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CHAPTER 1

INTRODUCTION

Data from electronic health records (EHRs) provide an invaluable resource for
medical research. A pressing concern, however, regarding these observational data
sources is their susceptibility to errors due to inaccurate, incomplete, or discordant
entries (Weiskopf and Weng, 2013). These errors, typically correlated across multiple
variables and difficult to identify, can translate into incorrect epidemiological infer-
ences. One strategy to assess EHR data quality is source data verification (SDV).
This data audit procedure compares the research study data to the original source
document for a subset of records and documents discrepancies. Given the resource-
intensiveness of SDVs, it is imperative to be able to justify their continued implemen-
tation. Unfortunately, common practices for doing so are unsatisfactory. In this dis-
sertation, we propose a robust methodological framework to better assess the impact
of SDV on epidemiological inference and incorporate validated data into subsequent
statistical analyses.

The quality of study datasets is often evaluated based on the frequency of er-
rors they contain. Previous studies conducted in clinical trial settings (Mitchel et al.
(2011); Smith et al. (2012)) have shown that higher error rates do not always imply
incorrect epidemiological inferences. In Chapter 2, we propose a framework for as-
sessing the impact of audits on study results and illustrate its implementation using a
data audit from an international HIV setting as a practical example. First, we quan-
tify error rates for key demographic and clinical variables among audited patients.
Then, we demonstrate how errors can affect analyses by performing the same statisti-
cal analyses using pre-audit data and audited data for the subset of audited patients.
Acknowledging that data audits often identify systematic errors in data collection
and entry that lead to targeted validation of high-error-rate variables for all records,
we also assess the impact of data audits by performing the same statistical analyses
using pre-audit data and post-audit data for all records.

Assuming the discrepancies in the originally collected data are substantial enough
to impact epidemiological inferences, it is imperative that investigators address these
errors. Current existing strategies when non-trivial errors are revealed include either
removing the data in question or re-entering all data. These practices seem imprac-
tical. In Chapter 3, we propose a method to obtain unbiased and efficient estimates
in time-to-event analyses while incorporating both the original error-prone data for
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all subjects and the audited data for the subsample of subjects. The data setup (an
error-prone measurement for all records and a “gold standard” measurement for a
subset of records) resembles a measurement error and missing data problem. Pre-
vious work by Cole et al. (2006), Shepherd et al. (2012), and Edwards et al. (2013)
have demonstrated that multiple imputation procedures can be implemented to ad-
dress similar measurement error scenarios. Although relevant, none of this work or
any of the measurement error literature considers the situation where there are errors,
likely correlated, in predictors, censored failure times, event indicators, and inclusion
criteria, which is what we see in our setting. We propose a time-discretized modeling
and imputation (TDMI) approach that uses discrete time models built in a validation
sample to multiply impute covariate and outcome values in the remaining unvalidated
records.

Having implemented a multiple imputation procedure to obtain unbiased esti-
mates, the final task is to calculate the corresponding imputation variance estimate
and report 95% confidence intervals. One possible choice for calculating standard
errors is the multiple imputation variance estimator proposed by Little and Rubin
(2014). However, this variance estimator has been shown to be biased when the im-
putation model is misspecified or if there is incompatibility between the imputation
model and the analysis model. With our TDMI approach, there is incompatibility
because the imputation model is based on time-discretized data with multiple obser-
vations for each subject while the analysis model is based on undiscretized data with
a single observation for each subject. Additionally, subjects that are excluded in the
analysis model for not meeting inclusion criteria remain in the imputation model.
An alternative choice for calculating standard errors that allows for incompatibil-
ity was proposed by Robins and Wang Robins and Wang (2000). Unfortunately, this
approach is complex and there is no publicly available code to facilitate its implemen-
tation. In Chapter 4, we provide a tutorial for calculating this imputation variance
estimator using multiple examples and by providing comprehensive R code. Examples
are chosen to illustrate implementation across multiple different imputation models
and analysis models.
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CHAPTER 2

THE IMPACT OF DATA QUALITY AND SOURCE DATA VERIFICATION ON
EPIDEMIOLOGIC INFERENCE: A PRACTICAL APPLICATION USING HIV

OBSERVATIONAL DATA

2.1 Introduction
Source document verification (SDV) is a strategy for HIV research data quality

assessment. Typically, SDV involves the partial (or complete) comparison of research
study data against original source documents, such as study case report forms, patient
clinical charts, laboratory reports, or electronic health records. This practice of data
auditing allows investigators to verify data accuracy, identify systematic issues with
research data collection, and calibrate their confidence for making inferences based
on study findings.

Concerns regarding data quality are magnified for studies using routinely col-
lected observational data from international HIV cohorts. Given that many HIV
observational datasets were originally created for clinical or administrative purposes
(e.g., electronic health records), data are susceptible to errors with respect to com-
pleteness, correctness, concordance, plausibility, and timeliness (Weiskopf and Weng,
2013). Studies assessing HIV observational data quality in multiple international set-
tings have identified data discrepancies and high error rates in key variables (Kiragga
et al. (2011); Nicol et al. (2016); Muthee et al. (2018); Puttkammer et al. (2016)). In
our own research, we previously audited a subsample of records from several clinical
care sites in a multiregional database of pooled HIV treatment data and found both
systematic inconsistencies in how data were entered as well as errors that were not
flagged by computer-generated error reports (Duda et al., 2012).

Because SDV is resource-intensive - identifying relevant patient records, locating
the original source documents, traveling to local sites (for external auditors), compar-
ing source documents to the current research dataset, and recording discrepancies - it
is becoming increasingly important to justify the expenses that accompany this task.
Many data audits assess data quality according to whether the error rate is above or
below an arbitrary 5% threshold (Houston et al., 2015). However, as shown in clini-
cal trial settings (Mitchel et al. (2011); Smith et al. (2012)), high error rates do not
necessarily translate into incorrect statistical inferences. In addition to quantifying
error rates, the importance of the SDV process should be assessed by investigating
potential improvements in data quality at the research network over time and the
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overall impact of errors on analyses and corresponding conclusions.
In this study, we assess the impact of SDV audits on observational study results

within a multi-cohort, international collaboration. External auditors traveled to sites
and conducted SDV for all key HIV study variables on a randomly selected subset of
patient records. After the audits, local sites received a report detailing audit findings
and recommendations, which in certain cases included requests to re-enter error-prone
variables for all patient records in their database. In this manuscript, we describe
error rates uncovered by the audits and their impact on study results among the
subset of patient records that were audited. We also describe the impact of audits
by performing identical analyses using data from the entire cohort, just before the
audit and then two years after the audit, to investigate changes made to databases
and their impact on key study findings.

2.2 Methods
2.2.1 Cohort description

The Caribbean, Central, and South America network for HIV epidemiology, also
known as CCASAnet, is a consortium of clinics from seven Latin American countries
that collects and shares HIV care and treatment data across clinical care sites to
characterize the HIV epidemic in the region. Nine CCASAnet cohorts participated
in this study and contributed data: Hospital Fernández and Centro Médico Huésped
in Buenos Aires, Argentina (HF/CMH-Argentina); Instituto Nacional de Infectologia
Evandro Chagas in Rio de Janeiro, Brazil (INI-Brazil); Fundación Arriarán in Santi-
ago, Chile (FA-Chile); Le Groupe Haïtien d’Etude du Sarcome de Kaposi et des Infec-
tions Opportunistes in Port-au-Prince, Haiti (GHESKIO-Haiti); Instituto Hondureño
de Seguridad Social and Hospital Escuela Universitario in Tegucigalpa, Honduras
(IHSS/HE-Honduras); El Instituto Nacional de Ciencias Médicas y Nutrición Sal-
vador Zubirán in Mexico City, Mexico (INCMNSZ-Mexico); and Instituto de Medic-
ina Tropical Alexander von Humboldt in Lima, Peru (IMTAvH-Peru). Study data
were collected and harmonized at the CCASAnet Data Coordinating Center at Van-
derbilt University (CDCC-VU). The CCASAnet cohort has been described elsewhere
(McGowan et al., 2007): additional information is at https://www.ccasanet.org.

2.2.2 Data auditing
In 2013-14, on-site audits of submitted data were conducted through a joint effort

between data auditors from the CDCC-VU and investigators at all nine participating
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sites. For each site, approximately 30 patient records were randomly selected by
the data manager at the CDCC-VU to be audited. In advance of the arrival of the
data auditors, each site was asked to locate the source documents pertaining to these
patients. Source documents available at the sites included paper-based patient charts
from the HIV clinic, general hospital charts, laboratory result forms (both paper and
electronic), and electronic medical record systems.

An audit team from the CDCC-VU, consisting of at least one clinician and one
informaticist, traveled to each of the nine sites. The audit team had a multi-page
paper audit form, prepared and checked by the CDCC-VU data manager, displaying
all submitted research data for each patient record selected. The auditors were given
access to the corresponding source documents for these patients by the collaborators
at each site. Over the course of 2-3 days, the data audit team compared values in the
research database with the source documents. Each entry was labeled with an audit
code (A1-A5) adapted from standardized audit codes defined by the European Orga-
nization for the Research and Treatment of Cancer Vantongelen et al. (1989): value
matches source document (A1), discrepancy between database and source document
(A2 if minor discrepancy, A3 if major), new value in source document not previously
entered in database (A4), and value could not be verified in source document (A5).
A discrepancy was considered major if the auditors considered the difference between
the source and database values to be clinically meaningful; minor discrepancies re-
ferred to less significant errors (e.g., date values within a month). New information
identified from the source document (A2, A3, or A4) was noted on the paper audit
form. All audit findings were later transcribed from the paper audit forms to a study
database by the CDCC-VU.

2.2.3 Available data
As part of CCASAnet research collaboration, each site regularly submitted to the

CDCC-VU a dataset containing records for all past and present enrolled patients
to the CDCC-VU. Prior to the audit, the most recent submission from each site
was archived. These site-specific datasets containing records for all enrolled patients
were aggregated to generate a pre-audit dataset. Approximately two years after the
audit (October 2016), the CDCC-VU again archived the most recent submission
from each site and aggregated records for all patients from each site to generate a
post-audit dataset. This time frame encompassed 1-2 scheduled data submission cycles
for each site, thereby allowing enough time for audit recommendations potentially to
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be incorporated in the new dataset. As for this study, this post-audit dataset was
intended to provide a snapshot of changes resulting from the audit. That being said,
we note two key clarifications: (1) any data points after the last pre-audit date for
a given patient were removed from the post-audit dataset so that pre- and post-
audit datasets covered the same time period; and (2) patients records not present
in the pre-audit dataset but present in the post-audit dataset were removed, even if
they were enrolled prior to the pre-audit freeze date. Lastly, an audited dataset was
generated for the subset of records that were audited. This dataset contained patient
records according to the source document verification findings.

All three datasets contained the same 19 unique variables (as defined and stan-
dardized in the CCASAnet data transfer protocol) that were routinely submitted by
CCASAnet sites. We refer to these variables as primary variables. For this study, we
also generated 14 additional variables that are relevant for our statistical analyses.
These derived variables were typically calculated using one or more of the primary
variables (e.g., the CD4 cell count at time of antiretroviral treatment [ART] initia-
tion). A complete list of all variables considered for this study is included in Appendix
A (Table 2.1).

2.2.4 Statistical analysis
For this study, we defined a data discrepancy as an instance where recorded values

were different (A2, A3) or a value was missing in one of the two datasets (A4).
When comparing the audited dataset with the pre-audit dataset, we also counted
instances where a value could not be confirmed (A5) as a discrepancy. We calculated
discrepancy (error) rates for both the originally collected and derived variables used
in analyses between (1) the pre-audit and audited datasets in the subset of records
that were audited, and (2) the entire pre-audit and post-audit datasets.

To assess the impact of errors identified during a data audit on a typical statistical
analysis, we replicated the same statistical analyses in all datasets. We estimated the
overall and country-specific (when data were available) cumulative incidences for both
the time from ART initiation to death and the time from ART initiation to first ADE
(accounting for mortality as a competing risk). A multivariable Cox regression model
was fit for each dataset to estimate the hazard ratios (HRs) for predictors of death
and ADEs after ART initiation. All models were adjusted for the following covariates:
age, sex, probable route of HIV transmission, clinical history of AIDS-defining event,
CD4 cell count, initial treatment regimen, and calendar year. All Cox models were
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stratified by site to allow the underlying hazard function to differ for each site (Giganti
et al., 2015) and used restricted cubic splines (Shepherd and Rebeiro, 2017) with four
knots for continuous variables to relax assumptions regarding linearity. Patients were
excluded from the study if they were not adults (< 18 years) or never initiated ART.
Two countries had multiple sites (Argentina and Honduras); for this analysis, we
combined sites within a country into a single site.

All statistical analyses were performed using R Statistical Software (http://www.R-
project.org); the corresponding statistical code is available at the following website:
http://biostat.mc.vanderbilt.edu/ArchivedAnalyses. Institutional review board ap-
proval was obtained from each site and from the Vanderbilt University Institutional
Review Board.

2.3 Results
A total of 316 patient records from nine CCASAnet sites were selected to be

audited using stratified random sampling by site. The CDCC-VU data auditors re-
viewed 250 of the selected records during the audit visits. The remaining 66 records
were not audited, mainly due to insufficient time during the audit visits or unavail-
able source documents (including lost, accidentally destroyed, permanently archived
charts, and charts currently in use for patient care). The number of audited records
varied by site, ranging from 12 at CMH-Argentina to 31 at INI-Brazil. Summaries of
audit frequency by site are provided in Appendix A (Table 2.2).

2.3.1 Audited records: pre-audit versus audit data
The pre-audit dataset for these 250 patients contained 19,296 values across 21

variables; 14,496 (75%) were audited. Due to both time constraints and incomplete
source documents, some records were only partially audited. Overall, the discrepancy
rate across all audited variables was 17.1%. Most discrepancies were due to missing
values (43%); the remaining discrepancies were due to incorrect data entries (34%)
and data that could not be confirmed by available records (23%). The discrepancy
rate differed for each variable, ranging from 1% for sex to 50% for the date of clinical
endpoints (Figure 2.1a). Among variables typically collected at time of enrollment,
error rates were lower for sex (1%) and birth date (4%), compared to the probable
mode of transmission (14%). Only 5% of patients had an incorrect death status
when compared to clinic source documentation, yet approximately 25% of all audited
death dates had a discrepancy. Date variables had a higher than average percent of
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discrepancies, including 31% for ART regimen end dates and 50% for clinical event
dates. Error rates for all audited variables are included in Appendix A (Table 2.3
and Figure 2.6).

Of the 250 audited patients, 228 originally met inclusion criteria for analyses (adult
patients who initiated ART) in the pre-audit dataset and 232 in the audited dataset;
227 met inclusion criteria in both datasets. Of the five patients excluded from the
pre-audit dataset only, four had discrepancies in ART data (2 with missing entries, 1
with an incorrect regimen, and 1 with an incorrect date); the last patient was missing
follow-up data. For the single patient excluded in the audited dataset only, a revised
birthdate revealed the patient was under 18 at time of ART initiation. For patient
records present in both datasets, discrepancy rates for derived variables ranged from
3% to 36% (Figure 2.1b). Variables with the highest error rates corresponded to
derived time-to-event variables such as time from ART initiation to first ADE (36%)
and follow-up time (32%).

Unadjusted estimates of mortality over time (Figure 2.2a) were similar between
audited patients in the pre-audit dataset and the audited dataset. The three-year
estimated mortality was 4.2% (1.5%-6.8%) in the pre-audit dataset and 4.1% (1.4%-
6.7%) in the audited dataset. Meanwhile, the overall estimated probability of ADE
over time was higher in the audit dataset (Figure 2.2b). The estimated percentage of
patients with an ADE at three years was 12.9% (7.8%-17.6%) in the pre-audit dataset
and 17.5% (11.9%-22.7%) in the audited dataset. Due to the small number of events
among the subset of audited records, there was overlap in the confidence intervals for
all hazard ratios (Appendix A, Figure 2.7).

2.3.2 Full dataset: pre-audit versus post-audit data
The full pre-audit database included 19,331 adult patients from nine CCASAnet

sites. The post-audit dataset, which includes sites’ data revisions in response to
the audit findings, includes 22,146 eligible adult patients from the same time period
as the pre-audit dataset (e.g., with enrollment dates prior to the site-specific freeze
dates for the pre-audit dataset.) The post-audit revisions produced a dataset with
18,999 patients from the pre-audit dataset plus 3147 newly added patients. Some
patients (n=332) previously included in the pre-audit dataset were not present in
the updated dataset. The majority of these patients (n=178) were from a single
site that had recently reentered their entire database; duplicate records or instances
where the original paper forms could no longer be located were removed. For the
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Figure 2.1: Relative frequency of discrepancies between pre-audit and audited values for originally
collected variables and those derived for analysis.
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Figure 2.2: Unadjusted time to mortality and AIDS-defining event using pre-audit and audited data,
among the subset of patient records that were audited.

18,999 patients in both databases, 1,727,710 unique values were recorded across 19
variables in either the pre-audit or post-audit dataset. Of these, 1,135,693 (66%)
were identical in both datasets. The plurality (n=478,600; 81%) of the discrepancies
between the two datasets was due to missing values in the pre-audit dataset that were
subsequently included in the post-audit dataset. Missing values in the post-audit
dataset that existed in the pre-audit dataset explain 12% of discrepancies (n=71,709)
and conflicting values accounted for the remaining 7% (n=41,708). The variables
with the highest proportion of entries with discrepancies were the date of diagnosis
of a clinical endpoint (51%), the occurrence of an AIDS-defining event at baseline
(52%) and the date of clinic visit (60%) (Figure 2.3a).

A total of 15,229 patients met inclusion criteria (adult patients who initiated
ART) in both the pre-audit and post-audit datasets. Among the remaining 3,770
patients with records in both datasets, an additional 212 were classified as adult ART
initiators in only one dataset (124 in the pre-audit dataset only and 88 in the post-
audit dataset only). Discrepancy rates for derived variables among 15,441 patients
that met inclusion criteria for at least one dataset ranged from 2% for sex to 23%
for clinical AIDS status at baseline (Figure 2.3b). Compared to the error rates from
the audited subset of records alone, most variables had a lower relative frequency
of discrepancies in the post-audit dataset. The key exception was occurrence of
an AIDS-defining event at baseline (23% vs. 12%). The unadjusted estimates of
mortality over time (Figure 2.4a) were similar between audited patients in the pre-
audit dataset and the audited dataset. The three-year estimated mortality was 6.9%
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Figure 2.3: Relative frequency of discrepancies between pre-audit and post-audit values for originally
collected variables and those derived for analysis using patient-specific freeze dates.
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(6.4%-7.3%) in the pre-audit dataset and 6.8% (6.3%-7.2%) in the post-audit dataset.
The overall estimated probability of ADE over time was higher in the post-audit
dataset (Figure 2.4b). The estimated percentage of patients with an ADE at three
years was 18.6% (17.8%-19.6%) in the pre-audit dataset and 20.9% (19.9% - 21.9%)
in the post-audit dataset. Changes in ADE rates (Appendix A, Figure 2.8) and
mortality rates (Appendix A, Figure 2.9) varied by site. Four of the seven sites had
similar mortality estimates; two had lower estimates and one had higher estimates
using the post-audit dataset. ADE estimates varied for all five regions with available
data; estimates were higher for three sites and lower for two sites. ADE data were
not available at both time points for two sites, which were therefore excluded.
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Figure 2.4: Unadjusted estimates of time to mortality (a) and AIDS-defining event (b) for patients
in the pre-audit (black) and post-audit (blue) datasets.

In adjusted analyses, the hazard ratios corresponding to ADE and mortality out-
comes were shifted for select variables (Figure 2.5 and Figure 2.4). The hazard of
death for patients with a prior history of clinical AIDS was higher in the pre-audit
dataset (HR: 2.06; 95%CI: 1.76-2.42) than in the post-audit dataset (HR: 1.53; 95%CI:
1.33-1.76). The hazard of ADE for patients with a prior history of clinical AIDS
was also higher in the pre-audit dataset (HR: 7.11; 95%CI: 4.54-11.15) than in the
post-audit dataset (HR:2.06; 95%CI: 1.73-2.46). Hazard ratios of ADE in the post
audit-dataset relative to the pre-audit dataset were higher for patients with a lower
CD4 cell count (1.54; 95%CI: 1.34-1.76 vs. 1.11; 95%CI: 0.90-1.36). Differences in
the hazards of death and ADE between pre-audit and post-audit datasets varied by
site (results not shown).
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Figure 2.5: Adjusted hazard ratios of mortality (a) and AIDS-defining event (b) for patients in the
pre-audit (black) and post-audit (blue) datasets.

2.4 Discussion
In addition to reaffirming the findings of other studies that suggested that data au-

dits were a useful resource to quantify the existence of errors in an observational HIV
dataset (Kiragga et al. (2011); Nicol et al. (2016); Muthee et al. (2018); Puttkammer
et al. (2016); Duda et al. (2012)), this study demonstrated that the results of statis-
tical analyses and any corresponding inferences can be affected by improvements in
data quality following such audits. There were many possible reasons for data entry
errors, ranging from isolated errors such as typographical mistakes and misread val-
ues due to illegible handwriting to systematic issues such as misinterpreted variable
definitions, miscoded value sets, or mistakes in assembling the research database. For
a multi-site, multiregional consortium, the early identification and rapid resolution of
such systematic issues can have a profound impact on data quality. In our data audit,
we identified discrepancies between the research database and the source documents
for all nine sites that participated in this study. Perhaps more interestingly, the error
rates were not constant across all variables; rather, sites faced challenges with differ-
ent variables. For example, high error rates in the audited dataset corresponding to
dates of CD4 cell count and viral load measurements at one site uncovered a system-
atic error in how data entry personnel had been trained to enter this data into the
study database. As a result of the audit, investigators at that site were made aware of
the issue and thus were able to fix the errors in previously entered data and prevent
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future incorrect entries. The audit conducted for this study was the second cycle of
audits in our region. A previous audit in our region was conducted in 2008-2009 and
included eight of the nine sites in this study; this was the first audit for INI-Brazil.
In the initial audit cycle, data auditors noted difficulty across sites in accurately cap-
turing ART regimen data. In general, many variables corresponding to dates were
error-prone (Duda et al., 2012). While error rates corresponding to ART data were
lower in both the audited and post-audit datasets from this particular cycle relative
to the 2008-2009 audits, we again noted high discrepancy rates corresponding to date
variables. This highlights that identifying an issue does not guarantee a resolution of
an issue and that assurance of data quality must be an ongoing process. This second
audit cycle was, however, the first time that the clinical endpoints data were audited
at any of the sites in our consortium. Error rates for these variables tended to be
higher in both the audited and post-audit datasets than error rates for variables that
had been audited during the 2008-2009 audit cycle. Notably, the estimated incidence
of AIDS-defining events was higher in the audited and post-audit datasets. This could
be due to the nature of the variable - that clinical endpoint entries were particularly
prone to errors and improper extraction by data capture personnel who lacked the
necessary clinical background to identify diagnoses in paper charts. The high error
rates in the clinical endpoints variable may also be indirect evidence that the audit
process worked: variables that have been previously audited could be less likely to
be error-prone in the next wave of audits because major errors have been identified
and causes of errors have been recognized and fixed. Findings from our study sug-
gested that discrepancy rates (relative to the pre-audit dataset) for most variables
were higher in the audit database than in the post-audit database. This was not
surprising: we expected more errors would be found when the auditors were actively
searching for them. Variables with low audit-determined error rates would not have
triggered a full source document review by the sites when preparing their post-audit
databases. However, it does serve as a reminder that when conducted on a random
subset of records, data audits mostly improve data quality among all patients for
select variables with systematic issues and to a lesser extent the remaining variables
among the audited patients. In ongoing work, we are considering statistical methods
that can predict errors for unaudited patients using existing audit data and update
analyses accordingly (Shepherd and Yu, 2011). Discrepancy rates for the derived
variables tended to be lower relative to discrepancy rates for the primary variables in
both the pre-audit versus audited dataset comparison and the pre- versus post-audit
comparison. Given that the derived variables were typically composite variables of
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two or more primary variables, we had anticipated that they would be more prone
to error. A closer review of the data reveals that a large number of discrepancies
in the primary variables were due to missingness in one of the two datasets. For
variables that were collected multiple times across visits, a missing entry was often
inconsequential when generating analysis variables. This reaffirmed the findings of
other studies regarding the limitation of using error rates, even those focused on key
variables, when making decisions regarding data quality (Mitchel et al. (2011); Smith
et al. (2012)). Our study design with regard to the timing of the audit implemen-
tations did not allow us to account for temporal effects. We recognize that some
corrections (e.g., entry of backlog visits) may have occurred independently from the
audit process. This was a limitation of our study and we exercise caution in making
conclusions regarding the long-term impact of data audits.

