of three primary aims related to disease outbreak man-
agement: review current computational methods used to terminate disease outbreaks,
explore deep Q-networks (DQN) in the context of disease outbreak management, and
investigate if simpler alternatives can achieve similar performance to DQN.

Chapter 2 investigated the first aim. The following computational methods were
reviewed: regression models, neural networks, dynamic programming, Monte Carlo
methods, genetic algorithms, and network-based approaches. Regression models and
neural networks were both identified as decision support tools for disease surveillance.
These methods have been used in previous studies to determine if a disease outbreak
would occur in the future, given pre-specified covariates. This chapter discussed how
regression models were better suited if a primary goal of management was to learn
about the covariate-outcome relationship. It was found that in many cases, neural
networks had similar or slightly improved predictive performance compared to the
standard regression modeling approach. This chapter also discussed network-based
approaches as a decision support tool alternative that did not assume homogenous
mixing. Network-based approaches have been previously used to investigate targeted
interventions, i.e. - determine which individuals should be prioritized to receive inter-
ventions to prevent an epidemic. However, this chapter concluded that full contact
networks are generally unknown, and decision support tools in general do not gener-
ate, or even estimate, optimal decisions for disease management.

Chapter 2 also discussed computational approaches that have been previously
investigated to optimally manage disease outbreaks. Dynamic programming was the
clear approach to construct optimal policies in smaller decision spaces. This method
is exponentially faster than manual search methods, but is constrained by the curse of
dimensionality. This means that the number of states has a polynomial relationship
with the run time needed to determine the optimal policy. Heuristics such as genetic
algorithms or Monte Carlo methods have previously been investigated to estimate an
optimal policy. It was shown in a previous study that genetic algorithms and classical
optimization methods yielded nearly the same number of infected individuals and
costs (Yan and Zou, 2007). This brings into question if optimal approaches are truly
necessary, when heuristics are easier implemented and have competitive performance.
Chapter 2 ends with a segue of the current computational methods being limited
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in complex decision spaces, thus requiring another approach to be used in these
instances.

Chapter 3 investigated the second aim. A machine learning alternative, previously
shown to excel in complex decision spaces, was explored in a disease management
context under resource constraints. Deep Q-networks (DQN) were investigated in four
different case studies in their ability to terminate a foot-and-mouth disease outbreak
with dynamics similar to that of the 2001 epidemic that occurred in the United
Kingdom. This chapter illustrated that DQN excelled in scenarios with a clear way
to “win the game." In all of the case studies, “winning the game" meant terminating
the outbreak, while meeting management objectives. Just as with video games, where
DQN was traditionally used, it is not enough just to finish the game. Another goal
is to get a high score. The “score" in DQN is influenced by the extent to which
the management objectives are met. In all four case studies, the objective was to
conservatively cull while terminating the outbreak as quickly as possible. Two of the
four case studies had inherent goals that the agent could learn, and thus “win the
game" faster. For example, in the first case study the inherent goal was to determine
which infected farm could be left for the second day of management. In the third
case study the inherent goal was to identify bridging farms. In both of these case
studies, the learning agent was successfully able to identify these inherent goals and
determine the best way to achieve them, justified by the stability in training. The
second and fourth case studies did not have an inherent goal, but the learning agent
was still required to terminate the outbreak while meeting the overall objectives. The
learning agent was able to manage the outbreak in the second case study, but failed
to effectively do so in a scaled landscape. It was suspected that more training and
a different combination of hyper parameters may be required to achieve improved
performance in a larger management scenario. While DQN illustrated an ability
to terminate disease outbreaks in complex decision spaces, it also presented many
limitations. Perhaps the most widely investigated limitations are parameter selection
and high variance. DQN, in regards to disease management, presents some limitations
in generalizability, and implementation in a real, larger outbreak. Chapter 3 concludes
with a discussion of simpler alternatives that could be used to the same effect as DQN.

Chapter 4 investigated the third aim. Because Chapter 3 presented many chal-
lenges with DQN, simpler alternatives were investigated in their ability to manage
disease outbreaks under resource constraints. The following approaches were com-
pared: random culling, cull infected premises, logistic regression, and DQN. The four
approaches were implemented on the same four cases studies presented in Chapter
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3. As expected, based on the results from Chapter 3, DQN was the clear optimal
choice for the first and third case studies. In the second case study, DQN generated
an overall higher total reward compared to the other three methods. However, the
degree of disparity between the four methods was not as distinct as with the first and
third case studies. Also as expected, DQN performed poorly compared to the cull
infected premises approach and logistic regression approach in the fourth case study,
which investigated scaling. These results suggest that DQN is a superior method
when there are inherent goals to complete an episode, and when the complex deci-
sion space has a relatively small number of farms. This chapter concluded that the
decision-maker is ultimately responsible for determining which objectives were the
highest priority. While DQN may achieve optimal performance in some scenarios,
tuning and training may require a lot of time and resources. If these components are
important to the decision-maker, it may be prudent to explore other methods such
as cull infected premises or logistic regression for more timely management.

This dissertation generated many areas of future research for disease outbreak
management under resource constraints. Chapter 3 illustrated a scaling limitation of
using DQN for disease outbreak management. Previous research investigated using
a distributed learning approach for DQN. The Downpour method was used, which
allowed for the training to be parallelized between two worker nodes. This has not yet
been investigated in a disease management context, and may require more nodes for a
larger management problem. GPU computation and sparse matrix operations could
also assist in large scale matrix computations that would be present in stochastic gra-
dient descent. The logistic regression method used in Chapter 4 to rank non-infected
farms illustrated an opportunity to incorporate sequential updating. In Chapter 4,
once new data was collected, risk estimates were recalculated using the initial logis-
tic regression coefficient estimates. Under sequential updating, Bayesian approaches
could be implemented to update the regression weights (or DQN weights) as new
data is collected in real time. One aspect of analysis not covered in this dissertation
is parameter estimate uncertainty. Adaptive management could be combined with
logistic regression, or DQN, to account for different forms of uncertainty.
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