2.5 Conclusions
Our findings provide evidence that the SDV process can improve data quality,

which can in turn have an impact on epidemiological inferences, especially for variables
like the CCASAnet clinical endpoints data that had not been audited previously. We
encourage the implementation of data audits for observational studies that rely on
the extraction of study data from source documents, especially in multi-site settings.
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2.6 Appendix A

Table 2.1: Complete list of study variables with descriptions.

Variable Description Source Dataset
Pre-Audit Audited Post-Audit

birth_d Birth date tblBasic Yes Yes Yes
male Gender at birth (0-Female, 1-Male, 9-Unknown) tblBasic Yes Yes Yes
mode Probable Mode of Infection tblBasic Yes Yes Yes
aids_y AIDS dx before 1st visit tblBasic Yes Yes Yes
aids_d AIDS dx date (if aids_y=1) tblBasic Yes Yes Yes
cdcstage a CDC Stage at enrollment tblBasic Yes Yes No
whostage a WHO Stage at enrollment tblBasic Yes Yes No
aids_cl_y a Clinical AIDS dx before 1st visit tblBasic No No Yes
aids_cl_d a Clinical AIDS dx date (if aids_y=1) tblBasic No No Yes
death_y Did patient pass away? tblFollow Yes Yes Yes
death_d Death date (if death_y=1) tblFollow Yes Yes Yes
drop_d Date patient dropped from cohort tblFollow Yes Yes Yes
visit_d Clinical encounter date tblVisit Yes Yes Yes
cdcstage CDC Stage tblVisit Yes Yes Yes
whostage WHO Stage tblVisit Yes Yes Yes
cd4_d Date of CD4 lab test tblLab_CD4 Yes Yes Yes
cd4_v CD4 count value tblLab_CD4 Yes Yes Yes
rna_d Date of RNA lab test tblLab_RNA Yes Yes Yes
rna_v RNA value tblLab_RNA Yes Yes Yes
art_sd Date of ART drug start tblART Yes Yes Yes
art_ed Date of ART drug end tblART Yes Yes Yes
art_id Code representing ART drug(s) tblART Yes Yes Yes
ce_d Date of clinical outcome tblCE Yes Yes Yes

base_sex Gender at birth (0-Female, 1-Male, 9-Unknown) Derived Yes Yes Yes
base_mode Probable Mode of Infection Derived Yes Yes Yes
base_year Year of ART initiation Derived Yes Yes Yes
base_age Age at ART initiation Derived Yes Yes Yes
base_ADE Clinical AIDS at ART initiation Derived Yes Yes Yes
base_ART regimen 1st ART regimen Derived Yes Yes Yes
base_CD4 CD4 cell count at ART initiation Derived Yes Yes Yes
base_nadirCD4 Lowest CD4 cell count prior to ART initiation Derived Yes Yes Yes
base_V L Viral load at ART initiation Derived Yes Yes Yes
base_V Lundetectable Undetectable VL at ART initiation Derived Yes Yes Yes
event_death Did patient pass away? Derived Yes Yes Yes
event_ADE Did patient have post-ART clinical outcome? Derived Yes Yes Yes
time_follow Time from ART initiation to death/censoring Derived Yes Yes Yes
time_ADE Time from ART initiation to ADE/censoring Derived Yes Yes Yes
The data protocol further defining variables is available at https://www.ccasanet.org/resources/.
a In 2014, the data transfer protocol pertaining to clinical AIDS status at enrollment was updated. Certain variables were deprecated
in tblBasic and replaced with new variables. These variables are not included in comparisons of pre-audit and post-audit datasets.

Table 2.2: Overview of audit frequency by site.

Site Audited Not Audited Total
N(%) N(%)

HF-Argentina 31 (89%) 4 (11%) 35
CMH-Argentina 12 (57%) 9 (43%) 21
INI-Brazil 31 (52%) 29 (48%) 60
FA-Chile 34 (97%) 1 (3%) 35
GHESKIO-Haiti 28 (80%) 7 (20%) 35
IHSS-Honduras 30 (100%) 0 (0%) 30
HE-Honduras 30 (100%) 0 (0%) 30
INNSZ-Mexico 24 (69%) 11(31%) 35
IMTAvH-Peru 30 (86%) 5 (14%) 35
Overall 250 66 316
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Figure 2.6: Summary of reported audit findings for all audited variables.
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Table 2.3: Auditing results for each variable entry.

Total Not Total No Error - Error - Cannot be
Form Variable Entries audited Audited error diff value replace NA confirmed Error Rate

A1 A2 + A3 A4 A5 (A2+A3+A4+A5)/
(A1+A2+A3+A4+A5)

basic
male 250 5 245 242 2 0 1 1.2%
cdcstage1 35 0 35 34 1 0 0 2.9%
birth.d 250 4 246 237 7 0 2 3.7%
aids.y 164 6 158 146 9 1 2 7.6%
mode 250 28 222 192 23 0 7 13.5%
aids.d 28 6 22 18 1 3 0 18.2%
whostage1 192 157 35 27 7 0 1 22.9%

follow
death.y 226 88 138 131 5 0 2 5.1%
drop.d 30 0 30 25 0 4 1 16.7%
death.d 26 2 24 18 0 4 2 25.0%

visit
whostage2 623 616 7 7 0 0 0 0.0%
visit.d 4203 1529 2674 2157 183 211 123 19.3%
cdcstage2 1425 1084 341 232 54 16 39 32.0%

cd4
cd4.v 2607 273 2334 2090 17 155 72 10.5%
cd4.d 2607 292 2315 1875 205 155 80 19.0%

rna
rna.v 2163 285 1878 1644 27 116 91 12.5%
rna.d 2175 314 1861 1471 173 113 104 21.0%

art
art.id 644 18 626 546 17 56 7 12.8%
art.sd 645 21 624 496 56 57 15 20.5%
art.ed 467 36 431 298 46 73 14 30.9%

ce
ce.d 286 36 250 124 10 108 8 50.4%
overall 19296 4800 14496 12010 843 1072 571 17.1%

Mortality
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CD4 at ART initiation (100 vs 350)

ART initiation year (2008 vs 2006)
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Figure 2.7: Adjusted hazard ratios of mortality (a) and AIDS-defining event (b) for patients in the
pre-audit (black) and audited (red) datasets.
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Table 2.4: Adjusted hazard ratios of mortality and AIDS-defining event for all patients enrolled at
time of data audit using the pre-audit and post-audit datasets.

Mortality ADE
Pre-audit Post-audit Pre-audit Post-audit

Hazard Ratio Hazard Ratio Hazard Ratio Hazard Ratio
Gender

Female Ref Ref Ref Ref
Male 1.07 (0.95 - 1.20) 1.05 (0.93 - 1.18) 0.90 (0.79 - 1.03) 0.95 (0.84 - 1.07)

Age
20 1.09 (0.85 - 1.40) 1.00 (0.77 - 1.29) 1.19 (0.94 - 1.51) 1.05 (0.86 - 1.28)
30 0.92 (0.82 - 1.04) 0.89 (0.79 - 1.00) 1.05 (0.92 - 1.19) 0.99 (0.88 - 1.11)
40 Ref Ref Ref Ref
50 1.30 (1.21 - 1.39) 1.33 (1.24 - 1.42) 0.98 (0.88 - 1.10) 1.03 (0.94 - 1.13)
60 1.77 (1.49 - 2.11) 1.83 (1.54 - 2.18) 0.97 (0.73 - 1.28) 1.06 (0.83 - 1.34)

Clinical AIDS
No Ref Ref Ref Ref
Yes 2.06 (1.76 - 2.42) 1.53 (1.33 - 1.76) 7.11 (4.54 - 11.15) 2.06 (1.73 - 2.46)

Nadir CD4
50 1.86 (1.56 - 2.22) 1.93 (1.62 - 2.30) 1.22 (0.96 - 1.54) 1.86 (1.60 - 2.16)
100 1.43 (1.21 - 1.69) 1.46 (1.24 - 1.71) 1.11 (0.90 - 1.36) 1.54 (1.34 - 1.76)
200 1.04 (0.91 - 1.18) 1.04 (0.92 - 1.18) 0.96 (0.84 - 1.08) 1.14 (1.05 - 1.25)
350 Ref Ref Ref Ref

Initiation Year
2000 0.83 (0.70 - 0.99) 0.83 (0.69 - 0.98) 0.98 (0.82 - 1.18) 1.14 (0.97 - 1.34)
2002 0.84 (0.73 - 0.96) 0.82 (0.71 - 0.94) 0.92 (0.78 - 1.07) 1.06 (0.92 - 1.23)
2004 0.89 (0.82 - 0.98) 0.87 (0.79 - 0.95) 0.94 (0.86 - 1.02) 1.01 (0.93 - 1.08)
2006 Ref Ref Ref Ref
2008 1.08 (1.00 - 1.16) 1.07 (1.00 - 1.15) 1.06 (0.97 - 1.16) 1.08 (1.01 - 1.16)
2010 1.03 (0.84 - 1.26) 0.95 (0.78 - 1.17) 1.12 (0.90 - 1.39) 1.24 (1.05 - 1.47)
2012 0.93 (0.61 - 1.41) 0.78 (0.50 - 1.19) 1.17 (0.81 - 1.69) 1.46 (1.09 - 1.95)

ARV Class
NNRTI Ref Ref Ref Ref
Boosted PI 1.29 (1.07 - 1.55) 1.25 (1.03 - 1.52) 1.04 (0.81 - 1.34) 0.98 (0.85 - 1.15)
Other 1.09 (0.88 - 1.34) 1.15 (0.93 - 1.42) 1.02 (0.82 - 1.28) 1.10 (0.92 - 1.31)

IVDU
No Ref Ref Ref Ref
Yes 1.28 (0.89 - 1.83) 1.43 (1.01 - 2.02) 0.79 (0.55 - 1.13) 1.17 (0.88 - 1.56)
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Figure 2.8: Estimated cumulative incidence of death by site for patients in the pre-audit (black) and
post-audit (blue) datasets.
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Figure 2.9: Estimated cumulative incidence of ADE by site for patients in the pre-audit (black) and
post-audit (blue) datasets.
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CHAPTER 3

ACCOUNTING FOR DEPENDENT ERRORS IN PREDICTORS AND
TIME-TO-EVENT OUTCOMES USING ELECTRONIC HEALTH RECORDS,

VALIDATION SAMPLES, AND MULTIPLE IMPUTATION

3.1 Introduction
Routinely collected electronic health record (EHR) data are increasingly being

used for medical research. An alarming number of studies, however, are raising con-
cerns regarding the quality of EHR data and consequently misleading findings (e.g.,
Chan et al. (2010); Floyd et al. (2012); Duda et al. (2012)). Some errors, such as val-
ues falling outside specific ranges (e.g., negative CD4 counts or date of death before
enrollment), can be identified using computerized data quality checks and flagged for
chart review. Other errors are harder to detect with simple queries. For example, the
date of treatment initiation may be incorrectly recorded, but the documented date
is within the follow-up period. Furthermore, the existence and magnitude of errors
may be correlated across multiple variables. For example, if the treatment initiation
date is incorrect then lab values at the time of treatment initiation and the calcu-
lated time from initiation to some event are also likely incorrect. To identify such
errors, all relevant error-prone variables would have to be verified; however, such a
resource-intensive process may not be feasible in settings with limited funding.

An alternative to verification of all records is to perform data audits or validation
in a subset of records. This is generally done by selecting a random set of records
and verifying data accuracy for key variables. If non-trivial error rates are revealed,
one might remove the data in question or re-enter all data. These options, however,
seem unsatisfactory. A more appealing option would be to incorporate the audit or
validation data into the analysis.

The data available following an audit – an error-prone measurement for all records
and a “gold standard” measurement for a subset of records – resembles the data
one might need to correct for measurement error. While the statistical literature
regarding measurement error is substantial, most methods involving time-to-event
data focus only on covariate measurement error. These methods include regression
calibration (Prentice, 1982), corrected score methods (Nakamura, 1990; Huang and
Wang, 2000), conditional score methods (Tsiatis and Davidian, 2001), and SIMEX
(Cook and Stefanski, 1994; Li and Lin, 2003). There have also been select studies
related to time-to-event outcome measurement error, with methods corresponding to
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errors in event indicators (Richardson and Hughes, 2000; Magaret, 2008; Hunsberger
et al., 2010) or the failure time (Skinner and Humphreys, 1999; Korn et al., 2010;
Oh et al., 2018). While correlated errors in covariates and uncensored outcomes have
been previously considered (Shepherd and Yu, 2011; Shepherd et al., 2012), no existing
methods address situations with errors in both the covariates and the time-to-event
outcome. Given that errors in EHR data typically occur across multiple variables
and these errors are generally correlated, the current measurement error literature is
not equipped to handle such multidimensional errors seen in practice.

Measurement error with a validation subsample can also be thought of as a miss-
ing data problem (Little and Rubin, 2014). Specifically, the complete data are known
for all records that were audited, and the true values of certain variables are miss-
ing in records that were not audited. Because researchers typically randomly select
which records to audit, the missing data mechanism is generally missing at random
and standard methods for addressing missing data could be applicable. For example,
a multiple imputation (MI) approach could be employed by fitting models using the
complete data and imputing missing values for unvalidated records. This approach
has been implemented in previous studies for various measurement error scenarios,
including mismeasured binary (Edwards et al., 2013) and continuous (Shepherd et al.,
2012) outcomes as well as measurement error in the exposure of a time-to-event out-
come (Cole et al., 2006). Although relevant, none of this work considers the situation
where there are errors, likely correlated, in both predictors and the time-to-event
outcome. Furthermore, it does not address errors in indicators of patient eligibility
that determine whether a patient should be included in the analysis. These situa-
tions, common in practical applications of EHR data for analyses, add considerable
complexity when attempting to address measurement error.

Our goal is to obtain unbiased and efficient estimates in time-to-event analyses
using error-prone EHR data, a subsample of which has been validated. By unbiased
estimates, we mean estimates that are unbiased for what we would have obtained had
we validated the entire dataset. (Of course, bias due to other sources, e.g., informative
censoring or unmeasured confounding, may still remain after data validation. Ideally,
our methods will be flexible enough to be used with other methods for incorporating
strategies to deal with these other sources of bias.) Such methods could have a large
impact on the practical use of EHR data as they provide a means to obtaining valid
estimates while reducing research costs. In this manuscript, we describe and imple-
ment a multiple imputation-based strategy to account for correlated errors in both
predictors and time-to-event outcomes as well as analysis eligibility. We illustrate
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our approach using EHR data from a large HIV clinic, the Vanderbilt Comprehensive
Care Clinic (VCCC). The VCCC has validated all key research variables for all of
their patients, and they have preserved datasets both before and after this validation.
The fully validated data revealed errors in the original data (illustrated in Section
3.2), and can be used to see how biased estimates would have been had the data
not been validated. In addition, since we have both unvalidated and fully validated
data for all patient records, this dataset is ideal for examining the performance of our
proposed approach.

In Section 3.2, we present our motivating example: we describe the VCCC cohort,
illustrate errors in the data, and demonstrate the bias in estimates using unvalidated
data. In Section 3.3, we formalize our problem and present our strategy for obtaining
improved estimates after partial data validation. In Section 3.4, we present results of
our approach, first using a single, randomly sampled validation subset of n = 1000
VCCC records, and second across multiple randomly sampled subsets. We are able
to estimate the mean squared error of our approach as a function of validation sample
size, and to compare it to analyses that are limited to only the validated subsample.
In Section 3.5, we use a simulation study to evaluate the peformance of the TDMI
approach when the imputation model is misspecified compared to a fully specified
imputation model. In Section 3.6, we discuss our results and suggest areas for future
research. All analyses described below were performed using R Version 3.2. Analysis
code is posted at http://biostat.mc.vanderbilt.edu/ArchivedAnalyses.

3.2 Motivating example
In this study, we analyzed data on 4217 HIV-positive patients who established

care at the VCCC between 1998 and 2011. Briefly, the VCCC is an outpatient clinic
that provides primary and subspecialty care for persons living with HIV. As part of
routine treatment and care, data relevant to the patient’s clinical experience were
collected over time. This included demographic characteristics as well as laboratory
measurements, pharmacy dispensations, opportunistic infections, and vital status.
Data before enrollment was also recorded, usually during the initial visit, based on
patient recall and outside medical records. The median length of follow-up after
enrollment was 3.2 years (IQR: 1.1-6.8). The majority of patients were male (76%)
and the median age at enrollment was 38 years (IQR: 31-45).

Data at the VCCC was collected and electronically recorded by health care providers,
typically nurses and physicians. Research protocols mandated that chart reviews were
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performed for all VCCC records to validate key variables. A team of data abstrac-
tors performed the data validation. After this comprehensive chart review process,
two datasets were available. The first dataset, which we refer to as the unvalidated
dataset, contained the values entered for all 4217 records prior to the chart review.
The second dataset, which we refer to as the validated dataset, contained the recorded
values for the same 4217 records after thorough chart review. Throughout this study
we consider the validated dataset to be correct.

For this study, we considered the association between CD4 count at time of an-
tiretroviral therapy (ART) initiation and the time from ART initiation until first
AIDS-defining event (ADE). Specifically, we calculated the incidence of ADE using
Kaplan-Meier methods and the hazard ratio (HR) for a 100 cell/mm3 increase in CD4
count using a univariate Cox proportional hazards regression model. All patients in-
cluded in the analysis cohort were adults (≥ 18 years) who had initiated ART as
adults. Patients were excluded if they started ART prior to enrollment, had an inde-
terminate ART start date, or had a documented ADE prior to ART initiation. These
inclusion and exclusion criteria are common for HIV studies.

We performed the same statistical analysis for both the unvalidated and validated
datasets. The incidence of ADE was higher in the unvalidated dataset across the
entire study period. The estimated incidence of ADE at 5 years was 13.6% (95%
confidence interval [CI]: 11.4% - 15.7%) for the unvalidated dataset and 8.3% (95%
CI: 6.6% - 10.0%) for the validated dataset. A 100 cell/mm3 increase in CD4 count
was associated with a much weaker decrease in the hazard of ADE in the unvalidated
dataset (HR: 0.80; 95%CI: 0.74 - 0.86) compared to the validated dataset (HR: 0.63;
95%CI: 0.55 - 0.72).

There were many discrepancies between the unvalidated and validated datasets.
In the unvalidated dataset, 1764 patients satisfied the criteria for inclusion in the
analysis cohort. In the validated dataset, 1601 patients met all inclusion criteria. A
total of 1409 met the inclusion criteria for both analysis cohorts, suggesting 547 (13%;
355 wrongly included and 192 wrongly excluded) patients were incorrectly classified
in the unvalidated dataset. Among those patients that met inclusion criteria for both
analysis cohorts, the variables indicating ADE status were discordant for 132 (9%)
patients; 118 patients were re-classified as not having an ADE and treated as censored
at the time of their last follow-up visit while 14 patients were re-classified as having
an ADE in the validated analysis cohort. The time from ART initiation to an ADE or
end of study was incorrectly recorded for 447 (32%) patients, with a median of 1 days
late and an interquartile range (IQR) of 366 days early to 21 days late. The baseline
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Table 3.1: Comparison of variables in the unvalidated and validated datasets among the
4217 patients.

Notation Discrepancy magnitude
(see Section 3) n or median(IQR)

All patients 4217
Different ART start date S0 1745 (41.4%)

Discrepancy in ART start dates (days) U0 14 (-222, 37)
Different ADE date SE 1223 (29.0%)

Discrepancy in ADE date (days) UE -14 (-5, 165)

Met inclusion criteria in both datasets W = 1,W ∗ = 1 1409
Different ADE status D 6= D∗ 132 (9.4%)
ADE in unvalidated, no ADE in validated D∗=1, D=0 118
ADE in validated, no ADE in unvalidated D∗=0, D=1 14

Different time from ART initiation to ADE Y 6= Y ∗ 447 (31.7%)
Discrepancy in time from ART to ADE (days) Y − Y ∗ 1 (-366, 21)

Different baseline CD4 count X1 6= X∗
1 76

Different baseline CD4 (diff ART start date) S0 = 1, SX1 = 1 76
Discrepancy in baseline CD4 count UX1,0 22 (-23, 88)

Different baseline CD4 (same ART start date) S0 = 0, SX1 = 1 0
Discrepancy in baseline CD4 count UX1 –

Abbreviations: ADE, AIDS-defining event. ART, antiretroviral therapy. IQR, interquartile range.

CD4 count was also incorrect for 76 (5%) patients, with a median discrepancy of 22
cells/mm3 too high and an IQR of 23 cells/mm3 too low and 88 cells/mm3 too high.
Table 3.1 includes further details comparing the unvalidated and validated datasets.

As with most studies using EHR data, the variables used in our analyses were
primarily derived variables (e.g., baseline CD4 was determined by identifying the
laboratory measurement in one table with a date closest to the first ART initiation
date in a separate table). Discrepancies in derived variables were mostly due to errors
in the indicators and dates of ART and ADE. Among all 4217 patients, there were
1745 (41%) patients with an incorrect ART start date and 1253 (30%) patients with
an incorrect ADE (or end of follow-up) date. All discrepancies in the baseline CD4
count were due to discrepancies in the ART start date.

3.3 Our approach
In the previous section, we showed that estimates using just the unvalidated

dataset were markedly biased. These findings highlight, at least in our setting, the
importance of validating EHR data. Our goal in this study is to obtain low bias and
low variance estimates after validating only a subsample of the EHR. In this section,
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we formalize the problem analytically and describe our analysis approach.

3.3.1 Notation
Let TB denote the date of enrollment, T0 the date of ART initiation and TE the

date of first ADE. Since some patients may not have an ADE before the end of follow-
up, let TC denote the last follow-up (“end of study”) date. Using these dates, we derive
the variables corresponding to the outcome: the time from ART initiation to ADE or
end of study, Y = min(TC , TE)− T0, and an indicator of an ADE, D = I(TE ≤ TC).

Let X(t) = (X1(t), X2(t), ..., Xp(t)) denote a vector of p covariates for a pa-
tient on a given date, t. For example, let X1(t) denote CD4 count on date t.
While this notation allows each covariate to change values over time, we note that
some covariates may be time-invariant. Since we are interested in values at time
of ART initiation (T0), we define a vector of “baseline” variables as X = X(T0) =
(X1(T0), X2(T0), ..., Xp(T0)), where X1(T0) corresponds to baseline CD4 count and
X2(T0), ..., Xp(T0) correspond to the remaining baseline covariate values. Finally, let
W denote whether a patient was included in the analysis cohort. Patients were in-
cluded if they started ART after enrollment (TB ≤ T0 < TC) and if they did not
have an ADE before starting ART (T0 < TE). The quadruplet (W,X, Y,D) repre-
sents the data for our time-to-event analyses from the validated records (i.e. the gold
standard).

In our specific application, among those meeting inclusion criteria (W = 1) we
are interested in estimating the probability of an event at time t, P (TE − T0 ≤ t)
and the hazard ratio in the proportional hazards model, λ(t|X) = λ0(t)exp(βX). In
the absence of measurement error (and assuming no other sources of bias, such as
informative censoring), these can be consistently estimated using Kaplan-Meier and
Cox regression methods.

Since patient records are potentially error-prone, we use separate notation for the
data from the unvalidated records. Let the unvalidated time of ART initiation be
T ∗0 = T0 + S0U0 where S0 is the indicator of an error and U0 is the magnitude of the
error. Similarly, let the unvalidated time of ADE be defined as T ∗E = TE + SEUE

and define the end of study date in the unvalidated dataset as T ∗C = TC + SCUC .
Let the date-specific vector of p covariates in the unvalidated dataset be X∗(t) =
X(t) + SX(t)UX(t), where SX(t) is a vector of length p with indicators of errors for
covariates on date t and UX(t) is the corresponding magnitude of those errors.

The derived variables corresponding to the outcome in the unvalidated dataset are
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D∗ = I(T ∗E ≤ T ∗C) and Y ∗ = min(T ∗E, T ∗C) − T ∗0 . The unvalidated baseline predictor
variables are defined as X∗ = X∗(T ∗0 ) = X(T0 + S0U0) + SX(T ∗

0 )UX(T ∗
0 ). Let W ∗ be

an indicator for inclusion, defined as I(TB ≤ T ∗0 < T ∗C)I(T ∗0 < T ∗E). We denote the
unvalidated data used for analyses as the quadruplet (W ∗, X∗, Y ∗, D∗).

Note that our model to this point makes no assumptions regarding the distribu-
tion or the correlation of the errors. We acknowledge that the error indicators and
magnitudes may be highly dependent, as based on our experience, those records with
errors in one variable are more likely to have errors in another variable, particularly
when there are derived variables. For simplicity, we have presented error terms as
additive, but they may also be written more generally (e.g., T ∗0 = g(T0, U0, S0); for
instance, g(T0, U0, S0) = T0U

S0
0 could be used to imply a multiplicative model).

Finally, let V = 1 denote that data validation was performed for all variables.
For those records with V = 1, we have (W ∗, X∗, Y ∗, D∗) and (W,X, Y,D), whereas
for those records with V=0 we have only (W ∗, X∗, Y ∗, D∗). In our VCCC example,
V = 1 for all records, so an analyst would ignore the error-prone unvalidated data and
draw inference using only the validated data. We will consider the situation where
V = 1 for only a subsample of patients.

Note that under certain conditions regarding errors between unvalidated and vali-
dated datasets, we could draw on existing statistical methods for correcting measure-
ment error. As highlighted in the Introduction, there has been substantial work for
time-to-event outcome studies regarding covariate measurement error (X∗, Y,D) and,
to a lesser degree, measurement error in the event indicator (X, Y,D∗) or time-to-
event (X, Y ∗, D). Methods to address correlated errors in covariates and uncensored
outcomes (X∗, Y ∗) have also been considered. However, methods for simultaneously
dealing with errors in predictors, event indicators, and times-to-event (X∗, Y ∗, D∗)
have not been considered, and because of potential dependence between these errors,
it is not possible to simply sequentially apply existing methods. Furthermore, for
our motivating example, we also need to consider errors with the inclusion criteria
(W ∗, X∗, Y ∗, D∗).

3.3.2 Multiple Imputation: model fitting and time-discretization
Our strategy is to approach this as a missing data problem where the quadruplet

(W ∗, X∗, Y ∗, D∗) is available for all records and the quadruplet (W,X, Y,D) is miss-
ing for those with V = 0. This requires the construction of a model for the joint
distribution of (W,X, Y,D) conditional on (W ∗, X∗, Y ∗, D∗). The model will be fit
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using a subsample of records with V = 1; values for the remaining records (V = 0)
will be imputed using these fitted models. Therefore, the primary challenge is ob-
taining adequate models.

Consider the factorization of the distribution of (W,X, Y,D) conditional on the
quadruplet (W ∗, X∗, Y ∗, D∗):

f(W,X, Y,D|W ∗, X∗,Y ∗, D∗) = f(W |W ∗, X∗, Y ∗, D∗) f(X|W,W ∗, X∗, Y ∗, D∗) ×
f(Y |W,X,W ∗, X∗, Y ∗, D∗)f(D|W,X, Y,W ∗, X∗, Y ∗, D∗),

(3.1)

where f(·) denotes a generic probability density/mass function. With this factoriza-
tion, each component of (3.1) could be fit separately using existing data from the
subsample of records with V = 1. However, these models would be constructed using
derived variables that are functions of other error-prone variables, (T0, TE, TC , X(t)),
likely making their predictive ability poor. Furthermore, it may be difficult to incor-
porate informative time-varying covariates into these models. For example, a marked
drop in viral load is strong evidence that someone has begun treatment, but it is un-
clear how to incorporate such information into models with these derived variables.

To more closely approximate the error structure of the data, a more appro-
priate strategy might be to directly model the original variables (T0, TE, TC , X(t))
given error prone values (T ∗0 , T ∗E, T ∗C , X∗(t)). The factorization of the distribution of
(T0, TE, TC , X(t)) conditional on (T ∗0 , T ∗E, T ∗C , X∗(t)) is still challenging. Modeling the
ART start date and first ADE date may require strong distributional assumptions
that account for many patients not experiencing an event. Furthermore, one of the
variables to be modeled, X(t), contains time-varying covariates, where the number of
observations and the timing of observations varies per patient. This requires a model
that accounts for the distribution of these observations over time as well as conditions
on them in the models for the other variables.

An alternative strategy, which we adopt here and refer to as time-discretized
modeling, divides time into intervals (e.g., days, months, years) and assesses val-
ues for variables during each interval. This approach employs a well-known strategy
for modeling time-to-event data using pooled logistic regression (D’Agostino et al.,
1990). Similar approaches have been implemented with marginal structural mod-
els (Hernán et al., 2001) and ecological statistics (Turchin, 1998; McClintock et al.,
2014), where discretization is used to allow for time-varying covariates and to reduce
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computationally-intensive tasks.
Here, variables are divided into monthly intervals, indexed by m, since the date

of enrollment (m = 0). Specifically, let Am be an indicator for a patient initiating at
least one different ART drug during month m; if a patient is not on ART or continues
the same ART regimen as the previous month, they are assigned Am = 0. Let Dm be
an indicator of an ADE occurring during month m. Let Xm correspond to the most
recent covariate values observed during month m, and finally, let Cm be an indicator
that the last follow-up visit for a patient occurred during month m.

Let A = {A0,A1, ...,AMpost} designate the complete set of monthly new ART drug
indicators in the validated dataset, where Mpost denotes the longest possible length
of follow-up (in months) among all patients. The variables D, C, and X are similarly
defined. For the unvalidated dataset, we have A∗, D∗, C∗, and X ∗. This notation
implicitly assumes that the date of enrollment is correct in the unvalidated dataset;
this assumption is met in the VCCC dataset, but could be relaxed by using some
other date to anchor time.

With this framework, we can construct a model for the joint distribution of the
variables in the validated dataset (A,D, C,X ) conditional on the distribution of the
variables in the unvalidated dataset (A∗,D∗, C∗,X ∗) by decomposing it into separate
components:

f(X ,A,D, C|X ∗,A∗,D∗, C∗) =f(X|X ∗,A∗,D∗, C∗)×
f(A|X ,X ∗,A∗,D∗, C∗)×
f(D|A,X ,X ∗,A∗,D∗, C∗)×
f(C|D,A,X ,X ∗,A∗,D∗, C∗)

(3.2)

With this decomposition, we directly model discretized versions of the original
variables that are in error, rather than downstream, derived variables. By incor-
porating error-prone and corrected variables in models, we account for potential
dependencies in errors across variables. Time-varying covariates are also easier to
incorporate. For example, the probability of starting a new ART regimen in a given
month, Am, can be modeled conditional on the unvalidated indicator of starting a
new ART regimen for that month, A∗m, and time-varying covariates X such as viral
load prior to, during, and after month m. Specific implementation details are given
in the next section.

Component models can be fit using the records with validated data (i.e., those with
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V = 1) using appropriate methods (e.g., binary variables can be modeled using logistic
regression). Each person-month is treated as an independent observation. When
predicting values for the remaining records (i.e., those with V = 0), we account for
the uncertainty in the prediction model using a multiple imputation procedure. First,
we draw an independent sample of the parameter estimates of the fitted models (e.g.,
we sample from a multivariate normal distribution with the mean as the parameter
estimates and variance as the variance-covariance matrix of the parameter estimates).
Using (A∗,D∗, C∗,X ∗) and these randomly drawn parameter estimates, we impute
values of (A,D, C,X ) for all records with V = 0. From these imputed values of
(A,D, C,X ), we then derive imputed values for the variables used in our analyses,
denoted as (Ŵ , X̂, Ŷ , D̂). With this step, we “undiscretize” the imputed values;
values are converted to the unit of measurement of the original variables using a
fixed conversion. For example, an imputed ART initiation 2 months after enrollment
would be reported as 60 days after enrollment. Next, we generate a complete dataset
consisting of the true, observed values of the audited records and the predicted values
of the unaudited records, denoted as

(W comp, Xcomp, Y comp, Dcomp) =

 (Ŵ , X̂, Ŷ , D̂) if V = 0
(W,X, Y,D) if V = 1

We then repeat the process of randomly sampling parameter estimates, predicting
values, and combining datasets, until we have B complete datasets. Here, B is the
number of imputations performed. For each of the B complete datasets, we obtain
estimates using Kaplan-Meier and Cox regression methods. The parameter estimates
from these procedures are then averages across iterations. To properly account for
uncertainty in the setting of incompatible imputation and analysis models, we use
the multiple imputation variance estimator proposed by Robins and Wang (2000) to
calculate confidence intervals.

For this time-discretized modeling and imputation (TDMI) approach to yield un-
biased estimates in large samples, standard assumptions for the validity of multiple
imputation must be met (Schafer, 1999). The missing at random assumption can be
translated to our application as V ⊥⊥ (A,D, C,X )|(A∗,D∗, C∗,X ∗), or that conditional
on the observed data, selection for validation (V ) is independent of the correct values.
Another key assumption is that the imputation model, f(X ,A,D, C|X ∗,A∗,D∗, C∗),
is properly specified. The TDMI approach handles differential measurement error
through the imputation model (i.e., it requires no assumption of non-differential mea-
surement error), but covariates associated with differential error need to be correctly
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included in the model. Finally, because we are estimating parameters defined on a
continuous time scale after imputing data from models on a discrete time scale, we
assume that the discrete time scale is a good approximation to the continuous time
scale, which has been seen by others to be the case as long as the unit of discretized
time is not too coarse (e.g., D’Agostino et al. (1990)).

3.3.3 Implementation details
In this section, we highlight key simplifications and noteworthy specifications that

were made in our application of the TDMI to EHR data from the VCCC. Full model
details are in Appendix B.

First, the end of study date for each patient did not vary between the unvalidated
and validated records and thus we did not need to model C as it was perfectly predicted
by C∗. Second, while there were errors in derived predictors (e.g., baseline CD4,
baseline VL) in the unvalidated dataset, these errors were due to errors in the date of
ART initiation and there were no errors in the recorded predictors (SX = 0). Thus,
we also did not need to model X as it was perfectly predicted by X ∗. Therefore, these
simplifications allowed us to model

f(A,D|A∗,D∗, C∗,X ∗) =f(A|A∗,D∗, C∗,X ∗) f(D|A,A∗,D∗, C∗,X ∗). (3.3)

Because we were only interested in the time of first ART initiation, not all subse-
quent ART changes, we were able to model the time of first ART initiation directly.
Specifically, letA1

m = maxk≤m(Ak) be the indicator that ART had been initiated prior
to or during month m. Instead of f(A|A∗,D∗, C∗,X ∗), we used f(A1|A∗,D∗, C∗,X ∗)
as our model of ART status. This can be further simplified to

f(A1|A∗,D∗, C∗,X ∗) = f(A1
0|A∗,D∗, C∗,X ∗)

Mpost∏
m=1

f(A1
m|A1

m−1,A∗,D∗, C∗,X ∗),

(3.4)

where Pr(A1
m = 1|A1

m−1 = 1,A∗,D∗, C∗,X ∗) = 1. Note that in this model we con-
ditioned on A∗, the unvalidated vector of new ART drug indicators, rather than
A1∗ = {A1∗

0 ,A1∗
1 , ...,A1∗

Mpost
}, the unvalidated vector of the indicator of having initi-

ated ART, because A∗ is richer than A1∗ and may improve modeling (e.g., if the first
date of ART initiation in the unvalidated data is incorrect, the second date of ART
initiation in the unvalidated data might be a good candidate for the true first date
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of ART initiation). This model was fit using a pooled logistic regression model.
Although we were similarly interested in the first date of ADE, we chose to model

all ADEs (i.e., the complete vector D), rather than just focusing on the first. Unlike
ART status, the variables associated with a given ADE were not likely to differ based
on the ordering of the ADE. Because ADE at a specific time is a binary variable,
logistic regression was again used for model fitting.

Many VCCC patient records included data for months prior to enrollment; for
example, dates of ART use prior to enrollment may have been included in the pa-
tient record. It was important to include this information in the analysis (e.g., a
patient starting ART prior to enrollment does not meet analysis eligibility criteria).
Thus, the time-discretized variables included time prior to enrollment, e.g., A =
{AMpre , ...,A−1,A0,A1, ...,AMpost} where Mpre designated the longest length of pre-
enrollment follow-up among all patients.

A total of 32 covariates, X ∗, were used for the imputation models based on their
clinical relevance and a priori belief that they might be predictive of validated values.
Time-invariant covariates (calendar year of enrollment, age at first visit, and sex)
were attributed to each person-month observation. Time-varying covariates included
months since enrollment, current CD4, previous and next CD4, current viral load,
previous and next viral loads. Some patients were missing values for certain vari-
ables. For laboratory measurements, we carried forward values from months where
previous measurements were available. If there were no previous measurements to
carry forward, we included an indicator variable denoting that the value was missing.
We note that a select number of variables were only considered relevant predictors for
one of the two models. For the ART status model, additional time-varying covariates
included the unvalidated number of previous ART drug initiations up to that month
and during that month. Since the type of ADE in the unvalidated dataset was highly
predictive of the presence or absence of an ADE in the validated data, we included
dummy variables corresponding to fourteen specific ADEs in the unvalidated data for
the ADE status model. All continuous variables were modeled using restricted cubic
splines. Twenty iterations were used for the MI procedure. As a sensitivity analysis,
we also implemented our TDMI method using reduced imputation models with just
four predictor variables: sex, age at first visit, months since enrollment, and current
CD4.

There are several possible strategies for undiscretizing data, including an assign-
ment to the start of the one month interval, the end of the interval, the midpoint of
the interval, or a random timepoint within the interval. This decision is important
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because it may impact the calculated time to event, the assignment of baseline covari-
ates, or even eligibility in the analysis. In our study, we undiscretized values to the
start of the interval due to practical considerations: most ART initiations occurred
on the same day as enrollment and we wanted imputed ART initiations during that
monthly interval to map back to day 0, rather than say day 15 or 30.

For simplicity, we did not adjust for any other variables when modeling the as-
sociation between baseline CD4 and time to ADE using Cox regression. In practice,
one could adjust for relevant confounders (i.e, sex, age, baseline VL, etc.) if desired
and appropriate.

3.4 Results
For this section we applied our TDMI procedure to data from the VCCC and com-

pared its performance with estimates obtained via alternative strategies. Specifically,
we selected a simple random sample of patient records to serve as our validation sub-
sample. For the records that were not randomly selected, we ignored the validation
data (i.e., we pretended that no validation data was available). We then applied our
TDMI approach using the unvalidated data on all records together with the validation
subsample. TDMI estimates were compared to the naive pre-audit estimates using
standard methods on the unvalidated data, the post-audit estimates using standard
methods on the fully validated data, and the complete-case estimates using standard
methods for only the subset of validated records.

In Figure 3.1, we show the estimated cumulative incidence of ADE over time using
the unvalidated dataset, the fully validated dataset, the complete-case analysis using
a simple random sample of 1000 validated records, and the TDMI strategy using
the same 1000 validated records. For this particular subset, the TDMI estimates
appeared to have smaller bias as well as narrower confidence intervals compared to
the complete-case estimates. Both the complete-case and the TDMI estimates were
closer to the gold standard estimates than the naive estimates at most time points.
Specifically, the TDMI estimate of the incidence of ADE at 5 years was 8.9% (95%
CI: 7.0% - 10.8%) and the complete-case estimate was 8.2% (95% CI: 4.8% - 11.6%),
compared to the naive estimate of incidence at 5 years of 19.6% (95% CI: 17.1% -
22.1%) and the gold standard estimate of 8.3% (95% CI: 6.6% - 10.0%). Similarly,
the estimated HR for the association between a 100 cell/mm3 increase in CD4 count
and ADE was 0.66 (95% CI: 0.57 - 0.75) for the TDMI approach and 0.70 (95% CI:
0.56 - 0.89) for the complete-case approach compared to the naive estimate of 0.80
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(95%CI: 0.74 - 0.86) and the gold standard estimate of 0.63 (95%CI: 0.55 - 0.72).
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Figure 3.1: Estimated incidence of AIDS-defining event over time using unvalidated, validated, time-
discretized modeling and imputation (TDMI), and complete-case approaches. Estimates for TDMI
and complete-case approaches are based on one randomly selected iteration.

While promising, these results were based on a single validation sample. Because
we had the fully validated data on all patient records, we were able to repeat the pro-
cess many times, compare estimates to the fully validated data, and empirically study
the performance of our TDMI approach. To quantitatively compare approaches, we
calculated the difference and the squared difference between each candidate estimate
of the 5-year incidence and the log HR to their corresponding estimates based on the
complete validated data (i.e., the gold standard estimates) for 1000 replications. The
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mean difference (bias), variance, and mean squared difference (mean squared error;
MSE) for each candidate estimator (TDMI, complete-case, and naive) were then cal-
culated. In general, the strategy with the lowest MSE was considered the preferred
strategy.

Using an audit size of 1000, the MSE of the TDMI estimator for ADE incidence at
5 years was similar, but slightly lower than that of the complete-case estimator (1.5 ×
10−4 vs. 2.3 × 10−4). This result was driven by the TDMI estimator’s lower variance
(5.8 × 10−5 vs. 2.3 × 10−4), despite a larger absolute bias (-0.0098 vs. 0.0007). The
MSE for the TDMI estimator for the log HR was substantially lower than that of
the complete-case estimator (0.003 vs. 0.021). The bias and variance of the TDMI
estimator for the log HR were 0.027 and 0.002, respectively, compared with -0.020
and 0.020 for the complete-case estimator.

Our original selection of an audit size of 1000 records was chosen a priori but was
arbitrary. To assess how the TDMI approach performed for varying audit sizes, we
repeated the entire exercise for various audit sample sizes, ranging from n = 100 to
n = 4000 records. The MSEs for the estimated log HR and incidence at 5 years across
various audit sizes are shown in Figure 3.2, as well as a bias-variance decomposition of
MSEs. With validation sample sizes of 400 or greater, both the TDMI estimators and
the complete-case estimators had lower MSE than the naive estimators. For the log
HR, the TDMI estimator beat the naive estimator’s MSE with an audit sample size
of only 100 and had lower MSE than the complete-case estimator at all audit sample
sizes. When estimating the incidence of ADE at 5 years, the MSE for the TDMI
approach tended to be higher than the complete-case analysis for audit sample sizes
less than 500, but fairly similar thereafter. In general, the TDMI estimator was less
variable but more biased, particularly at the smaller audit sizes, than the complete-
case estimator.

Figure 3.2 also includes results using the TDMI approach with a reduced impu-
tation model that included fewer predictor variables. TDMI estimates of the log HR
using the reduced imputation models were similar to the original TDMI estimates,
with a slight improvement in the MSE when the audit sample size was less than 500
but higher otherwise; the MSEs remained lower relative to the complete case esti-
mator at all subset sample sizes. In contrast, the TDMI approach based on these
reduced imputation models performed worse when estimating the incidence of ADE
at 5 years. The bias of these new estimates was such that the TDMI estimator had a
higher MSE than the complete case estimator at all audit sample sizes. These results
are intuitive and highlight the challenges of model fitting at varying audit sizes. The
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original model was chosen for an audit size of 1000 records; with small audit sizes,
fitting similarly complicated models can lead to over-fitting and resulting bias, as seen
with the log HR. In contrast, in the reduced model we did not include specific types
of ADEs, which were very predictive of having any ADE; therefore, the estimated
incidence of ADE from the reduced model was more biased, likely due to poor model
specification.

3.5 Simulation
We conducted a simulation study to better understand how the TDMI approach

performs when the imputation model is misspecified. Simulated data were based on
a simplified version of the VCCC example where we are interested in the association
between a predictor variable and a time-to-event outcome and the incidence of that
outcome at a fixed timepoint.

The simulated cohort included 4000 subjects each with 100 months of follow-up.
Each subject was assigned two continuous, correlated variables, X1 and X2 drawn
from a bivariate normal distribution with mean 0, variance 1, and covariance σ.
For simplicity, these variables were time-invariant. A∗m was drawn from a Bernoulli
distribution at month m = 1, . . . , 100 with the logit probability of success equal to
−3−0.02m. D∗m was drawn from a Bernoulli distribution with the logit probability of
success equal to−5−0.02m+0.5A∗m. Am was then drawn from a Bernoulli distribution
with the logit probability of success equal to −5−0.02m−X1 +β2X2 +4A∗m+0.5D∗m.
Finally, Dm was drawn from a Bernoulli distribution with the logit probability of
success equal to −7− 0.02m− 2X1 + γ2X2 + 4D∗m + 0.5Am. The parameters (β2, γ2)
were set to (1, 2), (0.5, 1), (0.25, 0.5), and (0, 0) in different simulations to represent
varying strengths of association betweenX2 and (A,D); σ was varied between−0.25, 0
and 0.25. The dates of ART initiation, T0, and ADE, TE, were computed as the
smallest values of m with Am = 1 and Dm = 1, respectively. If Am = 0 (or similarly
Dm = 0) for all m, then T0 (similarly TE) was set to an arbitrary value bigger than
100 (e.g., 101). Records were eligible for analysis if W = I(T0 ≤ 100)I(T0 < TE) = 1.
Then Y = min(TE, 100)− T0 and D = I(TE ≤ 100). W ∗, Y ∗, and D∗ were similarly
computed using A∗ and D∗. The parameters of interest were, among those with
W = 1, ρ = P (TE−T0 ≤ 60) and β from the proportional hazards model, λ(m|X1) =
λ0(m)exp(βX1).

A subset of 1000 subjects were randomly selected to represent an audited cohort
with A and D (and hence, W,Y, and D) known; for the remaining 3000 subjects, A
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Table 3.2: Summary of simulation results for time-discretized modeling and imputation
(TDMI) parameter estimates from Cox regression with different levels of misspecification
in the imputation model.

Fixed values Cox regression parameter estimate
(β2,γ2) σ Truth Naive Fully specified Misspecified

Bias MSE Coverage Bias MSE Coverage
(1,2) −0.25 −1.14 0.00 0.007 0.0033 0.94 −0.402 0.1761 0.06
(1,2) 0 −0.90 −0.01 −0.003 0.0027 0.94 −0.415 0.1859 0.03
(1,2) 0.25 −0.73 0.00 −0.001 0.0026 0.95 −0.386 0.1607 0.04
(0.5,1) −0.25 −1.71 0.00 −0.005 0.0063 0.93 −0.322 0.1183 0.19
(0.5,1) 0 −1.52 −0.00 −0.008 0.0060 0.94 −0.311 0.1119 0.21
(0.5,1) 0.25 −1.38 −0.00 −0.010 0.0071 0.93 −0.267 0.0859 0.33

(0.25,0.5) −0.25 −2.00 −0.01 −0.004 0.0082 0.93 −0.120 0.0265 0.74
(0.25,0.5) 0 −1.86 −0.00 −0.019 0.0084 0.93 −0.133 0.0287 0.72
(0.25,0.5) 0.25 −1.76 0.00 −0.012 0.0088 0.94 −0.112 0.0239 0.76

(0,0) −0.25 −2.05 −0.00 0.002 0.0085 0.93 −0.003 0.0082 0.94
(0,0) 0 −2.08 0.01 0.022 0.0088 0.94 0.017 0.0085 0.94
(0,0) 0.25 −2.07 −0.00 0.014 0.0092 0.93 0.014 0.0091 0.93

Truth and Naive refer to asymptotic estimates of the parameter values using only validated or
unvalidated records, respectively (n=500,000).

and D (and therefore W,Y, and D) were treated as missing. A∗,D∗, X1, and X2 were
treated as known for all 4000 subjects. The TDMI procedure was implemented to
multiply impute missing values of A and D and then to derive (W,Y,D) for the 3000
subjects. Two candidate sets of imputation models were considered for the TDMI
procedure: (i) perfectly specified models for A and D that included X1 and X2, and
(ii) misspecified models that did not include X2. The parameters of interest were
estimated using Kaplan-Meier estimates and Cox regression applied to the multiply
imputed data. A total of 12 scenarios were constructed by varying the three unde-
fined parameters (σ, β2, γ2) to allow varying amounts of potential misspecification.
For each scenario, estimates and corresponding 95% confidence intervals for both pa-
rameters from both the perfectly specified and misspecified TDMI implementations
were generated for 1000 independent simulations.

Tables 3.2 and 3.3 show the bias, MSE, and coverage of the TDMI approach under
different simulation settings. When the imputation model was correctly specified,
estimates of the 60-month incidence and log HR were approximately unbiased with
coverage probabilities at or just below the nominal level (93% - 95%) as expected.
When the imputation model was incorrectly specified, absolute bias increased and
coverage decreased as the relative strength of association for the omitted covariate
increased.
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Table 3.3: Summary of simulation results for time-discretized modeling and imputation
(TDMI) parameter estimates from Kaplan-Meier estimation with different levels of mis-
specification in the imputation model.

Fixed values Kaplan-Meier estimate for P (TE − T0 ≤ 60)
(β2,γ2) σ Truth Naive Fully specified Misspecified

Bias MSE Coverage Bias MSE Coverage
(1,2) −0.25 0.77 0.84 −0.000 0.0001 0.94 −0.090 0.0084 0.00
(1,2) 0 0.79 0.84 0.001 0.0001 0.93 −0.080 0.0067 0.01
(1,2) 0.25 0.82 0.84 0.001 0.0001 0.94 −0.053 0.0031 0.13
(0.5,1) −0.25 0.82 0.84 −0.002 0.0001 0.95 −0.016 0.0004 0.75
(0.5,1) 0 0.84 0.84 −0.000 0.0001 0.94 −0.012 0.0003 0.83
(0.5,1) 0.25 0.86 0.84 −0.000 0.0001 0.95 −0.006 0.0001 0.92

(0.25,0.5) −0.25 0.84 0.84 −0.000 0.0001 0.95 −0.003 0.0001 0.93
(0.25,0.5) 0 0.85 0.84 0.001 0.0001 0.94 −0.001 0.0001 0.95
(0.25,0.5) 0.25 0.87 0.84 −0.000 0.0001 0.95 −0.002 0.0001 0.94

(0,0) −0.25 0.86 0.84 0.001 0.0001 0.94 0.000 0.0001 0.95
(0,0) 0 0.86 0.84 0.001 0.0001 0.93 0.001 0.0001 0.94
(0,0) 0.25 0.86 0.84 −0.001 0.0001 0.93 −0.001 0.0001 0.93

Truth and Naive refer to asymptotic estimates of the parameter values using only validated or
unvalidated records, respectively (n=500,000).

3.6 Discussion
Using EHR data from an HIV cohort, we have illustrated the bias that can arise

by ignoring data errors, and we have proposed a missing data analysis solution that
incorporates validation data to address multidimensional errors in time-to-event anal-
yses. To our knowledge, this is the first study to simultaneously address errors in both
predictors and outcomes in a time-to-event analysis. We were also able to address
errors in study eligibility. The TDMI approach did not outperform the complete-
case approach under all scenarios, but we are encouraged that it led to improved
estimation under certain conditions, particularly when estimating the log HR.

The TDMI procedure is subject to various assumptions generally similar to those
required for multiple imputation in standard missing data settings (Schafer, 1999).
The key missing at random assumption was easily satisfied in our example as the
audited sample was a simple random sample. This assumption can also be satisfied
in more complicated settings where subjects are sampled with known probabilities,
but will likely be violated if the validation sample is one of convenience.

Another basic assumption underlying the TDMI approach is that the imputation
model is properly specified. This requires the identification of covariates in the un-
validated dataset predictive of values in the validated dataset as well as a model that
properly specifies the relationships. This is difficult in practice. Despite our best
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efforts – the incorporation of over 30 covariates, both time-fixed and time-varying ex-
posures – estimates for our approach were still biased, especially at smaller validation
sample sizes. Results from both our reduced model TDMI and the simulation study
highlight potential challenges with model misspecification. Model overfitting can be
a problem at smaller validation sample sizes, as seen by our reduced model TDMI
out-performing the original model TDMI designed for an audit size of 1000 when es-
timating the log HR. But the reduced model was not sufficiently rich to obtain good
estimates for the incidence of ADE at modest audit sizes.

We estimated standard errors using the Robins and Wang (2000) imputation vari-
ance estimator instead of the more popular (and easier to implement) approach pro-
posed by Rubin (Little and Rubin, 2014), because of incompatibility between impu-
tation and analysis models. There were two sources of incompatibility in our setting.
First, the unit of observation was different between the imputation model (subject-
month observations) and the analysis model (subject-level observations). Second, our
study had exclusion criteria that removed observations from the analysis model that
contributed information to the imputation model. Standard errors calculated using
Rubin’s rule in our setting led to inflated standard errors and conservative confidence
intervals (e.g., coverage of 98-99% in simulations, data not shown).

We considered alternative modeling approaches (e.g., classification and regression
trees, random forests, support vector machines, and linear discriminant analysis), but
ultimately fit logistic regression models. Given the improbability of knowing, a priori,
which model will perform best for a certain setting, it might be worthwhile to add
a preliminary step that selects the most appropriate model through cross-validation
or some other model-selection procedure in the audit subsample. There is certainly
a bias versus variance trade-off with using the TDMI approach. The complete-case
analysis is unbiased but generally more variable than TDMI. We are currently study-
ing raking methods to combine potentially biased but efficient estimators like the
TDMI estimator with unbiased but less efficient complete-case estimators (Lumley
et al., 2011).

The size of the validation subsample is clearly important for the performance
of our approach. In this study, a validation subsample of approximately 200-300
records was needed to obtain estimates of the 5-year incidence of ADE with lower
MSE than the naive analysis on unvalidated data. We suspect that the high MSE
of our estimators of the incidence at smaller sample sizes was due in part to the
sparse occurrences of ADEs and their corresponding errors in the audited subset. In
contrast, the TDMI estimator of the log HR had lower MSE than the naive estimator
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with an audit sample size of only 100 records.
There is a potential loss of information from coarsening the data into time inter-

vals when fitting the imputation models. Once those values have been imputed, the
analyst must also convert the data back to the original unit of measurement. Losses
of information due to discretization to the level of months will be minimal in clinical
settings where visits typically occur no more than monthly. For example, as a sen-
sitivity analysis, we also coarsened the data from the validated records into monthly
intervals and re-estimated the incidence of ADE at 5 years for a validation subsample
of size 1000. The MSE of this discretized version of the complete-case estimator (1.7
× 10−4) was similar to both the non-discretized TDMI estimator (1.5 × 10−4) and
the complete-case estimator (2.3 × 10−4).

We acknowledge that, for the notation in Section 3.3.1, we had two variables
corresponding to an error term: an indicator of the existence of an error and the
magnitude of an error. However, in our implementation, we assume that the errors
arose from the truth plus some error. The distinction is subtle, but this means we
did not first model for the presence of any error when imputing values based on
the unvalidated data. This decision was made for practical purposes - to reduce the
number of imputation models from four to two - but may have resulted in additional
noise to values that were error-free in the unvalidated dataset.

Although our analyses focused on Kaplan-Meier and Cox regression estimates, a
strength of our multiple imputation approach is that we could have also performed
other estimation procedures. This is important because analyses of EHR data typi-
cally require addressing multiple problems simultaneously (e.g., confounding, missing
data, and informative censoring). Methods for dealing with these other sources of
bias could potentially be applied to the multiply imputed dataset without substantial
modification. Of course, the performance of our approach may vary across analysis
methods, as we saw in this study.

Future research will consider improving the efficiency of these methods by applying
principles of two-phase designs, such as oversampling exposures or events that are rare
or considered a priori to be more error-prone.
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Figure 3.2: Mean square errors (top row), bias (middle row), and variance (bottom row) for estimates
of the log hazard ratio (first column) and 5-year incidence of AIDS-defining event (second column)
from each candidate estimator (including a TDMI estimator where fewer predictor variables are
included in the imputation model) and various audit sizes. Estimates are calculated as the average
of 1000 replications.
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3.7 Appendix B
3.7.1 Details of model specification

In this section, we provide additional details regarding our modeling procedure.
Recall, we fit two logistic regression models to model ART status and the occurrence
of ADEs each month in the validated dataset (Web Table 1).

In this dataset, the longest length of post-enrollment follow-up (Mpost) was 167
months. The maximum number of months prior to enrollment was set at 100. For
each patient, only data from months prior to their month of last follow-up was in-
cluded. To assign dates into monthly intervals for a given patient, we subtracted the
date of enrollment (TB), divided by 30.437 to convert days into months, and rounded
down to the nearest integer. For example, the length of follow-up after enrollment
(in months) was calculated as

⌊
max(TV )−TB

30.437

⌋
, where b.c denotes rounding down to the

nearest integer and TV corresponds to patients’ visit dates. Therefore, Cm = 1 if
m =

⌊
max(TV )−TB

30.437

⌋
and Cm = 0 otherwise. The variables Am,Dm, and Xm, and their

unvalidated versions, were calculated similarly.

Each logistic regression model was fit separately using different covariates. Re-
stricted cubic splines with three knots were used for all continuous variables; knot
locations were set using the defaults of the Design package in R. The specification of
the linear predictors for each of the two models is provided on the next page (Models
1 and 2). For simplicity, we simply list the linear terms (i.e., the splines are implicit).
If a model could not be fit (due to small sample size), we re-ran without splines and
started removing variables one at a time; previous and future lab measurements as
well as specific ADEs with low frequencies were removed first. We continued to re-
move variables until the logistic regression model converged or we were left with an
intercept-only model. All statistical analyses were performed using R version 3.4.1.
For the models corresponding to ART status (Model 1), observations occurring after
the month of ART initiation in the validated dataset

(
m >

⌊
min(TA)−TB

30.4

⌋ )
were ex-

cluded.

A description of all variables used in each of the two models is provided in 3.5. All
variables from the unvalidated dataset are denoted using an asterisk. For variables
where a value may be missing (e.g., a patient may not a documented CD4 count
prior to a given month), we recorded a value of 0 and added an indicator variable
for whether the value was observed. Many variables were included in both fitted
models, including the current month and the following from the unvalidated dataset:

43



new ART drug initiation in a given month, ADE in a given month, sex, year of
enrollment, and CD4/VL measurements at different time points.

The model corresponding to ART status (Models 1) included additional indica-
tor variables from the invalidated dataset corresponding to a new drug initiation in
the previous month, next month, or at any time during follow-up. For the model
corresponding to ADE events (Model 2), indicator variables from the unvalidated
dataset corresponding to specific ADEs (cytomegalovirus, encephalopathy/dementia,
candidiasis, histoplasmosis, Kaposi’s sarcoma, lymphoma, mycobacterium avian com-
plex, pneumocystis pneumonia, pneumonia, retinitis, tuberculosis, wasting, weight
loss, and other) as well as any ADE recorded prior to month m were included; ad-
ditionally, an indicator variable from the validated dataset corresponding to a new
ART drug initiation the current month was also included. An additional indicator
term is included in Models 1 and 2 for the month of enrollment, as splines did not
provide the flexibility to model the high occurrence of new ART drug initiations or
ADE events during month of enrollment.

Table 3.4: Models

Model 1: ART status f(Am|A∗,D∗, C∗,X ∗,maxk<m(Ak) = 0) = logit−1(LPART )

Model 2: ADE f(Dm|Am,A∗,D∗, C∗,X ∗) = logit−1(LPADE)
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Model 1: ART status

LPART =β0 + β1A∗m + β2A∗m−1 + β3A∗m+1 + β4 max
k<M

(A∗k) + β5D∗m+

β6X ∗Sex + β7X ∗EnrollY ear + β8X ∗EnrollAge+

β9X ∗CD4,m + β10X ∗CD4.time,m + β11X ∗CD4.missing,m+

β12X ∗V L,m + β13X ∗V L.time,m + β14X ∗V L.missing,m+

β15X ∗CD4,m−1 + β16X ∗CD4.missing,m−1 + β17X ∗V L,m−1 + β18X ∗V L.missing,m−1+

β19X ∗Next.CD4,m + β20X ∗Next.CD4.missing,m+

β21X ∗Next.V L,m + β22X ∗Next.V L.missing,m+

β23m+ β24mzero

Model 2: ADE

LPADE =δ0 + δ1Am + δ2A∗m + δ3D∗m + δ4 max
k<m

(D∗k) + δ5XADE.NODxDate+

δ6X ∗Sex + δ7X ∗EnrollY ear + δ8X ∗EnrollAge+

δ9X ∗CD4,m + δ10X ∗CD4.time,m + δ11X ∗CD4.missing,m+

δ12X ∗V L,m + δ13X ∗V L.time,m + δ14X ∗V L.missing,m+

δ15X ∗CD4,m−1 + δ16X ∗CD4.missing,m−1 + δ17X ∗V L,m−1 + δ18X ∗V L.missing,m−1+

δ19X ∗Next.CD4,m + δ20X ∗Next.CD4.missing,m+

δ21X ∗Next.V L,m + δ22X ∗Next.V L.missing,m+

δ23X ∗ADE.Candid,m + δ24X ∗ADE.Cyto,m + δ25X ∗ADE.Enceph,m+

δ26X ∗ADE.Histo,m + δ27X ∗ADE.KS,m + δ28X ∗ADE.Lymph,m+

δ29X ∗ADE.MAC,m + δ30X ∗ADE.Meningitis,m + δ31X ∗ADE.PCP,m+

δ32X ∗ADE.Pneumonia,m + δ33X ∗ADE.Retinitis,m + δ34X ∗ADE.TB,m+

δ35X ∗ADE.Wasting,m + δ36X ∗ADE.Weight,m + δ37X ∗ADE.Other,m+

δ38m+ δ39mzero
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Table 3.5: Description of variables included in prediction models.

Variable Description Model 1 Model 2
m current month Yes Yes
mzero indicator for month 0 Yes Yes
A∗

m new ART drug initiation in the current month (yes/no) Yes Yes
A∗

m−1 new ART drug initiation in the previous month (yes/no) Yes No
A∗

m+1 new ART drug initiation in the next month (yes/no) Yes No
maxk<M (A∗

k) an indicator for any ART initiation at any time Yes No
D∗

m documented ADE in month m (yes/no) Yes Yes
maxk<m(D∗

k) any ADE recorded prior to month m (yes/no) No Yes

X ∗
Sex sex Yes Yes
X ∗

EnrollY ear year of enrollment Yes Yes
X ∗

CD4,m CD4 count at month m Yes Yes
X ∗

CD4.missing,m an indicator of no CD4 count prior/during month m Yes Yes
X ∗

CD4.time,m months since CD4 count was last measured Yes Yes
X ∗

CD4,m−1 CD4 count at month m− 1 Yes Yes
X ∗

CD4.missing,m−1 an indicator of no CD4 count prior/during month m− 1 Yes Yes
X ∗

Next.CD4,m next CD4 count after month m Yes Yes
X ∗

Next.CD4.missing,m an indicator of no CD4 count after month m Yes Yes
X ∗

V L,m log viral load measurement at month m Yes Yes
X ∗

V L.missing,m log viral load measurement prior/during month m Yes Yes
X ∗

V L.time,m months since log viral load was last measured Yes Yes
X ∗

V L,m−1 log viral load at month m− 1 Yes Yes
X ∗

V L.missing,m−1 an indicator of no log viral load prior/during month m− 1 Yes Yes
X ∗

Next.V L,m next log viral load after month m Yes Yes
X ∗

Next.V L.missing,m an indicator of no log viral load after month m Yes Yes
X ∗

ADE.NODxDate any ADE recorded without a specific diagnosis date (yes/no) No Yes
X ∗

ADE.Cyto,m indicator variable for cytomegalovirus No Yes
X ∗

ADE.Enceph,m indicator variable for encephalopathy/dementia No Yes
X ∗

ADE.Candid,m indicator variable for candidiasis No Yes
X ∗

ADE.Histo,m indicator variable for histoplasmosis No Yes
X ∗

ADE.KS,m indicator variable for Kaposi’s sarcoma No Yes
X ∗

ADE.Lymph,m indicator variable for lymphoma No Yes
X ∗

ADE.MAC,m indicator variable for mycobacterium avian complex No Yes
X ∗

ADE.Mengitis,m indicator variable for meningitis No Yes
X ∗

ADE.P CP,m indicator variable for pneumocystis pneumonia No Yes
X ∗

ADE.P neumonia,m indicator variable for pneumonia No Yes
X ∗

ADE.Retinitis,m indicator variable for retinitis No Yes
X ∗

ADE.T B,m indicator variable for tuberculosis No Yes
X ∗

ADE.W asting,m indicator variable for wasting No Yes
X ∗

ADE.W eight,m indicator variable for weight loss No Yes
X ∗

ADE.Other,m indicator variable for other No Yes

Am new ART initiation in the current month (validated dataset) No Yes
Abbreviations: ADE, AIDS-defining event. ART, antiretroviral therapy.
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3.7.2 Additional figures
The following plots illustrate concepts discussed in the original manuscript, but

not included due to space constraints. Figure 3.3 is an extension of Figure 3.1 in the
main text, plotting the estimated incidence of AIDS-defining events over time for six
replications.
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Figure 3.3: Estimated incidence of AIDS-defining events over time using unvalidated, validated, time-
discretized modeling and imputation (TDMI), and complete-case approaches for six replications with
a subsample of size 1000.
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(a) Profile of the unvalidated dataset (N=4217)
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(b) Profile of the validated dataset (N=4217)

Figure 3.4: Cohort profiles for unvalidated and validated datasets.

49



CHAPTER 4

A TUTORIAL FOR IMPLEMENTING THE MULTIPLE IMPUTATION
VARIANCE ESTIMATOR PROPOSED BY ROBINS AND WANG WITH

EXAMPLES AND R CODE

4.1 Introduction
Multiple imputation is a popular statistical method used to account for both miss-

ing data and measurement error. With the increasing availability and popularity of
statistical software packages containing imputation functions (e.g., mi, aRegImpute,
and mice in R), researchers of varying statistical backgrounds are now able to incorpo-
rate multiple imputation procedures in their analyses. Unfortunately, these analyses
are often performed by investigators with limited statistical understanding of how
multiple imputation works and the assumptions being made. This unfamiliarity with
the procedures being implemented may potentially lead to invalid inferences.

An imputation variance estimator originally proposed by Rubin (Little and Rubin,
2014) has become popular due to its ease of implementation. However, this variance
estimator has been shown to be biased when the imputation model is misspecified
or if there is incompatibility between the imputation model and the analysis model
(Robins and Wang, 2000). Incompatibility can arise when assumptions differ between
the analysis and imputation models, or when subjects used in the analysis model are
a subset of those used in the imputation model. Incompatibility between imputation
and analysis models frequently occurs in many practical analyses and can lead to
substantially biased variance estimates.

One example of incompatibility leading to biased variance estimation arises from
the use of MI to address errors in variables (Cole et al. (2006); Shepherd et al. (2012);
Edwards et al. (2013)). Given that observational data from electronic health records
(EHRs) are often incomplete and error-prone, data validation is necessary for correct
inference. However, data validation of all patient records is usually not feasible, and
instead a random subsample of records may be validated. If the validation subsample
is a random sample, then the unobserved validated values are missing at random,
and in the validated subsample one can model the association between the validated
variables and the unvalidated variables, and from this model multiply impute missing
validated values for the unvalidated records. This multiple imputation procedure can
result in unbiased estimation if imputation models are properly specified. Analyses
using EHR data typically incorporate inclusion/exclusion criteria to determine what
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records will be included in analyses. Frequently, imputation is performed prior to
record exclusion, or record exclusion is based on imputed values. When this happens,
the imputation model is a super-set of the analysis model, the two models are therefore
incompatible, and the standard variance formula for MI estimators tends to over-
estimate the true variance.

Fortunately, Robins and Wang (2000) (RW) derived an alternative approach for
estimating the variance of MI estimators that is able to obtain asymptotically un-
biased estimates of the variance in settings with misspecification or incompatibility.
While this RW imputation variance is fairly well known among statisticians doing
methods research in missing data, it has been rarely implemented and seems to be
almost unknown by most analysts. Compared to Rubin’s variance estimator, RW is
complex and requires additional calculations from both the imputer and analyst. In
their original manuscript, Robins and Wang wrote that they “hope that, in the fu-
ture, software developers will create packages” to implement their approach. Hughes,
Sterne, and Tilling (HST) implemented the RW approach for some simple scenarios
and showed via simulations that RW out-performed Rubin’s rules (RR) with moder-
ate sample sizes (Hughes et al., 2016). Although HST’s paper was helpful in clarifying
RW, they provided no code for their analyses or simulations. Unfortunately, eighteen
years after RW’s publication, no existing software packages implement RW, and to
our knowledge, there is not even any publicly available code.

The goal of this manuscript is to make this Robins and Wang variance estima-
tor more accessible to future implementors of multiple imputation procedures. We
provide several examples of increasing complexity and provide corresponding R code
to illustrate how to incorporate RW with different imputation models and analy-
sis models. In the first example, we provide R code to reproduce the RW variance
estimate calculation for one of the scenarios in the HST manuscript with linear re-
gression imputation and a subgroup analysis model. The second example includes
a joint imputation model for two frequently missing variables, a logistic regression
analysis model, and a non-static inclusion criteria (i.e., the post-imputation analysis
dataset contains different subjects for each imputation). The third example corre-
sponds to the simulation study performed in an earlier chapter where we implemented
our time-discretized modeling and imputation approach and performed analyses using
Cox regression and Kaplan-Meier.
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4.2 Rubin’s variance estimator
Suppose we have a dataset of n subjects with missing values. For the k = 1, . . . ,m

imputed datasets, we estimate βk, our parameter of interest and σ2
k the corresponding

model variance estimate. The usual imputation variance estimate proposed by Rubin
is defined as:

1
M

∑
k

σ̂2
k = 1

M

∑
k

σ2
k +

(
1 + 1

M

) 1
M − 1

∑
k

(βk − β̄)2

As mentioned in the introduction, this variance estimator may be biased if there is
misspecification in the imputation model or incompatibility between the imputation
and analysis models.

The total variance from Rubin’s approach can be decomposed into three smaller
components: a within-variance component

(
1
M

∑
k
σ2
k

)
, a component representing the

between-variance
(

1
M−1

∑
k

(βk − β̄)2
)
, and an extra simulation variance component(

1
M∗(M−1)

∑
k

(βk − β̄)2
)
.

A closer investigation of these components reveals the limitations of Rubin’s ap-
proach when there is incompatibility. This is most notable for the the within-variance
component. Recall, this component represents a measure of variability caused by the
fact that we are taking a sample rather than the entire population. It is calculated
based on the sample used in the analysis dataset. However, it does not take into
consideration the contributions from the imputation model. Thus, for say a logistic
regression model where there is a mean-variance relationship, this component will not
change regardless of the size of the dataset used for imputation. This leads to in-
flated total variance estimates as the incompatibility between imputation and analysis
models increases.

4.3 Robins and Wang variance estimator
In the section below, we review how the Robins and Wang imputation variance

estimator is calculated. For additional details, we recommend reviewing the original
RW manuscript or the HST manuscript.

Suppose we have a dataset of n subjects with missing values. Our p parameter
imputation model is fit by estimating θ among the subjects with non-missing values
and we generate m imputation datasets. For those k = 1, . . . ,m imputed datasets, we
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estimate βk, our parameter of interest. The Robins and Wang imputation variance
estimate Γ is defined as:

Γ = 1
n
τ−1∆(τ−1)T , where (4.1)

∆ = Ω + κΛκT + 1
n
{κdTi ūi + (κdTi ūi)T}, (4.2)

Ω = 1
n

n∑
i=1

ūTi ūi, (4.3)

Λ = 1
n
dTi di, (4.4)

κ = 1
n ∗m

n∑
i=1

m∑
k=1

(ui(θ̂, β̂k))TSmis,ki , and (4.5)

ūi = 1
m

m∑
k=1

(ui(θ̂, β̂k)) (4.6)

There are four terms (Smis, d, u, and τ) in the formula above that need to be
calculated based on either the imputation model or the analysis model. We briefly
describe these components and their calculation below.

4.3.1 Imputation model components
Two of these components (Smis, d) are derived from the imputation model. Both

values are based on the score function and its derivative for the imputation model.
Let V = 1 denote that the observation was observed and V = 0 denote that the
observation was imputed. For the kth imputation, Smis,k is a n × p matrix corre-
sponding to the score of each parameter in the imputation model evaluated for each
observation that was imputed. However, if the observation was not imputed, a value
of 0 is assigned.

Smis,ki =
[
∂logf(yi|X, θ)

∂θ
|θ=θ̂

]
× I(Vi = 0) (4.7)

To calculate d, we first take derivates of the score function with respect to each
parameter, evaluate at each observation that was not imputed, and take the average.
We then take the inverse of this p × p matrix, multiply by the transpose of Sobs, and
multiply by -1. Note that Sobs is the score evaluated for each observation that was
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not imputed; imputed values are assigned a value of 0.

dTi = −
[

1
n

n∑
i=1

I(Vi = 1)× ∂

∂θT

(
∂logf(yi|X, θ)

∂θ

)
|θ=θ̂

]−1

× Sobsi

T (4.8)

4.3.2 Analysis model components
The final two components (u, τ) are derived from the analysis model. Both

values are based on the estimating equations pertaining to the analysis model. For
each imputation, we evaluate the estimating equation ui(θ̂, β̂k) for all subjects in the
analysis dataset. To calculate τ , we take the derivative of the estimating equation
and evaluate as:

τ = − 1
nm

n∑
i=1

m∑
k=1

(
∂uki
∂βT

)
|β=β̂k (4.9)

4.3.3 Additional Intuition
The multiple components behind the Robins and Wang imputation variance esti-

mator can be intimidating. To gain intuition, it might be helpful to first consider a
simple scenario where we estimate the variance for an analysis where all values are
observed and thus no imputation. When no values are imputed, ∆ = Ω since:

Smis = 0 =⇒ κ = 0 =⇒ ∆ = Ω

Suppose we had a linear regression analysis model for the association between two
variables, Y and X. Thus, ui = Xi(Yi − Xiβ) and τ = 1

n

∑n
i=1 X

T
i Xi. Our variance

estimate is:

Γ = 1
n
τ−1Ω(τ−1)T

= 1
n

( 1
n

∑
XT
i X

)−1 1
n

∑
Xi(Y −Xiβ)Xi(Y −Xiβ)

( 1
n

∑
XT
i Xi

)−1

=
(∑

XT
i Xi

)−1∑
Xi(Y −Xiβ)(Y −Xiβ)Xi

(∑
XT
i Xi

)−1

=
(∑

XT
i Xi

)−1∑
XiV ar(Yi)Xi

(∑
XT
i Xi

)−1
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We recognize this as the robust variance estimator for linear regression. In fact,
the Robins and Wang variance estimator calculates the robust variance estimator
when there is no imputed data.

When data are imputed, ∆ 6= Ω since Smis 6= 0. As a result, our variance estimator
calculation is no longer as simple as calculating the robust variance estimate based
on the analysis model. This should make sense given the uncertainty from imputing
values in addition to the uncertainty of generating estimates based on a sample. To
better understand what is going on, it may be helpful to slightly re-arrange the Robins
and Wang variance estimator as follows:

Γ = 1
n
τ−1∆(τ−1)T

= 1
n
τ−1Ω(τ−1)T +

1
n
τ−1κΛκT (τ−1)T +

1
n
τ−1

( 1
n
{κdTi ūi + (κdTi ūi)T}

)
(τ−1)T

It should be emphasized that the second and third terms are calculated using
components from both the imputation and analysis models. This contrasts with
the calculation for the variance estimator proposed by Rubin that is based solely on
the analysis model. This is advantageous when there is incompatibility between the
imputation and analysis models.

4.4 Example 1: HST simulation
In their manuscript, HST calculated the Robins and Wang imputation variance

estimator for four different scenarios of misspecification and incompatibility between
imputation and analysis models. The R code provided below generates the simulation
dataset described in their manuscript and reproduces the RW calculations for their
first scenario. Please note that we have modified some notation for clarity.

4.4.1 Example 1: R code for data generation
Briefly, a hypothetical dataset contains 1000 subjects and five variables – natural

log of insulin index (Y), weight (X), sex (Z1=0 for males, Z1=1 for females) age

55



(Z2), and height (Z3). One variable, weight, has observations missing completely
random for 60% of males; weight observations are available for all women. Data were
generated based on the following model:

Z1 ∼ Bernoulli (π)
Z2, Z3 ∼ N(α0 + α1 ∗ Z1,Σ)

X ∼ ζ0 + ζ1Z1 + ζ2Z2 + ζ3Z3 + λerrorw

Y ∼ γ0 + γ1X + γ2Z1 + γ3Z2 + ωerrorl

where π = 0.4577, α0 = (25.02, 1.774), α1 = (0, 0), Σ =
[

0.5521 0.001574
0.001574 0.003705

]
,ζ0 =

-32.98, ζ1 = 0, ζ2 = -0.01566, ζ3 = 65.38, λ=12.29, γ0 = 1.854, γ1=0.01119, γ2 = 0,
γ3 =0.08003, ω=0.7887, and errorw, errorl are normal error terms.

#Set seed for reproducibility
set.seed(455)
#Load relevant packages

require(mvtnorm)

#Fixed values
obs<-1000
pi<-0.4577
alpha0<-c(25.02,1.774)
alpha1<-c(0,0)
Sigma<-matrix(c(0.5521,0.001574,0.001574,0.003705),2,2)
zeta<-c(-32.98,0,-0.01566,65.38)
gamma<-c(1.854,0.01119,0,0.08003)
lambda<-12.29
omega<-0.7887
error_w<-rnorm(obs)
error_l<-rnorm(obs)
prob.missing<-0.6
Nimpute<-50 #Number of imputations

#Generate values
z1<-rbinom(obs,1,pi)
z2<-z3<-NULL
for (i in 1:obs){

z23<-rmvnorm(1, mean=alpha0 + z1[i]*alpha1,sigma=Sigma)
z2[i]<-z23[,1]; z3[i]<-z23[,2]

}

X<-as.matrix(data.frame(1,z1,z2,z3))%*%t(t(zeta)) + lambda*error_w
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Y<-as.matrix(data.frame(1,X,z1,z2))%*%t(t(gamma)) + omega*error_l

#Randomly set X values to missing
X.miss<-ifelse(z1==1,0, rbinom(obs,1,prob.missing))

#Original dataset
ID<-1:obs
dat<-data.frame(ID,Y,X,z1,z2,z3)
dat$Intercept<-1
dat$X<-ifelse(X.miss==1,NA,dat$X)

4.4.2 Example 1: R code for imputation model
Suppose that an imputer was instructed to implement a multiple imputation pro-

cedure to impute the missing weight measurements. For this procedure, the imputer
fit a linear regression model with Y, Z1, Z2, and Z3 as covariates using the obser-
vations with complete data. For each imputation, the imputer accounted for both
parameter uncertainty and random noise in the predictions.

#Fit linear regression model using complete observations
mod.impute<-glm(X~Y+z1+z2+z3,data=dat,family="gaussian")
impute.vars<-c("Intercept","Y","z1","z2","z3")
impvar_n<-length(impute.vars)

#Function to impute values
ImputationFn<-function(mod,datty){

vars<-c("Intercept",all.vars(formula(mod)[-2]))
newdatmat<-datty[,vars]

#Account for parameter uncertainty
#Re-draw from a multivariate normal distribution with mean and variance
#as the parameter estimates and cov matrix from the regression model.
desmatrix<-rmvnorm(1, mean=mod$coefficients, sigma=vcov(mod))
linpred<-as.vector(desmatrix%*%t(newdatmat))

#Account for random noise
#Randomly sample from the residuals
resid.y<-mod$residuals
imputed.values<-linpred +

as.numeric(sample(resid.y,length(linpred),replace=TRUE))
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return(imputed.values)
}

#Replace missing values with imputed value
dat.imputed<-dat
dat.imputed$Imputed<-with(dat.imputed,ifelse(is.na(X),1,0))

imputed.values<-ImputationFn(mod.impute,dat.imputed)
dat.imputed$X<-with(dat.imputed,ifelse(is.na(X),imputed.values,X))

4.4.3 Example 1: R code for analysis model
Now, suppose that the analyst is interested in estimating the association between

log of the insulin index (Y ) and weight (X) among males only (Z1 = 0) by fitting a
linear regression model that adjusts for Z2. It should be noted that there is incompat-
ibility between the imputation model and the analysis model since the imputations
were generated using observations from both males and females while the analysis
model is based on just males. The following code demonstrates how to fit this analy-
sis model as well as extract each of the components from the analysis model that are
necessary to compute the Robins and Wang imputation variance estimator.

dat.analysis<-dat.imputed[z1==0,] #males only
mod.analysis<-glm(Y~X + z2,data=dat.analysis,family="gaussian")
analy.vars<-names(mod.analysis$coef)
analy.vars<-ifelse(analy.vars=="(Intercept)","Intercept",analy.vars)

4.4.4 Example 1: R code for RW component calculations based on imputation model
The imputer needs to calculate and supply two datasets based on the score func-

tion of the imputation model, Smis and d. The following code contains a function
that will calculate and output Smis and d for a linear regression imputation model
for a single continuous variable. These calculations are performed for each imputation.

RW_Components_Imputation_Fn<-function(mod.impute){

#Need to estimate sigma and calculate predicted values from output
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sigma.est<-var(mod.impute$residuals)
pred.values<-predict(mod.impute,newdata=dat.imputed)

#Evaluate score function with respect to all parameters in the model
#This includes the the variance!
S_u<-(dat.imputed$X-pred.values)*dat.imputed[,impute.vars]/sigma.est
S_sigma<-0.5*(-1/sigma.est+ (dat.imputed$X-pred.values)^2/sigma.est^2)

#Preliminary matrix that indicates missingess for each subject
ImputedMat<-matrix(dat.imputed$Imputed==1,nrow(S_u),ncol(S_u),byrow=FALSE)
NOTImputedMat<-1-ImputedMat

###############################################################
#Calculation of S_mis -- component from imputation model
#Output a dataset that is the evaluated score function for imputed obs
###############################################################
S_u_imp<-S_u*ImputedMat
S_sigma_imp<-ifelse(dat.imputed$Imputed==1,S_sigma,0)
S_mis_imp<-cbind(S_u_imp,S_sigma_imp)

###############################################################
#Calculation of D -- component from imputation model
###############################################################
S_u_orig<-S_u*NOTImputedMat
S_sigma_orig<-ifelse(dat.imputed$Imputed==1,0,S_sigma)
S_orig<-cbind(S_u_orig,S_sigma_orig)

S2_uu<-matrix(NA,nrow(dat.imputed),length(impute.vars))
S2_uu<-(-1/sigma.est*

t(dat.imputed[dat.imputed$Imputed==0,c(impute.vars)])%*%
t(t(dat.imputed[dat.imputed$Imputed==0,c(impute.vars)])))

S2_usigma<-(-1/sigma.est^2*
t(dat.imputed[dat.imputed$Imputed==0,c(impute.vars)])%*%
(dat.imputed$X-pred.values)[dat.imputed$Imputed==0])

S2_sigmasigma<-(.5/sigma.est^2-(dat.imputed$X-pred.values)^2/sigma.est^3)

S2_sigmasigma<-ifelse(dat.imputed$Imputed==1,0,S2_sigmasigma)
D.inv<-matrix(0,impvar_n+1,impvar_n+1)
D.inv[1:impvar_n,1:impvar_n]<-S2_uu/nrow(dat.imputed)
D.inv[1:impvar_n,impvar_n+1]<-apply(S2_usigma,1,mean)/nrow(dat.imputed)
D.inv[impvar_n+1,1:impvar_n]<-apply(S2_usigma,1,mean)/nrow(dat.imputed)
D.inv[impvar_n+1,impvar_n+1]<-mean(S2_sigmasigma)
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Dmat<-solve(D.inv)
d_t<-((-1)*Dmat)%*%t(S_orig)
d<-t(d_t)

return(list(S_mis_imp,d))
}

4.4.5 Example 1: R code for RW component calculations based on analysis model
The analyst needs to calculate and supply two datasets, u and τ . The following

code contains a function that will calculate and output u and τ for a linear regression
analysis model. These calculations are performed for each imputation.

RW_Components_Analysis_Fn<-function(mod.analysis){
analysis.predict<-predict(mod.analysis)

###############################################################
#Calculation of u
#Evaluate the estimating equation for each observation
###############################################################
U_imp_pre<-dat.analysis[,analy.vars]*

matrix((dat.analysis$Y-analysis.predict),
dim(dat.analysis[, analy.vars]))

aa<-cbind(dat.analysis$ID,U_imp_pre)
colnames(aa)<-c("ID",colnames(U_imp_pre))
bb<-merge(dat.imputed[,c("ID","Imputed")],aa,by="ID",all=T)
U_imp<-bb[,colnames(U_imp_pre)]
U_imp[is.na(U_imp)]<-0

###############################################################
#Calculation of tau
#Take derivative of the est eq. and evaluate for each observation
###############################################################
tau_imp<-t(dat.analysis[,analy.vars])%*%t(t(dat.analysis[,analy.vars]))

return(list(U_imp,tau_imp))
}
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4.4.6 Example 1: R code for RW multiple imputation variance calculation
The above components are calculated using one imputed dataset. The follow-

ing code provides an outline for calculating the variance estimator across multiple
imputations. For this example, the dataset was imputed 50 times. We output the
variance estimates for the RW variance estimator and Rubin’s variance estimator for
comparison.

#Set seed for reproducibility
set.seed(455)
#Initialize select variables

U_imp_sum<-0
kappa_sum<-0
tau_sum<-0
analysis.est<-analysis.se<-NULL

#Impute values, perform analyses, and
#Calculate the relevant components necessary for RW for each imputation
for (p in 1:Nimpute){

#Replace missing values with imputed value
dat.imputed<-dat
dat.imputed$Imputed<-with(dat.imputed,ifelse(is.na(X),1,0))
imputed.values<-ImputationFn(mod.impute,dat.imputed)
dat.imputed$X<-with(dat.imputed,ifelse(is.na(X),imputed.values,X))

#Create analysis dataset based on inclusion criteria
#Perform linear regression
dat.analysis<-dat.imputed[z1==0,] #males only
mod.analysis<-glm(Y~X + z2,data=dat.analysis,family="gaussian")
analy.vars<-names(mod.analysis$coef)
analy.vars<-ifelse(analy.vars=="(Intercept)","Intercept",analy.vars)

#Capture estimates and corresponding SE from each imputation
analysis.est[p]<-mod.analysis$coef["X"]
analysis.se[p]<-sqrt(diag(vcov(mod.analysis))["X"])

#Evaluate all four components for a given imputation
ImputationComponents<-RW_Components_Imputation_Fn(mod.impute)
AnalysisComponents<-RW_Components_Analysis_Fn(mod.analysis)
S_mis_imp<-ImputationComponents[[1]]
d<-ImputationComponents[[2]] #Only need to calculate d once
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U_imp<-AnalysisComponents[[1]]
U_imp[is.na(U_imp)]<-0
tau_imp<-AnalysisComponents[[2]]

#Create summations of certain components across imputations
U_imp_sum<-U_imp_sum+U_imp
tau_sum<-tau_sum+tau_imp

#Calculate kappa for a given imputation
#Note that S_mis_imp does not change across imputations
kappa_imp<-t(U_imp)%*%t(t(S_mis_imp))
#Create summation for kappa across imputations
kappa_sum<-kappa_sum+kappa_imp

}
############################################################### #
#Combine components together to calculate Robins and Wang variance estimator
############################################################### #

u_bar<-U_imp_sum/Nimpute
u_bar<-t(t(u_bar))

omega<-(t(u_bar)%*%t(t(u_bar)))/(obs)
kappa<-t(t(kappa_sum/(obs*Nimpute)))

alpha<-(t(d)%*%d)/obs

delta<-omega + kappa%*%alpha%*%t(kappa) +
(1/obs)*(kappa%*%t(d)%*%u_bar + t(kappa%*%t(d)%*%u_bar))

tau<-tau_sum/(Nimpute*obs)
GAMMA<-(1/obs)*t(t(solve(tau)))%*%delta%*%t(solve(tau))

#Save SE estimates to calculate CIs!
RobinsWangSE<-sqrt(diag(GAMMA)["X"])
RubinSE<-sqrt( mean(analysis.se^2)+ (Nimpute+1)/Nimpute*var(analysis.est))

#Output imputation estimate for parameter
mean(analysis.est)

## [1] 0.01101867

#Output variance estimates for RW and Rubin (X 1000)
RobinsWangSE^2 *1000
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## X
## 0.008527562

RubinSE^2 * 1000

## [1] 0.01429272

4.4.7 Example 1: Results
In this example, the imputation estimate for the weight coefficient was 0.0110 with

corresponding variance using Robins and Wang’s approach, 0.0085. This estimate was
smaller than the estimated variance based on Rubin’s approach, 0.0143. Please note
that due to small variance sizes, the values reported were multipled by 1000.

To compare our findings with those provided in the HST manuscript, we repeated
the simulation 2500 times. The mean estimates for the weight coefficient (0.0113 vs.
0.0112) and Rubin variance (0.0122 vs. 0.0123) were similar to those reported in the
HST manuscript. We note that the empirical variance (0.0073 vs. 0.0007) and mean
estimated RW variance (0.0073 vs. 0.0007) are higher than those reported in the
original manuscript by a factor of 10. However, given that the coverage estimates
for both the RW (0.948 vs. 0.948) and RR (0.986 vs. 0.990) approaches are nearly
identical to those reported in the manuscript, we suspect that there was a typo in the
HST paper and our results are accurate.

For this example, the imputation variance estimator proposed by Robins and
Wang had better coverage and was closer to the empirical variance estimate than the
estimated based on Rubin’s approach. This is not surprising given the incompatibility
between the imputation and analysis models.
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4.5 Example 2: EHR example
In Chapter 2, we discussed source data verification (SDV) for a subset of electronic

health records and the impact on corresponding data analyses. For that study, we
maintained a pre-audit dataset containing the originally entered values for all records
and an audited dataset containing updated values for a subset of records based on the
SDV. Given a dataset with measurement error and a validation subsample, we can
consider this a missing data problem that can be addressed using multiple imputation.

We now use this framework to demonstrate that the Robins and Wang variance
estimator can be calculated in settings beyond the simplified scenario described in
the first example. In the following example, we increase the percentage of missing
values to 75%, we impute values for multiple variables (including continuous and
binary variables), and we use a logistic regression analysis model. Additionally, we
add a practical consideration that is common for many analyses using observational
datasets - a non-static exclusion criteria. Inclusion and exclusion criteria are non-
static when they are based on an imputed variable. In these settings, a subject may
be excluded in some imputation iterations but not others.

4.5.1 Example 2: R code for data generation
For this example, suppose we have a dataset containing 4000 electronic health

records with four key variables: two continuous, correlated variables, X1 and X2,
drawn from a bivariate normal distribution with mean 0, variance 1, and covariance
−0.25; a continuous variable A∗ drawn from a normal distribution with mean 1 and
variance 1, and a binary variable D∗ drawn from a Bernoulli distribution with the logit
probability of success equal to −3 + 0.5A∗. Suppose A∗, D∗ are error-prone versions
of the actual variables of interest, A, D. A was drawn from a Normal distribution
with mean equal to −X1 + 0.5X2 + 0.9A∗ + 0.5D∗ and variance 2. Finally, D is
drawn from a Bernoulli distribution with the logit probability of success equal to
−5.5−2X1 +X2 +5D∗+0.5A. Note that we assume that there are no data errors for
the other two variables, X1 and X2. Note also that we sample A and D conditional on
their error-prone counterparts, A∗ and D∗, for ease of properly specifying the model.

A subset of 1000 subjects were randomly selected to represent an audited cohort
with (A, D) known; for the remaining 3000 subjects, A, D were treated as missing.
X1 and X2 were treated as known for all 4000 subjects.
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set.seed(455)

#Load relevant packages
require(mvtnorm)

#Fixed values
obs<-4000
n.sample<-1000
ID<-rep(1:obs)
XYcov<-(-0.25)
Xvar<-1
Yvar<-1
Astar.var<-1
A.var<-1
beta.star<-c(1,0,0)
gamma.star<-c(-3,0,0,0.5)
beta<-c(0,-1,0.5,.9,0.5)
gamma<-c(-5.5,-2,1,0.0,5.0,0.5)
Nimpute<-50 #Number of imputations
exclusionthreshold<-2

#Generate values
#Covariates X and Y

XY<-rmvnorm(obs, mean=c(0,0),sigma=matrix(c(Xvar,XYcov,XYcov,Yvar),2,2))
X<-XY[,1]
Y<-XY[,2]
Xmat<-cbind(1,X,Y)
rownames(Xmat)<-ID
colnames(Xmat)<-c("Intercept","X","Y")

####################################
#Unvalidated data
####################################
#A*

A.star<-rnorm(obs,Xmat%*%beta.star,Astar.var)
#D*

LP.D.star<-Xmat%*%gamma.star[1:ncol(Xmat)] +
A.star*gamma.star[length(gamma.star)]

p.D.star<-exp(LP.D.star)/(1+ exp(LP.D.star))
#Indicator of event (D*) at time t
D.star<-rbinom(obs,1,p.D.star)

####################################
#Validated data
####################################
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#A
LP.A<-Xmat%*%beta[1:ncol(Xmat)] + A.star*beta[ncol(Xmat)+1] +

D.star*beta[ncol(Xmat)+2]
A<-rnorm(obs,LP.A,A.var)

#D
LP.D<-Xmat%*%gamma[1:ncol(Xmat)] + A.star*gamma[ncol(Xmat)+1] +

D.star*gamma[ncol(Xmat)+2] +A*gamma[ncol(Xmat)+3]
p.D<- exp(LP.D)/(1+ exp(LP.D))
#Indicator of event (D) at time t
D<-rbinom(obs,1,p.D)

#Randomly sample records to represent audited cohort
ChooseSubset<-sample(1:obs,n.sample,replace=F)
sampled<-as.numeric((1:obs)%in%ChooseSubset)

#Original dataset
dat<-dat.original<-data.frame(ID,X,Y,A.star,D.star,A,D)
dat$Intercept<-1
dat$A<-ifelse(sampled==0,NA,dat$A)
dat$D<-ifelse(sampled==0,NA,dat$D)

4.5.2 Example 2: R code for imputation
In this setting, we specify a joint imputation model for (A, D) by fitting a linear

regression model for A conditional on A∗,D∗, X1 and X2 and a logistic regression
model for D conditional on A∗, D∗, X1, X2, and A using the subset of 1000 audited
records. For each imputation, the imputer accounted for both parameter uncertainty
and random noise in the predictions.

dat.imputed<-dat
dat.imputed$Imputed<-as.numeric(sampled==0)
#Fit linear regression model using complete observations

modA<-glm(A~X+Y+A.star+D.star,data=dat,family="gaussian",y=FALSE,model=FALSE)
modD<-glm(D~X+Y+A.star+D.star+A,data=dat,family="binomial",y=FALSE,model=FALSE)

#Function to impute values
ImputationFn<-function(mod,datty){
vars<-c("Intercept",all.vars(formula(mod)[-2]))
newdatmat<-datty[,vars]
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#Account for parameter uncertainty
#Re-draw from a multivariate normal distribution with mean and variance
#as the parameter estimates and cov matrix from the regression model.

desmatrix<-rmvnorm(1, mean=mod$coefficients, sigma=vcov(mod))
linpred<-as.vector(desmatrix%*%t(newdatmat))

if (mod$family[1]=="binomial"){ return(linpred)}
if (mod$family[1]=="gaussian"){
#Account for random noise
#Randomly sample from the residuals

resid.y<-mod$residuals
imputed.values<-linpred

+ as.numeric(sample(resid.y,length(linpred),replace=TRUE))
}
return(imputed.values)

}

#Replace missing balues with imputed value
imputed.A<-ImputationFn(modA,datty=dat.imputed)
dat.imputed$A[sampled==0]<-imputed.A[sampled==0]
imputed.LP.D<-ImputationFn(modD,datty=dat.imputed)
imputed.D<-rbinom(length(imputed.LP.D),1,

exp(imputed.LP.D)/(1+exp(imputed.LP.D)))
dat.imputed$D[sampled==0]<-imputed.D[sampled==0]

4.5.3 Example 2: R code for analysis model
To estimate the association between a predictor variable A and a binary outcome

D, we fit a logistic regression analysis model using the imputed dataset. Note that
for this analysis we exclude subjects with A ≤ 2. Thus, some records incorporated
in the imputation model are not included in the analysis model. It should be noted
that there is incompatibility between the imputation model and the analysis model
since the imputations were generated using observations from all subjects while the
analysis model was based on just those with an imputed value of A > 2. The follow-
ing code demonstrates how to fit this analysis model.

#Generate dataset where obs meet inclusion criteria
dat.analysis<-dat.imputed[dat.imputed$A>exclusionthreshold,]
mod.analysis<-glm(D~A,data=dat.analysis,family="binomial")
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analy.vars<-names(mod.analysis$coef)
analy.vars<-ifelse(analy.vars=="(Intercept)","Intercept",analy.vars)

4.5.4 Example 2: R code for RW component calculations based on imputation model
The imputer needs to calculate and supply two datasets based on the score func-

tion of the imputation model, Smis and d. The following code contains several func-
tions. The first two functions evaluate the score function or its derivative for each
subject. We then expand the function that was provided in the first example to cal-
culate and output the two components (Smis and d) for the RW variance estimator
from the imputation model. Here, we allow for a joint imputation model and the
variable being imputed can be binary or continuous. This function is intended to be
used for each imputation.

#Function to evaluate score function
#Code here works when imputation model is linear or logistic regression
S_u_function<-function(datty,mod.impute,imputedvar){

imputemod.vars<-c("Intercept",all.vars(formula(mod.impute)[-2]))

if (mod.impute$family[1]=="gaussian"){
sigma.est<-var(mod.impute$residuals)
pred.values<-predict(mod.impute,newdata=datty)
S_u_1<-(imputedvar-pred.values)*datty[,imputemod.vars]/sigma.est
S_sigma_1<-0.5*(-1/sigma.est+ (imputedvar-pred.values)^2/sigma.est^2)
S_u<-cbind(S_u_1,S_sigma_1)
modelvarcount<-length(imputemod.vars)+1 #Account for sigma

}

if (mod.impute$family[1]=="binomial"){
#pred.values is actually predicted LP
pred.values<-predict(mod.impute,newdata=datty,returnvar="linpred")
S_u<-datty[,imputemod.vars]*

(imputedvar-exp(pred.values)/(1+exp(pred.values)))
modelvarcount<-length(imputemod.vars)

}
return(S_u)
}

#Function to evaluate derivative of score function
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#Code here works when imputation model is linear or logistic regression
S2_function<-function(datty,mod.impute){

imputemod.vars<-c("Intercept",all.vars(formula(mod.impute)[-2]))
impvar_n<-length(imputemod.vars)

if (mod.impute$family[1]=="gaussian"){
sigma.est<-var(mod.impute$residuals)
pred.values<-predict(mod.impute,newdata=datty)

S2_uu<-matrix(NA,nrow(datty),length(imputemod.vars))
S2_uu<-with(datty,(-1/sigma.est*t(datty[Imputed==0,c(imputemod.vars)])%*%

t(t(datty[Imputed==0,c(imputemod.vars)]))))
S2_usigma<-with(datty,(-1/sigma.est^2*t(datty[Imputed==0

,c(imputemod.vars)])%*%(X-pred.values)[Imputed==0]))
S2_sigmasigma<-sum(with(datty,ifelse(Imputed==1,0,

1/(2*sigma.est^2)-(X-pred.values)^2/sigma.est^3)))
S2_mod<-matrix(0,impvar_n+1,impvar_n+1)
S2_mod[1:impvar_n,1:impvar_n]<-S2_uu/nrow(datty)
S2_mod[1:impvar_n,impvar_n+1]<-apply(S2_usigma,1,mean)/nrow(datty)
S2_mod[impvar_n+1,1:impvar_n]<-apply(S2_usigma,1,mean)/nrow(datty)
S2_mod[impvar_n+1,impvar_n+1]<-S2_sigmasigma/nrow(datty)

}
if (mod.impute$family[1]=="binomial"){

ImputeX<-datty[,imputemod.vars]
#pred.values is actually predicted LP
pred.values<-predict(mod.impute,newdata=datty,type="link")
S2_mod<-matrix(NA,ncol(ImputeX),ncol(ImputeX))
constant.term<-exp(pred.values)/(1+exp(pred.values))^2
for (matrow in 1:ncol(ImputeX)){

for (matcol in 1:ncol(ImputeX)){
temp<-(-1)*(ImputeX[,matrow])*((ImputeX[,matcol]))*constant.term
temp[datty$Imputed==1]<-0
S2_mod[matrow,matcol]<-sum(temp)/length(datty$ID)

}
}

}
return(S2_mod)

}

#Function that calculates and outputs the required components from imputation model
#Updated from Example 1 to allow for joint imputation models
RW_Components_Imputation_Fn<-function(){
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#Evaluate score function with respect to all parameters in the models
S_u_mod1<-S_u_function(dat.imputed,modA,dat.imputed$A)
S_u_mod2<-S_u_function(dat.imputed,modD,dat.imputed$D)
S_u<-data.frame(S_u_mod1,S_u_mod2)

#Preliminary matrix that indicates missingess for each subject
ImputedMat<-matrix(dat.imputed$Imputed==1,nrow(S_u),ncol(S_u),byrow=FALSE)
NOTImputedMat<-1-ImputedMat

###############################################################
#Calculation of S_mis -- component from imputation model
#Output a dataset that is the evaluated score function for imputed obs
###############################################################
S_mis_imp<-S_u*ImputedMat

###############################################################
#Calculation of D -- component from imputation model
###############################################################
S_orig<-S_u*NOTImputedMat
S2_mod1<-S2_function(dat.imputed,modA)
S2_mod2<-S2_function(dat.imputed,modD)
n_S2mod1<-ncol(S2_mod1)
n_S2mod2<-ncol(S2_mod2)
n_S2mod<-n_S2mod1+n_S2mod2

S2<-matrix(0,n_S2mod,n_S2mod)
S2[1:n_S2mod1,1:n_S2mod1]<-S2_mod1
S2[(n_S2mod1+1):n_S2mod,(n_S2mod1+1):n_S2mod]<-S2_mod2

Dmat<-solve(S2)
d_t<-((-1)*Dmat)%*%t(S_orig)
d<-t(d_t)

return(list(S_mis_imp,d))
}

4.5.5 Example 2: R code for RW component calculations based on analysis model
The analyst needs to calculate and supply two datasets, u and τ . The following

code contains a function that will calculate and output u and τ for a logistic regression
analysis model. Note that our analysis model for this example (logistic regression) is
different than the analysis model in the first example (linear regression). As a result,
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the code to calculate u and τ has been changed. These calculations are performed
for each imputation.

RW_Components_Analysis_Fn<-function(){
analysis.predict<-predict(mod.analysis,type="response")

###############################################################
#Calculation of u
#Evaluate the estimating equation for each observation
###############################################################
U_imp_pre<-dat.analysis[,analy.vars]*

matrix((dat.analysis$D-analysis.predict),
dim(dat.analysis[, analy.vars]))

aa<-cbind(dat.analysis$ID,U_imp_pre)
colnames(aa)<-c("ID",colnames(U_imp_pre))
bb<-merge(dat.imputed[,c("ID","Imputed")],aa,by="ID",all=T)
U_imp<-bb[,colnames(U_imp_pre)]
U_imp[is.na(U_imp)]<-0

###############################################################
#Calculation of tau
#Take the derivative of the estimating equation and evaluate for each obs
###############################################################
tempdat<-dat.analysis[,analy.vars]
#pred.values is actually predicted LP
analysis.predLP<-predict(mod.analysis,newdata=tempdat,type="link")
tau_imp<-matrix(NA,ncol(tempdat),ncol(tempdat))
rownames(tau_imp)<-colnames(tau_imp)<-colnames(tempdat)
constant.term<-exp(analysis.predLP)/(1+exp(analysis.predLP))^2
for (matrow in 1:ncol(tempdat)){

for (matcol in 1:ncol(tempdat)){
temp<-(-1)*(tempdat[,matrow])*((tempdat[,matcol]))*constant.term
tau_imp[matrow,matcol]<-(-1)*sum(temp)

}
}
return(list(U_imp,tau_imp))

}

4.5.6 Example 2: R code for RW multiple imputation variance calculation
The above components are calculated using one imputed dataset. The following

code provides an outline for calculating the variance estimator across multiple impu-
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tations. For this example, the dataset was imputed 50 times. We output the variance
estimates for the RW variance estimator and RR variance estimator for comparison.

#Initialize select variables
U_imp_sum<-0
kappa_sum<-0
tau_sum<-0
analysis.est<-analysis.se<-analysisN<-NULL

for (p in 1:Nimpute){
#Replace missing values with imputed value
dat.imputed<-dat
dat.imputed$Imputed<-as.numeric(sampled==0)

imputed.A<-ImputationFn(modA,datty=dat.imputed)
dat.imputed$A[sampled==0]<-imputed.A[sampled==0]
imputed.LP.D<-ImputationFn(modD,datty=dat.imputed)
imputed.D<-rbinom(length(imputed.LP.D),1,exp(imputed.LP.D)/

(1+exp(imputed.LP.D)))
dat.imputed$D[sampled==0]<-imputed.D[sampled==0]

#Create analysis dataset based on inclusion criteria
#Perform logistic regression
dat.analysis<-dat.imputed[dat.imputed$A>exclusionthreshold,]
mod.analysis<-glm(D~A,data=dat.analysis,family="binomial")
analy.vars<-names(mod.analysis$coef)
analy.vars<-ifelse(analy.vars=="(Intercept)","Intercept",analy.vars)

#Capture estimates and corresponding SE from each imputation
analysis.est[p]<-mod.analysis$coef["A"]
analysis.se[p]<-sqrt(diag(vcov(mod.analysis))["A"])

#Evaluate all four components for a given imputation
ImputationComponents<-RW_Components_Imputation_Fn()
AnalysisComponents<-RW_Components_Analysis_Fn()
S_mis_imp<-ImputationComponents[[1]]
d<-ImputationComponents[[2]] #Only need to calculate d once
U_imp<-AnalysisComponents[[1]]
U_imp[is.na(U_imp)]<-0
tau_imp<-AnalysisComponents[[2]]

#Create summations of certain components across imputations
U_imp_sum<-U_imp_sum+U_imp
tau_sum<-tau_sum+tau_imp
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#Calculate kappa for a given imputation
kappa_imp<-t(U_imp)%*%t(t(S_mis_imp))
#Create summation for kappa across imputations
kappa_sum<-kappa_sum+kappa_imp

#Save the number of observations in the analysis dataset
analysisN[p]<-nrow(dat.analysis)

}
############################################################### #
#Combine components together to calculate Robins and Wang variance estimator
############################################################### #

u_bar<-U_imp_sum/Nimpute
u_bar<-t(t(u_bar))

omega<-(t(u_bar)%*%t(t(u_bar)))/(obs)
kappa<-t(t(kappa_sum/(obs*Nimpute)))

alpha<-(t(d)%*%d)/obs

delta<-omega + kappa%*%alpha%*%t(kappa) +
(1/obs)*(kappa%*%t(d)%*%u_bar + t(kappa%*%t(d)%*%u_bar))

tau<-tau_sum/(Nimpute*obs)
GAMMA<-(1/obs)*t(t(solve(tau)))%*%delta%*%t(solve(tau))

#Save SE estimates to calculate CIs!
RobinsWangSE<-sqrt(diag(GAMMA)["A"])
RubinSE<-sqrt( mean(analysis.se^2)+ (Nimpute+1)/Nimpute*var(analysis.est))

#Output imputation estimate for parameter
mean(analysis.est)

## [1] 1.081653

#Output variance estimates for RW and Rubin
RobinsWangSE^2

## A
## 0.0101567

RubinSE^2

## [1] 0.01374821
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4.5.7 Example 2: Results
The imputation estimate for the coefficient was 1.0817 with corresponding variance

using Robins and Wang’s approach, 0.0102. For comparison, the estimated variance
based on Rubin’s approach was 0.0137. Across 50 imputations, the average analysis
dataset size was 1044 after excluding subjects with A ≤ 2. The smallest and largest
analysis datasets were 989 and 1091 subjects, respectively.

When we repeated the simulation for this example 2500 times, the mean RW vari-
ance estimate (0.0861) was smaller than the mean RR variance estimate (0.1152). For
comparison, the empirical variance estimate was (0.0068). The imputation variance
estimator proposed by Robins and Wang had better coverage (0.9556 vs. 0.9968)
and was closer to the empirical variance estimate than the estimate based on Rubin’s
approach. These findings suggest a large discrepancy between the RW and RR vari-
ance estimates when the percentage of missing observations is high (75%) and a small
proportion of observations are included in the analysis model (26.1%).

To better compare the performance of the two variance estimators, we expanded
the simulation to include different validation subsample sizes (n= 500, 1000, 1500,
2000, 2500, 3000, 3500, 4000) as well as different inclusion thresholds (A > {−∞,-1,
-0.5, 0, 0.5, 1, 1.5, 2, 2.5, 3}). For each inclusion threshold, we calculated the average
size of the corresponding analysis dataset that remained after subjects were excluded.
The average analysis dataset size varied from 524 to 4000. For each simulation, we
calculated 95% Wald confidence intervals using the RW imputation variance and the
RR imputation variance estimates. Coverage estimates based on 2500 simulations
using both RR (Table 4.1) and RW (Table 4.2) for all 80 original combinations of
validation subsample sizes and inclusion thresholds are provided in Appendix C. To il-
lustrate how both imputation variance estimators perform as the validation subsample
and amount of incompatibility changes, we generated heat maps (Figure 4.1) corre-
sponding to the confidence interval coverage using RW and RR for each combination.
Coverage estimates were interpolated by smoothing across all possible combinations
of validation sample size and analysis dataset size. The coverage probability gets
higher for confidence intervals calculated using Rubin’s imputation variance estima-
tor as more subjects are excluded from the analysis dataset and more observations
are imputed.
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(a) Rubin
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(b) Robins and Wang

Figure 4.1: Coverage estimates for 95% Wald confidence intervals calculated using Rubin or Robins
& Wang variance estimates for combinations of validation subsample sizes and analysis dataset sizes.
Plots were generated for combinations of 8 validation subsample sizes (n= 500, 1000, 1500, 2000,
2500, 3000, 3500, 4000) and 10 different inclusion thresholds (A > {−∞,-1, -0.5, 0, 0.5, 1, 1.5, 2, 2.5,
3}. For each inclusion threshold, we calculated the average of the corresponding analysis dataset
that was generated. Coverage estimates were interpolated using smoothing for all other values.
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4.6 Example 3: TDMI example
In Chapter 3, we proposed a time-discretized modeling and imputation (TDMI)

approach to simultaneously account for errors in both predictor and time-to-event
outcome variables. In the example from that chapter, the available data for all sub-
jects is error-prone and validated data corresponding to the same variables is available
for a subset of subjects. This again is a setting with missing data that can be ad-
dressed using multiple imputation. For this TDMI approach, imputation models were
based on person-month observations that were generated by discretizing person-level
data into monthly intervals for key variables. After imputation, observations were
“undiscretized” and analysis models were based on person-level observations. For
that study, we were interested in time-to-event analyses using both Cox regression
and Kaplan-Meier estimators.

In the original analysis for this study, we calculated confidence intervals based
on RW’s variance estimator. This decision was motivated by the incompatibility be-
tween the imputation and analysis models as a result of differences in the unit of
observation (person vs. person-month) and subjects excluded in the analysis model.
As part of this analysis, we also conducted a simulation study to assess the impact
of misspecification in the imputation model. Considering this simulation involved
the implementation of the RW variance estimator in a complex study design - time-
discretized data, joint imputation models, non-static exclusion criteria, and time-to-
event outcomes - we provide here the statistical code to reproduce a portion of this
simulation.

4.6.1 Example 3: R code for data generation
Simulated data were based on a simplified version of the dataset described in Chap-

ter 3 where we were interested in the association between a predictor and a time-to-
event outcome and the incidence of that outcome at a fixed timepoint. The simulated
cohort included 4000 subjects each with 100 months of follow-up. Each subject was
assigned two continuous, correlated variables, X1 and X2 drawn from a bivariate
normal distribution with mean 0, variance 1, and covariance −0.25. For simplicity,
these variables were time-invariant. A∗m was drawn from a Bernoulli distribution at
month m = 1, . . . , 100 with the logit probability of success equal to −3− 0.02m. D∗m
was drawn from a Bernoulli distribution with the logit probability of success equal to
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−5−0.02m+0.5A∗m. Am was then drawn from a Bernoulli distribution with the logit
probability of success equal to −5−0.02m−X1 + 0.5X2 + 4A∗m + 0.5D∗m. Finally, Dm
was drawn from a Bernoulli distribution with the logit probability of success equal to
−7− 0.02m− 2X1 +X2 + 4D∗m + 0.5Am.

For all 4000 subjects, we derive several variables for analysis. For example, in
the original study, we were interested in the time from treatment initiation to the
first event. We are interested in the number of months between the first instance of
Am = 1 and Dm = 1. T0 and TE are computed as the smallest values of m with
Am = 1 and Dm = 1, respectively. If Am = 0 (or similarly Dm = 0) for all m, then
T0 (similarly TE) was set to an arbitrary value bigger than 100 (e.g., 101). Then
Y = min(TE, 100) − T0 and D = I(TE ≤ 100). Records were eligible for analysis if
W = I(T0 ≤ 100)I(T0 < TE) = 1. W ∗, Y ∗, and D∗ were similarly computed using
A∗ and D∗. Since X1 and X2 are time invariant, they stay the same for each subject.
The parameters of interest were, among those with W = 1, P (TE − T0 ≤ 60) and β
from the proportional hazards model, λ(m|X1) = λ0(m)exp(βX1).

A subset of 1000 subjects were randomly selected to represent an audited cohort
with A and D (and hence, W,Y, and D) known; for the remaining 3000 subjects, A
and D (and therefore W,Y, and D) were treated as missing. A∗,D∗, X1, and X2 were
treated as known for all 4000 subjects. The TDMI procedure was implemented to
multiply impute missing values of A and D and then to derive (W,Y,D) for the 3000
subjects. The imputation models were correctly specified models for A and D that
included X1 and X2. The parameters of interest were estimated using Kaplan-Meier
estimates and Cox regression applied to the multiply imputed data.

set.seed(455)

#Load relevant packages
require(plyr)
require(survival)
require(mvtnorm)
require(MASS)
require(rms)
require(data.table)

#Fixed values
n<-4000
n.sample<-1000
beta.unval<-c(-3,-0.02,0,0)
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gamma.unval<-c(-5,-0.02,0,0,0.5)
beta<-c(-5,-0.02,-1,0.5,4,0.5)
gamma<-c(-7,-0.02,-2,1,0.0,4.0,0.5)
XYcov<-(-0.25)
Xvar<-1
Yvar<-1
maxtime<-time<-100 #total number of months
times<-round((0:maxtime)*30.437/365.25,3)
times<-times[c(-1,-length(times))] #vector of timepoints in month intervals
evaltime<-5 #timepoint of interest in KM analysis
CoxVar<-"X" #variable name of key parameter in cox analysis
Nimpute<-20

#Generate values
ID<-rep(1:n,time)
ID<-paste("A",formatC(rep(1:n,time),

width=6,format='f',digits=0,flag='0'),sep="")
Intercept<-rep(1,n)

#Covariates X and Y
XY<-rmvnorm(n, mean=c(0,0),sigma=matrix(c(Xvar,XYcov,XYcov,Yvar),2,2))
X<-XY[,1]
Y<-XY[,2]
Xmat<-cbind(1,sort(rep(1:maxtime,n)),X,Y)
colnames(Xmat)<-c("Intercept","time","X","Y")

####################################
#Unvalidated data
####################################
#A*

LP.A.unval<-Xmat%*%beta.unval
p.A.unval<- exp(LP.A.unval)/(1+ exp(LP.A.unval))
#Indicator of A at time t
e.A.unval<-rbinom(n*maxtime,1,p.A.unval)
A.star<-matrix(e.A.unval,n,maxtime,byrow=FALSE)

#D*
LP.D.unval<-Xmat%*%gamma.unval[1:4] + e.A.unval*gamma.unval[5]
p.D.unval<-exp(LP.D.unval)/(1+ exp(LP.D.unval))
#Indicator of event (D) at time t
e.D.unval<-rbinom(n*time,1,p.D.unval)
D.star<-matrix(e.D.unval,n,maxtime,byrow=FALSE)

####################################
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######Validated data
####################################
#A

LP.A<-Xmat%*%beta[1:4] + e.A.unval*beta[5] + e.D.unval*beta[6]
p.A<- exp(LP.A)/(1+ exp(LP.A))
#Indicator of A at time t
e.A<-rbinom(n*maxtime,1,p.A)
A<-matrix(e.A,n,maxtime,byrow=FALSE)

#D
LP.D<-Xmat%*%gamma[1:4] + e.A.unval*gamma[5] +

e.D.unval*gamma[6]+e.A*gamma[7]
p.D<- exp(LP.D)/(1+ exp(LP.D))
#Indicator of event (D) at time t
e.D<-rbinom(n*maxtime,1,p.D)
D<-matrix(e.D,n,maxtime,byrow=FALSE)

#Randomly sample records to represent audited cohort
ChooseSubset<-sample(1:n,n.sample,replace=F)
sampled<-as.numeric((1:n)%in%ChooseSubset)

#Combine generated values to create a person-month dataset of SIMULATED values
dat.simulated<-data.frame(ID,sampled,cbind(sort(rep(1:maxtime,n)),

Intercept,X,Y,as.vector(A.star),as.vector(D.star)),
as.vector(A),as.vector(D))

colnames(dat.simulated)<-c("ID","sampled","time","Intercept","X","Y",
"A.star","D.star","A","D")

#Original dataset
dat.simulated<-dat.simulated[order(dat.simulated$ID,dat.simulated$time),]
alldata<-dat.simulated
#Set values to missing for A and D for the records that were not audited
alldata$A[alldata$sampled==0]<-NA
alldata$D[alldata$sampled==0]<-NA

alldata$AGE_AT_LAST_VISIT<-maxtime*30.437/365.25

#The data as simulated + imputed is person-month data
#For analysis, we want to analysize person-level data of time-to-event outcomes
#The following function undiscretizes data and creates one observation per subject
BuildAnalysisDat<-function(dat){

#Create variables corresponding to imputed A,D
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#Assign new value if imputed; Assign original value if not imputed
dat$A.imputed<-dat$A
dat$D.imputed<-dat$D
dat$A.imputed[dat$sampled==0]<-as.vector(dat$pred.A)[dat$sampled==0]
dat$D.imputed[dat$sampled==0]<-as.vector(dat$pred.D)[dat$sampled==0]

#For each person, determine first month that imputed A=1
FirstAdat<-data.frame(setDT(dat[dat$A.imputed==1 &

is.na(dat$A.imputed)==F,c("ID","time")])[, lapply(.SD, min),
by = dat[dat$A.imputed==1 & is.na(dat$A.imputed)==F,
c("ID","time")]$ID])

colnames(FirstAdat)<-c("ID","FirstAmonth.imp")
#For each person, determine first month that imputed D=1
FirstDdat<-data.frame(setDT(dat[dat$D.imputed==1,c("ID","time")])

[, lapply(.SD, min), by = dat[dat$D.imputed==1,c("ID","time")]$ID])
colnames(FirstDdat)<-c("ID","FirstDmonth.imputed")
#Determine last month of observation for subjects (i.e. censoring month)
CensorTimedat<-data.frame(setDT(dat[c("ID","time")])

[, lapply(.SD, max), by = dat[,c("ID","time")]$ID])
colnames(CensorTimedat)<-c("ID","maxtime")

#Merge new person-level variables with other time-invariant covariates
#Create person-level dataset
ImputedDat1<-join(FirstAdat,FirstDdat,type="full")
ImputedDat2<-join(ImputedDat1,CensorTimedat,type="full")
cc<-data.table(ImputedDat2,key=c("ID","FirstAmonth.imp"))
dd<-data.table(alldata[,c("ID","sampled","time","A","X","Y",

"AGE_AT_LAST_VISIT")],key=c("ID","time"))
colnames(dd)[colnames(dd)=="time"]<-"FirstAmonth.imp"
ImputedDat3<-merge(cc,dd)
ff<-data.table(ImputedDat3,key=c("ID","FirstDmonth.imputed"))
gg<-data.table(alldata[,c("ID","time","D")],key=c("ID","time"))
colnames(gg)<-c("ID","FirstDmonth.imputed","D" )

ImputedDat4<-data.frame(gg[ff,])

#Express first A=1 and first D=1 times in terms of years
ImputedDat4$Aage<-(ImputedDat4$FirstAmonth.imp-0)*30.437/365.25
ImputedDat4$Dage<-ImputedDat4$FirstDmonth.imputed*30.437/365.25

#Exclusion criteria
#Exclude if first A=1 after censoring
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#Exclude if first A=1 after first D=1
#Exclude if first A=1 before time 0
d.imp2<-ImputedDat4
d.imp2$exclude.no.A<-with(d.imp2, ifelse(is.na(FirstAmonth.imp), 1,

ifelse(Aage>AGE_AT_LAST_VISIT, 1, 0)))
d.imp2$exclude.priorD<-with(d.imp2, ifelse(!is.na(Dage) &

!is.na(FirstAmonth.imp) &Dage<Aage, 1, 0))
d.imp2$exclude.priorA<-with(d.imp2,

ifelse(is.na(FirstAmonth.imp)==F & Aage<0,1,0))
d.imp2$exclude<-with(d.imp2,ifelse(exclude.no.A==1|

exclude.priorD==1 | exclude.priorA, 1, 0))

d.imp3<-d.imp2[d.imp2$exclude==0,]
d.imp3$last.age<-d.imp3$AGE_AT_LAST_VISIT+30.437/365.25

#Create final analysis dataset for export
#Contains event indicator and time-to-event variables
d.analysis<-d.imp3
d.analysis$ade<-with(d.analysis, ifelse(is.na(Dage),0,1))
d.analysis$fu<-with(d.analysis, ifelse(is.na(Dage),

last.age-Aage, Dage-Aage))
d.analysis$fu<-with(d.analysis, ifelse(fu<0,0,fu))
d.analysis$fu<-round(d.analysis$fu,3)
#Add exclusion criteria to only look at events after time 0
d.analysis<-d.analysis[d.analysis$fu>0,]

return(d.analysis)
}

4.6.2 Example 3: R code for imputation
In this setting, we specify a joint imputation model for (A, D) by fitting a logistic

regression model for A conditional on A∗,D∗, X, Y , and m and a logistic regression
model for D conditional on A∗,D∗, X, Y , m, and A using the subset of 1000 ×
100 audited person-month observations (1000 audited subjects with 100 timepoints
each). For each imputation, the imputer accounted for both parameter uncertainty
and random noise in the predictions.
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#Correctly specified imputation models
#Fit two logistic regression models

modA<-glm(A~time+X+Y+A.star+D.star,data=alldata,
family="binomial",y=FALSE,model=FALSE)

modD<-glm(D~A+time+X+Y+A.star+D.star,data=alldata,
family="binomial",y=FALSE,model=FALSE)

#Create datasets that add imputed values for key values for non-sampled records
#We set up the backbone of those datasets prior to the imputation loop

dat.A<-data.frame(alldata[,c("ID","sampled",all.vars(formula(modA))[1],
"Intercept",all.vars(formula(modA))[-1])])

dat.A<-dat.A[order(dat.A$ID),]
tempdat.A<-as.matrix(dat.A[,c("Intercept",all.vars(formula(modA))[-1])])

dat.D<-data.frame(alldata[,c("ID","sampled",all.vars(formula(modD))[1],
"Intercept",all.vars(formula(modD))[-1])])

dat.D<-dat.D[order(dat.D$ID),]
###########################################################################
#Function to impute values (Same function as in Example 2)
ImputationFn<-function(mod,datty){

vars<-c("Intercept",all.vars(formula(mod)[-2]))
newdatmat<-datty[,vars]
#Account for parameter uncertainty
#Re-draw from a multivariate normal distribution with mean and variance
#as the parameter estimates and cov matrix from the regression model.
desmatrix<-rmvnorm(1, mean=mod$coefficients, sigma=vcov(mod))
linpred<-as.vector(desmatrix%*%t(newdatmat))

if (mod$family[1]=="binomial"){ return(linpred)}
if (mod$family[1]=="gaussian"){
#Account for random noise
#Randomly sample from the residuals

resid.y<-mod$residuals
imputed.values<-linpred +

as.numeric(sample(resid.y,length(linpred),replace=TRUE))
}
return(imputed.values)

}
###########################################################################
#Impute values
#Impute A

linpred.A<-ImputationFn(modA,tempdat.A)
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pred.A<-rbinom(length(linpred.A),1,exp(linpred.A)/(1+exp(linpred.A)))
dat.A$A[dat.A$sampled==0]<-as.vector(pred.A)[dat.A$sampled==0]

#Impute D
#Need to update A values here in order to properly impute D status
dat.D$A[dat.D$sampled==0]<-as.vector(pred.A)[dat.A$sampled==0]
tempdat.D<-as.matrix(dat.D[,c("Intercept",all.vars(formula(modD))[-1])])

linpred.D<-ImputationFn(modD,tempdat.D)
pred.D<-rbinom(length(linpred.D),1,exp(linpred.D)/(1+exp(linpred.D)))
dat.D$D[dat.D$sampled==0]<-as.vector(pred.D)[dat.D$sampled==0]

4.6.3 Example 3: R code for RW component calculations based on imputation model
The imputer needs to calculate and supply two datasets based on the score func-

tion of the imputation model, Smis and d. The following code contains several func-
tions. The first two functions evaluate the score function or its derivative for each
observation. We note that the unit of observation for imputations was person-months.
We, however, need to express this information on the subject-level. Thus, we expand
on the functions provided in Example 2 to allow the collapse of information across
multiple observations.

We then expand the function to calculate and output the two components (Smis
and d) for the RW variance estimator from the imputation model that was provided
in the first example. Here, we allow for a joint imputation model and the variable
being imputed can be binary or continuous. This function is intended to be used for
each imputation.

#Function to evaluate score function
#Code here works when imputation model is linear or logistic regression
S_u_function<-function(datty,mod.impute,imputedvar,IDMat){

imputemod.vars<-c("Intercept",all.vars(formula(mod.impute)[-2]))

if (mod.impute$family[1]=="gaussian"){
sigma.est<-var(mod.impute$residuals)
predicted.values<-predict(mod.impute,newdata=datty)
S_u_1<-(imputedvar-predicted.values)*datty[,imputemod.vars]/sigma.est
S_sigma_1<-0.5*(-1/sigma.est+ (imputedvar-predicted.values)^2/sigma.est^2)
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S_u<-cbind(S_u_1,S_sigma_1)
modelvarcount<-length(imputemod.vars)+1 #Account for sigma

}
if (mod.impute$family[1]=="binomial"){

#predicted.values is actually predicted LP
predicted.values<-predict(mod.impute,newdata=datty,returnvar="linpred")
S_u<-datty[,imputemod.vars]*

(imputedvar-exp(predicted.values)/(1+exp(predicted.values)))
modelvarcount<-length(imputemod.vars)

}
#Need to collapse person-month data to person-level data
#Take the sum across all observations per individual
S_up<-data.frame(setDT(S_u)[, lapply(.SD, sum), by = datty$ID])
colnames(S_up)[1]<-"ID"
S_upp<-merge(S_up,IDMat,by="ID",all=T)
S_upp[is.na(S_upp)]<-0
return(S_upp)

}
#Function to evaluate derivative of score function
#Code here works when imputation model is linear or logistic regression
S2_function<-function(datty,mod.impute){
imputemod.vars<-c("Intercept",all.vars(formula(mod.impute)[-2]))
impvar_n<-length(imputemod.vars)

if (mod.impute$family[1]=="binomial"){
ImputeX<-datty[,imputemod.vars]
predicted.values<-predict(mod.impute,newdata=datty,type="link")
S2_mod<-matrix(NA,ncol(ImputeX),ncol(ImputeX))
constant.term<-exp(predicted.values)/(1+exp(predicted.values))^2
for (matrow in 1:ncol(ImputeX)){

for (matcol in 1:ncol(ImputeX)){
temp<-(-1)*(ImputeX[,matrow])*((ImputeX[,matcol]))*constant.term
temp[datty$sampled==0]<-0

#KEY CHANGE HERE!
#Note that we divide by the number of subjects, not person-months below

S2_mod[matrow,matcol]<-sum(temp)/length(unique(datty$ID))
}

}
}
return(S2_mod)
}

84



#Function that calculates and outputs the required components from imputation model
RW_Components_Imputation_Fn<-function(){

#Evaluate score function with respect to all parameters in the models
S_u_mod1_pre<-S_u_function(dat.D,modA,dat.D$A,IDMat)
S_u_mod1<-S_u_mod1_pre[,!colnames(S_u_mod1_pre)%in%c("ID","Blank")]

S_u_mod2_pre<-S_u_function(dat.D,modD,dat.D$D,IDMat)
S_u_mod2<-S_u_mod2_pre[,!colnames(S_u_mod2_pre)%in%c("ID","Blank")]

S_u<-data.frame(S_u_mod1,S_u_mod2)

#Preliminary matrix that indicates missingess for each subject
ImputedMat<-NotImputedMat<-NULL
ImputedMat1<-matrix(dat.A$sampled[duplicated(dat.A$ID)==F]==0,

nrow(S_u_mod1),ncol(S_u_mod1),byrow=FALSE)
ImputedMat2<-matrix(dat.D$sampled[duplicated(dat.D$ID)==F]==0,

nrow(S_u_mod2),ncol(S_u_mod2),byrow=FALSE)
ImputedMat<-cbind(ImputedMat1,ImputedMat2)
NOTImputedMat<-1-ImputedMat

###############################################################
#Calculation of S_mis -- component from imputation model
#Output a dataset that is the evaluated score function for imputed obs
###############################################################

S_mis_imp<-S_u*ImputedMat
###############################################################
#Calculation of D -- component from imputation model
###############################################################

S_orig_imp<-S_u*NOTImputedMat
S2_mod1<-S2_function(dat.A,modA)
S2_mod2<-S2_function(dat.D,modD)
n_S2mod1<-ncol(S2_mod1)
n_S2mod2<-ncol(S2_mod2)
n_S2mod<-n_S2mod1+n_S2mod2

S2<-matrix(0,n_S2mod,n_S2mod)
S2[1:n_S2mod1,1:n_S2mod1]<-S2_mod1
S2[(n_S2mod1+1):n_S2mod,(n_S2mod1+1):n_S2mod]<-S2_mod2

#Handle cases with singular matrices
S3<-try(solve(S2),silent=T)
S4<-ifelse (is(S3,"try-error"),

list((S2+matrix(jitter(rep(.000001,nrow(S2)*ncol(S2))),
nrow(S2),ncol(S2)))), list((S2)))
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S5<-S4[[1]]

Dmat<-solve(S5)
d_t<-((-1)*Dmat)%*%t(S_orig_imp)
d<-t(d_t)
#Save ordering of IDs to ensure component alignment in later calcs
IDorder<-S_u_mod1_pre[,c("ID","Blank")]

return(list(S_mis_imp,d,IDorder))
}

4.6.4 Example 3: R code for RW component calculations based on analysis model
The analyst needs to calculate and supply two datasets, u and τ . Similar to

previous sections, we provide a function that will calculate and output u and τ for
the appropriate analysis models (Kaplan-Meier procedure or Cox regression analysis
model) corresponding to this example. These calculations are performed for each
imputation.

It is important to highlight that the rigor of calculating u is much greater for our
two time-to-event analysis models. This is due to the complexity of the specifica-
tion and evaluation of estimating equations corresponding to each model. For Cox
regression, there are several different ways to parameterize the partial likelihood to
be maximized. We likely need to account for ties among event times and have to se-
lect the partial likelihood parameterization accordingly. There are several reasonable
choices, including the parameterization by Efron, that allow parameter estimation.
The challenge in our setting, however, is evaluating the estimating equation for each
unique subject rather than each unique event time. Fortunately, there is a built-in
function in R that outputs score residuals that we can easily incorporate in our calcu-
lations. Meanwhile, the Kaplan-Meier procedure is a non-parametric method and it
is not immediately clear how to specify a corresponding estimating equation. Fortu-
nately, previous work by Stute (1995) demonstrated that the Kaplan-Meier procedure
can be represented as a sum of random variables that can be used as estimating equa-
tions. The technical details go beyond the scope of this paper. The code provided
below to evaluate estimating equations at each event time for each observation was
based on work by Shepherd et al. (2007).
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Fortunately, calculating τ is less difficult for both analysis models. Since we sum
across all subjects when calculating τ for cox regression, we no longer are concerned
about evaluating for each unique subject. We provide the code using the formula
for calculating the information based on Efron’s parameterization below. For the
Kaplan-Meier procedure, the derivative of the estimating equation corresponding to
each event time is 1.

###############################################################
#Analysis components
###############################################################

###############################################################
#Function to calculate survival estimate and SE at specific timepoint
###############################################################
SurvivalEst<-function(stuff){

mintime<-min(stuff$time)
#We use the survival estimate from the closest prior time

#To calculate survival at a given timepoint,
#We assign a survival estimate of 1 (use max SE here)
#If no survival estimates at prior timepoints,

exclude<-sum(times<mintime)
surv.est<-se.est<-rep(NA,length(times))
# Only extract estimates if the KM was actually calculated!
if (stuff$table["events"]!=0 & mintime<=max(times)){
for (i in (1+exclude):length(times)){

surv.est[i]<-stuff$surv[stuff$time==max(stuff$time[stuff$time<=times[i]])]
se.est[i]<-stuff$std.err[stuff$time==max(stuff$time[stuff$time<=times[i]])]

}
}
surv.est<-ifelse(is.na(surv.est),1,surv.est)
se.est<-ifelse(is.na(se.est),max(stuff$std.err),se.est)

output<-data.frame(times,surv.est,se.est)
#If min time > evaltime, return survival est of 1
return(output)

}

###############################################################
#Specially formatted KM output to work with Stute estimating eq function
###############################################################
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myOwnKM <- function(time, delta){
time<-round(time,6)

fit <- survfit(Surv(time, delta) ~ 1)
uniqueAndOrderedTime = round(unique(time)[order(unique(time))],6)

nevent.giganti<-tapply(delta, time, sum)
temp_unique<-data.frame(uniqueAndOrderedTime,1)
temp<-data.frame(fit$time,fit$n.risk,fit$surv)
temp$fit.time<-round(temp$fit.time,6)
temp2<-merge(temp_unique,

temp[,c("fit.time","fit.n.risk","fit.surv")],
by.x="uniqueAndOrderedTime",by.y="fit.time",all=T)

for (q in 2:nrow(temp2)){
temp2[q,"fit.n.risk"]<-with(temp2,ifelse(is.na(fit.n.risk[q]),

fit.n.risk[q-1],fit.n.risk[q]))
temp2[q,"fit.surv"]<-with(temp2,ifelse(is.na(fit.surv[q]),

fit.surv[q-1],fit.surv[q]))
}

#Add for scenario with only 1 timepoint
temp2<-temp2[is.na(temp2$uniqueAndOrderedTime)==F,]

dataKM = data.frame(time=uniqueAndOrderedTime, delta=NA,
nEvents = nevent.giganti, atRisk = temp2$fit.n.risk,
KM = temp2$fit.surv, CDF = 1-temp2$fit.surv)

rownames(dataKM) = uniqueAndOrderedTime
dataKM = dataKM[as.character(time),]
dataKM$delta = delta
#dataKM = dataKM[order(dataKM$time),]
rownames(dataKM) = 1:nrow(dataKM)

dataKM
}

###############################################################
#Function to evaluate estimating equations from Kaplan Meier based on Stute method
###############################################################
estimating_equations_KM<-function(myKaplanMeier,reduced=reduced,

reducedtimes=reducedtimes){
#Set reduced to 0 for estimates at all times
#To make run faster and at specific times, specify reducedtimes
myKaplanMeier<-myKaplanMeier[is.na(myKaplanMeier$time)==FALSE,]

orderedTime = myKaplanMeier$time[order(myKaplanMeier$time)]
orderedDelta = myKaplanMeier$delta[order(myKaplanMeier$time)]
orderedUniqueKM = unique(myKaplanMeier$KM[order(myKaplanMeier$time)]
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[orderedDelta == 1])

uniqueTime = unique(myKaplanMeier$time)
orderedUniqueTime = uniqueTime[order(uniqueTime)]
orderedUniqueFailTime = unique(orderedTime[orderedDelta == 1])

N = length(orderedTime)
uniqueN = length(orderedUniqueTime)
uniqueFailureN = length(orderedUniqueFailTime)

orderMatrix = matrix(c(1:N, (1:N)[order(myKaplanMeier$time)]), ncol=2)
colnames(orderMatrix) = c("new", "old")
originalOrder = orderMatrix[order(orderMatrix[,2]), 1]

dresid.dtheta = matrix(0, nrow = uniqueFailureN, ncol = N)
colnames(dresid.dtheta) = orderedTime
rownames(dresid.dtheta) = orderedUniqueFailTime
condition1 = (orderedTime == orderedUniqueFailTime[1]) |

((orderedTime <= orderedUniqueFailTime[1]) &
(orderedDelta == 0))

dresid.dtheta[1, (1:N)[condition1]] = 1

phi_ji = matrix(0, nrow = uniqueFailureN, ncol = N)
colnames(phi_ji) = orderedTime
rownames(phi_ji) = orderedUniqueFailTime
indices = (1:N)[orderedTime <= orderedUniqueFailTime[1]]
phi_ji[1, indices] = 1

if (uniqueFailureN>1){
for (j in 2:uniqueFailureN){

condition2 = (orderedTime == orderedUniqueFailTime[j] &
(orderedDelta == 1))

condition3 = ((orderedTime > orderedUniqueFailTime[j-1]) &
(orderedTime <= orderedUniqueFailTime[j]) &

(orderedDelta == 0))
dresid.dtheta[j, (1:N)[condition2 | condition3]] = 1
dresid.dtheta[j-1, (1:N)[condition2]] = 1
indices = (1:N)[orderedTime <= orderedUniqueFailTime[j]]
phi_ji[j, indices] = 1

}
}

condition4 = (orderedTime > orderedUniqueFailTime[uniqueFailureN] &
(orderedDelta == 0))
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dresid.dtheta[uniqueFailureN, (1:N)[condition4]] = 1
orderedDeltaMatr = matrix(orderedDelta, nrow = uniqueFailureN,

ncol = N, byrow=TRUE)

H = H0 = H1 = rep(NA, N)
for (i in 1:N){

H[i] = mean(orderedTime <= orderedTime[i])
H0[i] = mean((orderedTime <= orderedTime[i])*(1 - orderedDelta))
H1[i] = mean((orderedTime <= orderedTime[i])*orderedDelta)

}

H0dv = diff(c(0, H0))
H1dw = diff(c(0, H1))
H1dwPerY = H0dvPerY = rep(0, N)
H0dvPerY[orderedTime * (1 - orderedDelta) == orderedTime] =

H0dv[orderedTime * (1 - orderedDelta) == orderedTime]
H1dwPerY[orderedTime * orderedDelta == orderedTime] =

H1dw[orderedTime * orderedDelta == orderedTime]

################ making sure that 1-H is never zero
Hadj = H
Hadj[Hadj == 1] = .99

multiplier = 1/(1 - Hadj)
multiplier[H==1] = 0 ### this likely fixes the the problem of division by 0

gamma0 = exp(cumsum(c(0, (H0dvPerY * multiplier) )))[1:N]
Vji = gamma_j2 = gamma_j1 = phi_ji*0
vValue = wValue = orderedTime

if (reduced==1){
#Extra code to get closest to evaltime without going over
dif<-as.numeric(rownames(phi_ji))-evaltime
switchtime<-max(rownames(phi_ji)[dif<=0])
reducedtimes<-unique(c(min(rownames(phi_ji)),reducedtimes,switchtime))
#Only evaluate at specific timepoints
orderedUniqueKM<-orderedUniqueKM[rownames(phi_ji)%in%reducedtimes]
orderedUniqueFailTime<-orderedUniqueFailTime[

rownames(phi_ji)%in%reducedtimes]
orderedUniqueFailTime[orderedUniqueFailTime==switchtime]<-evaltime
uniqueFailureN<-length(orderedUniqueFailTime)
phi_ji<-phi_ji[rownames(phi_ji)%in%reducedtimes,]
gamma_j1<-gamma_j1[rownames(gamma_j1)%in%reducedtimes,]
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gamma_j2<-gamma_j2[rownames(gamma_j2)%in%reducedtimes,]
Vji<-Vji[rownames(Vji)%in%reducedtimes,]

}
for(j in 1:nrow(gamma_j1)){

for(i in 1:ncol(gamma_j1)){
indicatorForGamma1 = as.numeric((orderedTime[i] < wValue) & phi_ji[j,])
gamma_j1[j,i] = multiplier[i]*sum(indicatorForGamma1*gamma0*H1dwPerY)

}
}

for(j in 1:nrow(gamma_j1)){
for(i in 1:ncol(gamma_j1)){

indicatorForGamma2 = as.numeric((vValue < orderedTime[i]))
gamma_j2[j,i]=sum(multiplier*indicatorForGamma2*gamma_j1[j,]*H0dvPerY)
Vji[j, i] = phi_ji[j, i] * gamma0[i] * orderedDelta[i] +

gamma_j1[j, i]*(1-orderedDelta[i])-gamma_j2[j,i]
}

}
res=Vji[,originalOrder]-

(1-matrix(orderedUniqueKM,nrow=uniqueFailureN,ncol= N))

rownames(res)<-orderedUniqueFailTime
list(dl.dtheta = res, dresid.dtheta = dresid.dtheta[, originalOrder])

}

###############################################################
#Calculation of u
#Evaluate the estimating equation for each observation
###############################################################
U_function<-function(dat.imputed,outcome,mod.analysis=NULL,IDorder=IDorder,

reduced=0,reducedtimes=c(0,1)){
#This function becomes computationally expensive
#May want to reduce the number of timepoints evaluated
#reduced, reducedtimes, is for estimating_equations_KM function
#Set to 'no' as default
if (outcome%in%c("SurvEst","CoxPH")){

survivaldat.imputed<-dat.imputed
timevar<-survivaldat.imputed$fu
eventvar<-survivaldat.imputed$ade

}
if (outcome=="SurvEst"){

#Evaluate KM estimates to use in estimating eq function
tmpKM = myOwnKM(timevar, eventvar)
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#Estimating Eq from Stute
#Note that KM estimating equations are set to 0 before any events occur
bundle1=estimating_equations_KM(myKaplanMeier=tmpKM,reduced=reduced,

reducedtimes=reducedtimes)$dl.dtheta

#Loop through timepoints of interest (times) to assign values to U matrix
#Estimating equations were evaluated at all event times in fn above
#Check to see if estimating equation evaluated at that timepoint
#If yes, assign it to row of matrix corresponding to that timepoint
#If not, assign value of zero
U_imp<-matrix(0,length(times),nrow(dat.imputed))
totalrows<-as.numeric(rownames(bundle1))
rowcount<-0

for (q in times){
extract<-max(c(totalrows[abs(totalrows-q)<0.0001],"-Inf"))
rowcount<-rowcount+1
if (extract!="-Inf") {
U_imp[rowcount,]<-bundle1[rownames(bundle1)==extract,]}

}
U_imp<-t(U_imp)

colnames(U_imp)<-paste("U_",1:ncol(U_imp),sep="")
rownames(U_imp)<-NULL

}
if (outcome=="CoxPH"){

analy.vars<-names(mod.analysis$coef)
analy.vars<-ifelse(analy.vars=="(Intercept)","Intercept",analy.vars)

if (length(analy.vars)==1){
#Use score residuals from R output
S_imp_wide<-residuals(mod.analysis,type="score")
U_imp<-matrix(S_imp_wide,length(S_imp_wide),1)
colnames(U_imp)<-paste("U_",analy.vars,sep="")

}
if (length(analy.vars)!=1){

S_imp_wide<-residuals(mod.analysis,type="score")
U_imp<-S_imp_wide
colnames(U_imp)<-paste("U_",analy.vars,sep="")

}
}
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#Have rows for each obs in the imputation dataset
#As opposed to just obs for those in the analysis dataset
#Sync the row order of obs here with row order in imputation components
aa<-data.frame(as.character(dat.imputed$ID),U_imp,stringsAsFactors=FALSE)
colnames(aa)<-c("ID",colnames(U_imp))
bb<-merge(IDorder,aa,by="ID",all=T)
U_imp_all<-bb[,colnames(U_imp)]
U_imp_all[is.na(U_imp_all)]<-0

return(U_imp_all)
}

######################################
#Function for calculating information
#Based on Efron method of handling ties
######################################
InfoFn<-function(modcoef,time,event,dat,variables){
#Number of unique, ordered death times
sorted.death.times<-sort(unique(time[event==1]))
Ndeathtimes<-length(sorted.death.times)

I<-matrix(0,length(variables),length(variables))
for (p in 1:length(variables)){

varA<-variables[p]
for (q in 1:length(variables)){
SecondDeriv<-0
varB<-variables[q]

#Chunks for Infomation
#Essentially, the information consists of multiple components
#First chunk designated by A (11 corresponds to 1st numerator/component)
#Overall chunk is labeled chunk
#Need to iterate through unique death times (Ndeathtimes),
# and then within each event at a given death time (Nevents)
#Need to distinguish between observations with events at timepoint
#and observations at risk at timepoint(.atrisk)
for (i in 1:Ndeathtimes){

N.AtRisk<-nrow(dat[time>=sorted.death.times[i],])
Nevents<-nrow(dat[time==sorted.death.times[i] & event==1,])

dat_AtRisk<-as.matrix(dat[time>=sorted.death.times[i],variables])
LP_AtRisk<-exp(dat_AtRisk%*%t(t(modcoef)))
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dat_Events<-as.matrix(dat[time==sorted.death.times[i] & event==1,
variables])

LP_Events<-exp(dat_Events%*%t(t(modcoef)))

colnames(dat_Events)<-colnames(dat_AtRisk)<-variables

Chunk.A11<-sum(dat_AtRisk[,varA]*dat_AtRisk[,varB]*
LP_AtRisk)

Chunk.A21<-sum(LP_AtRisk)

Chunk.B11<-sum(dat_AtRisk[,varA]*LP_AtRisk)
Chunk.B13<-sum(dat_AtRisk[,varB]*LP_AtRisk)
ChunkA<-ChunkB<-0

for (j in 1:Nevents){
Chunk.A12<-(j-1)/Nevents*sum(dat_Events[,varA]*

dat_Events[,varB]*LP_Events)
Chunk.A22<-(j-1)/Nevents*sum(LP_Events)
ChunkA_temp<- - (Chunk.A11-Chunk.A12)/(Chunk.A21-Chunk.A22)
ChunkA<-ChunkA_temp+ChunkA

Chunk.B12<-(j-1)/Nevents*sum(dat_Events[,varA]*LP_Events)
Chunk.B14<-(j-1)/Nevents*sum(dat_Events[,varB]*LP_Events)

ChunkB_temp<- (Chunk.B11-Chunk.B12)*(Chunk.B13-Chunk.B14)/
(Chunk.A21-Chunk.A22)^2

ChunkB<-ChunkB_temp+ChunkB
Chunk<-ChunkA+ChunkB

}
SecondDeriv<-SecondDeriv+Chunk
}
I[p,q]<-(SecondDeriv)

}
}
return(I)
}

RW_Components_Analysis_Fn<-function(Analysis){
if (Analysis=="CoxPH"){

#U#
U_imp_cox<-U_function(d.analysis,outcome=Analysis,

mod.analysis=mod.analysis,IDorder=IDorder)
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#Tau#
tempdat<-d.analysis #Prettify code below with shorter dat name
tau_imp_cox<-(-1/n)*InfoFn(mod.analysis$coef,time=tempdat$fu,

event=tempdat$ade,dat=tempdat,variables=analy.vars)
return(list(U_imp_cox,tau_imp_cox))

}
if (Analysis=="SurvEst"){

#U#
#Takes a long time computationally!
U_imp_surv<-U_function(d.analysis,outcome=Analysis,mod.analysis=NULL,

IDorder=IDorder,reduced=0,reducedtimes=c(times[1],evaltime))

#Tau#
if (is.null(ncol(U_imp_surv))==FALSE){

tau_imp_surv<-diag(nrow(d.analysis)/n,ncol(U_imp_surv))}
if (is.null(ncol(U_imp_surv))){

tau_imp_surv<-diag(nrow(d.analysis)/n,1)}
}
return(list(U_imp_surv,tau_imp_surv))

}

4.6.5 Example 3: R code for RW multiple imputation variance calculation
The above components are calculated using one imputed dataset. The following

code provides an outline for calculating the variance estimator across 20 imputations
for both the Cox regression parameter estimate and the Kaplan-Meier estimated
incidence at 60 months.

#Function to calculate RW based on calculated components
RobinsWangFn<-function(U_imp_sum,kappa_sum,tau_sum,d,Analysis){

u_bar<-t(t(U_imp_sum/Nimpute))
u_bar[u_bar=="NaN"]=0

kappa<-t(t(kappa_sum/(n*Nimpute)))
alpha<-(t(d)%*%d)/n
omega<-(t(u_bar)%*%t(t(u_bar)))/n
delta<-omega+kappa%*%alpha%*%t(kappa) +

(1/n)*(kappa%*%t(d)%*%u_bar + t(kappa%*%t(d)%*%u_bar))
tau<-tau_sum/(Nimpute)
GAMMA<-(1/n)*t(t(solve(tau)))%*%delta%*%t(solve(tau))

}
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#Initialize select variables
S_mis<-NULL
U_imp_sum_cox<-U_imp_sum_surv<-0
kappa_sum_cox<-kappa_sum_surv<-0
tau_sum_cox<-tau_sum_surv<-0
surv.est<-surv.se<-matrix(NA,length(times),Nimpute)
cox.est<-cox.se<-matrix(NA,length(CoxVar),Nimpute)

for (p in 1:Nimpute) {
##############################################
#Replace missing values with imputed value
##############################################
#A
linpred.A<-ImputationFn(modA,tempdat.A)
pred.A<-rbinom(length(linpred.A),1,exp(linpred.A)/(1+exp(linpred.A)))
dat.A$A[dat.A$sampled==0]<-as.vector(pred.A)[dat.A$sampled==0]
##############################################
##D
##############################################
#Need to update A values here in order to properly impute D
dat.D$A[dat.D$sampled==0]<-as.vector(pred.A)[dat.A$sampled==0]
tempdat.D<-as.matrix(dat.D[,c("Intercept",all.vars(formula(modD))[-1])])
linpred.D<-ImputationFn(modD,tempdat.D)
pred.D<-rbinom(length(linpred.D),1,exp(linpred.D)/(1+exp(linpred.D)))
dat.D$D[dat.D$sampled==0]<-as.vector(pred.D)[dat.D$sampled==0]

#############################################
#Undiscretize data to create analysis dataset
#############################################
aaa<-data.table(data.frame(alldata[,c("ID","sampled","time","D")],pred.D),

key=c("ID","time"))
bbb<-data.table(data.frame(alldata[,c("ID","time","A")],pred.A),

key=c("ID","time"))
dat<-data.frame(aaa[bbb,])
d.analysis<-BuildAnalysisDat(dat)

#############################################
#Perform analyses
#############################################
#Cox regression
mod.analysis<-coxph(Surv(fu,ade)~X,data=d.analysis,y=FALSE)
analy.vars<-all.vars(formula(mod.analysis)[-2])
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#Kaplan-Meier analysis
KM.tdmiformatted<-SurvivalEst(with(d.analysis,

summary(survfit(Surv(fu,ade)~1))))

#Capture estimates and corresponding SE from each imputation
surv.est[,p]<-KM.tdmiformatted[,"surv.est"]
surv.se[,p]<-KM.tdmiformatted[,"se.est"]
cox.est[,p]<-mod.analysis$coef[CoxVar]
cox.se[,p]<-sqrt(diag(vcov(mod.analysis))[CoxVar])

#Create matrix containing IDs - helpful for merging + ordering matrices
IDMat<-unique(data.frame(alldata[,"ID"],1,stringsAsFactors=FALSE))
colnames(IDMat)<-c("ID","Blank")

###############################################################
#Evaluate all components for a given imputation
###############################################################
ImputationComponents<-RW_Components_Imputation_Fn()
S_mis_imp<-ImputationComponents[[1]]
d<-ImputationComponents[[2]] #Only need to calculate d once
IDorder<-ImputationComponents[[3]]

AnalysisComponents_cox<-RW_Components_Analysis_Fn(Analysis="CoxPH")
AnalysisComponents_surv<-RW_Components_Analysis_Fn(Analysis="SurvEst")
U_imp_cox<-AnalysisComponents_cox[[1]]
U_imp_surv<-AnalysisComponents_surv[[1]]
U_imp_cox[is.na(U_imp_cox)]<-0
U_imp_surv[is.na(U_imp_surv)]<-0
tau_imp_cox<-AnalysisComponents_cox[[2]]
tau_imp_surv<-AnalysisComponents_surv[[2]]

#Create summations of certain components across imputations
U_imp_sum_cox<-U_imp_sum_cox+U_imp_cox
tau_sum_cox<-tau_sum_cox+tau_imp_cox
U_imp_sum_surv<-U_imp_sum_surv+U_imp_surv
tau_sum_surv<-tau_sum_surv+tau_imp_surv

#Calculate kappa for a given imputation
kappa_imp_cox<-t(U_imp_cox)%*%t(t(S_mis_imp))
kappa_sum_cox<-kappa_sum_cox+kappa_imp_cox
kappa_imp_surv<-t(U_imp_surv)%*%t(t(S_mis_imp))
kappa_sum_surv<-kappa_sum_surv+kappa_imp_surv
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#############################################
} #This bracket ends imputation portion of loop

###############################################################
#Combine components together to calculate RW variance estimator
###############################################################

TDMIest.surv<-apply(surv.est,1,mean)
TDMIest.cox<-mean(cox.est)

GAMMA.cox<-RobinsWangFn(U_imp_sum_cox,kappa_sum_cox,tau_sum_cox,d,
Analysis="CoxPH")

GAMMA.surv<-RobinsWangFn(U_imp_sum_surv,kappa_sum_surv,tau_sum_surv,d,
Analysis="SurvEst")

#Output RW variance estimates
RobinsWangSE.surv<-diag(sqrt(GAMMA.surv))
RobinsWangSE.cox<-diag(sqrt(GAMMA.cox))[1]

#Compare to SE estimates from Rubin
Rubin.se.surv<-sqrt(apply(surv.se^2,1,mean)+(Nimpute+1)*

apply(surv.est,1,var)/Nimpute)
Rubin.se.cox<-sqrt(mean(cox.se^2)+(Nimpute+1)*

var(as.vector(cox.est))/Nimpute)

#Output estimates
TDMIest.surv[times==evaltime]

## [1] 0.8439519

TDMIest.cox

## [1] -1.70452

#Output variance estimates for RW and Rubin
#Incidence at 5 years
RobinsWangSE.surv[times==evaltime]^2

## [1] 8.119119e-05

Rubin.se.surv[times==evaltime]^2

## [1] 0.0001474951

#Cox variance estimate
RobinsWangSE.cox^2
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## [1] 0.005370765

Rubin.se.cox^2

## [1] 0.01453294

4.6.6 Example 3: Results
For this single simulation, the RW imputation standard error estimate is smaller

than the RR imputation standard error estimate corresponding to both the Cox
regression parameter estimate (0.0733 vs. 0.1206) and the estimated event incidence
at 60 months (0.0090 vs. 0.0121).

When we repeated this simulation 1000 times, the results were similar. With re-
spect to the Cox regression parameter estimate, the mean RW imputation standard
error estimate (0.0100) was similar to the empirical standard error estimate (0.0099)
and smaller than the RR imputation standard error estimate (0.0138). The impu-
tation variance estimator proposed by Robins and Wang had better coverage (0.94)
compared to Rubin’s approach (0.99).

The mean RW imputation standard error estimate corresponding to the Cox re-
gression parameter estimate (0.0739) was also smaller than the RR imputation stan-
dard error estimate (0.1192). For reference, the empirical standard error estimate
was 0.0821. The estimated coverage using the RW standard error estimate was near
nominal levels (0.93), while the coverage using the RR standard error estimate (0.99)
was inflated.
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4.7 Discussion
To our knowledge, this is the first instance of statistical code being shared pub-

licly for the calculation of Robins and Wang’s imputation variance estimator. As the
popularity of multiple imputation grows and its implementation is increasingly per-
formed by those with non-statistical backgrounds, it is important that analysts are
familiar with and able to carry out best practices regarding variance calculations. We
have highlighted several situations where the standard variance estimation based on
Rubin’s rules is biased. The annotated R code provided in this manuscript demon-
strates how to calculate Robins and Wang’s imputation variance estimates across
multiple settings to obtain estimates that are unbiased in large samples. We hope
that this work helps address the biggest drawback of Robins and Wang’s approach -
its complexity - and reduces the barriers to implementation when relevant.

Our examples were specifically chosen to illustrate implementation for various
imputation and analysis models. We outlined how to perform necessary calculations
for multiple variable imputation for continuous or binary variables. We also chose
four unique analysis models (linear regression, logistic regression, Cox regression, and
Kaplan-Meier estimation) to demonstrate implementation in settings that researchers
are likely to encounter. Although an earlier paper illustrated the improvement of
the RW variance estimator relative to Rubin’s in a simple example involving linear
regression imputation and analysis models, this paper did not provide analysis code
(Hughes et al., 2016); our first example provides the code for HST’s example. In
addition, we felt it was important to show how this technique could be used in other
settings, particularly those involving time-to-event analyses.

The three examples provided above also highlight several incompatibility scenar-
ios that we feel are relevant to a practical contemporary observational data analysis:
exclusion based on an invariant, non-imputed value (i.e., static exclusion), exclu-
sion based on an imputed value (i.e., non-static exclusion), and time-discretized data
where the unit of observation is different between imputation and analysis models.
In all three examples, the bias of the popular estimate for variance estimation was
substantial, resulting in very conservative confidence intervals.

We note that the calculation of the RW variance estimator for the last two exam-
ples involved fully parametric imputation models. This was reasonable because the
missingness structure in our examples was simple: a subset of subjects had complete
data and the remaining subjects were missing select variables. In EHR datasets, dif-
ferent subjects will often be missing different combinations of values. In practice, we
often use more flexible approaches such as fully conditional specified methods like
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multiple imputation by chained equations (MICE). Future work should investigate
how this method performs when imputation models like MICE are used.

While the R code provided in this manuscript will hopefully be a useful tool
for future implementors, we acknowledge that there are limits to its generalizability.
Future implementors hoping to impute more than two variables or using imputation
models other than logistic or linear regression will need to make modifications to our
code. While we selected four popular analysis models, we realize future implementors
may be interested in other models. We encourage researchers to build off the existing
code provided here to create functions generalizable to more settings. We are aware
of at least one group that has proposed to construct an R package for calculating
RW imputation variance estimates, but to our knowledge the work was never finished
(Reilly, 2009). Creating software that generalizes RW would be a challenging, but
worthy, endeavor.
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4.8 Appendix C

Table 4.1: Estimated coverage probabilities when imputation variance estimated using Rubin’s
approach for different validation subsample sizes (n= 500, 1000, 1500, 2000, 2500, 3000, 3500, 4000)
as well as different inclusion thresholds (A > {−∞,-1, -0.5, 0, 0.5, 1, 1.5, 2, 2.5, 3}).

500 1000 1500 2000 2500 3000 3500 4000
A > 3 1.00 1.00 1.00 1.00 1.00 0.99 0.97 0.96
A > 2.5 1.00 1.00 1.00 0.99 0.99 0.98 0.97 0.95
A > 2 0.99 1.00 1.00 0.99 0.99 0.98 0.97 0.95
A > 1.5 0.98 0.99 0.99 0.99 0.99 0.98 0.97 0.96
A > 1 0.97 0.98 0.98 0.98 0.98 0.98 0.97 0.96
A > 0.5 0.96 0.97 0.97 0.97 0.97 0.97 0.96 0.95
A > 0 0.95 0.96 0.97 0.96 0.97 0.96 0.96 0.95
A > -0.5 0.94 0.95 0.96 0.96 0.96 0.96 0.96 0.95
A > -1 0.94 0.95 0.96 0.96 0.96 0.96 0.96 0.95
A > -∞ 0.94 0.95 0.95 0.95 0.96 0.96 0.95 0.94

Table 4.2: Estimated coverage probabilities when imputation variance estimated using Robins and
Wang’s approach for different validation subsample sizes (n= 500, 1000, 1500, 2000, 2500, 3000,
3500, 4000) as well as different inclusion thresholds (A > {−∞,-1, -0.5, 0, 0.5, 1, 1.5, 2, 2.5, 3}).

500 1000 1500 2000 2500 3000 3500 4000
A > 3 0.96 0.97 0.96 0.96 0.96 0.95 0.95 0.95
A > 2.5 0.95 0.96 0.95 0.95 0.95 0.95 0.95 0.95
A > 2 0.96 0.96 0.95 0.95 0.95 0.95 0.95 0.95
A > 1.5 0.96 0.95 0.95 0.95 0.95 0.95 0.95 0.96
A > 1 0.96 0.96 0.96 0.95 0.95 0.95 0.95 0.96
A > 0.5 0.96 0.96 0.96 0.96 0.95 0.96 0.95 0.95
A > 0 0.97 0.96 0.96 0.95 0.95 0.95 0.95 0.95
A > -0.5 0.97 0.96 0.96 0.95 0.95 0.95 0.95 0.94
A > -1 0.97 0.97 0.96 0.96 0.95 0.95 0.95 0.94
A > -∞ 0.97 0.97 0.96 0.95 0.95 0.95 0.95 0.94
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CHAPTER 5

CONCLUSION

The practical objective behind the research presented in this dissertation was to
advance the methodological sophistication regarding the evaluation and analysis of
audit data. This research was motivated by actual discussions that occurred as part
of applied collaborations with Caribbean, Central and South America network for
HIV epidemiology (CCASAnet), a consortium of research groups from seven Latin
American countries that collect and share HIV care and treatment data. With a
strong commitment to data quality, CCASAnet has been routinely performing source
data verification since its inception. Our post-audit strategy has typically been based
on subjective interpretation of error rates. If the error-rate for a given variable is
considered high at a site, it is recommended that all entries for that variable be
reviewed. If the error-rate is considered acceptable, we proceed with analyses. After
several years, we started asking whether we could do better. Could we incorporate
statistical methods to better evaluate the audit and improve subsequent analyses?
The work presented as part of this dissertation demonstrates that we can incorporate
statistical methods to better utilize data collected as part of data audits.

The first task with respect to evaluating data audits was to justify their continued
implementation. In Chapter 2, we proposed a framework to assess data audit impact
beyond simple error rate calculation. The findings presented in this chapter show
the impact that data errors (as discovered in an audit) have on analysis results.
Furthermore, the results presented in this chapter show that data can also change
post-audit, in part motivated by the audit. Together, these comparisons illustrate
that data audits can have an impact on how study findings are clinically interpreted
as a result of improved data quality, especially for variables that had not previously
been audited. We encourage future investigators to use a similar framework that
incorporates both error rate calculation and fitting analysis models using pre-audit
and audited records when evaluating their data audits.

Once we identified that the originally collected data were error-prone and likely to
influence our statistical inferences, it became important to identify a way to efficiently
adjust our analysis estimates without having to audit the entire dataset. The time-
discretized multiple imputation model proposed in Chapter 3 demonstrated that one
can use statistical methods to combine error-prone data for all records with validated
data for a subset of records and obtain unbiased estimates. Beyond the data audit
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setting, we note that this work was the first to our knowledge to simultaneously
address errors in predictors, censored failure times, event indicators, and inclusion
criteria in a time-to-event analysis.

While we were able to obtain approximately unbiased estimates using this TDMI
approach, we were not able to calculate imputation variance estimates using Rubin’s
approach as it assumes compatibility between the imputation and analysis models.
Instead, we selected an alternative imputation variance estimator proposed by Robins
and Wang (2000) when calculating the 95% confidence intervals reported in Chap-
ter 4. We acknowledge, however, that this approach was challenging to implement
due its complexity and the paucity of other implementations in the literature. The
work presented in Chapter 4 was intended to make this approach more accessible
to contemporary multiple imputation implementors who may be discouraged by the
technical complexity of the original manuscript. This chapter provides a tutorial with
annotated R code using several examples with common scenarios regarding imputa-
tion models, analysis models, and incompatibility due to discretization or inclusion
criteria that one may encounter when analyzing datasets. We were encouraged that
our coverage estimates were closer to nominal levels in each of our examples and
encourage future implementors to use this variance estimator, especially when the
imputation and analysis models are incompatible.

The work contained in this dissertation provides an overview for using statisti-
cal methods to improve the data audit process, from understanding the propensity
for errors in an observational dataset to improving analyses by efficiently account-
ing for those same errors. Our findings demonstrate that statistical methods can be
incorporated to better utilize audit data, but we acknowledge there are still many
exciting opportunities to extend our work further. While the work in this disser-
tation was based on a random sample for selecting the audit subgroup, alternative
sampling designs, including oversampling exposures or events considered more likely
to be error-prone, might be optimal. We realize future implementors may be inter-
ested in models other than those highlighted in the examples calculating the Robins
and Wang variance estimator. Investigations regarding its implementation in addi-
tional settings when there is incompatibility between imputation and analysis models
such as propensity score analyses or with alternative imputation approaches such as
multiple imputation by chained equations would also be beneficial. We encourage re-
searchers to extend the code provided as part of this dissertation to create functions
generalizable to more settings.
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