
Vanderbilt University Biostatistics Comprehensive Examination

PhD Theory Exam Series 2

May 21–May 24, 2024

Instructions: Please adhere to the following guidelines:

• This exam is scheduled to be administered on Tuesday, May 21 at 9:00am, and will be due on
Friday, May 24 at 5:00pm. This deadline is strict: late submissions will not be accepted.

• To turn in your exam, please use your assigned Box folder and e-mail your word-processed exam
to Dr. Andrew Spieker by the deadline. This level of redundancy is designed to ensure that your
exam is received by the deadline. If you would like to e-mail exam drafts along the way, that is
perfectly acceptable—do not be concerned about spamming my inbox.

• There are four problems. Note that not all questions and their sub-questions are weighted equally.
You are advised to pace yourself and to not spend too much time on any one problem.

• Answer each question clearly and to the best of your ability. Partial credit will be awarded for
partially correct answers.

• Be as specific as possible in your responses.

• You may consult reference material (e.g., course notes, textbooks), though the work you turn in
must be your own (this means no generative AI). This is an individual effort. Do not communicate
about the exam with anyone. Vanderbilt University’s academic honor code applies.

• Please direct clarifying questions by e-mail to Dr. Andrew Spieker, Dr. Bob Johnson, and Dr. Amir
Asiaee.



1. 25 pts Background: A random process C(N) = {N(t), t ∈ [0,∞)} is said to be a counting process if N(t)
is the number of events occurring from time 0 up to and including time t. For a counting process, we assume
N(0) = 0. A counting process C(N) is called a Poisson process with rate λ > 0 (fixed) if all of the following
conditions hold:

• N(0) = 0,

• C(N) has independent increments (times between sequential events), and

• the number of events in any interval of length τ > 0 has Poisson(λτ) distribution.

(a) Consider a Poisson process with rate λ. Let T1 be the “arrival” time of the first event and Tn be the inter-
arrival time between the (n − 1)st and the nth events. Show that {Tn : n = 1, 2, . . .} are independently
and identically distributed exponential random variables with parameter λ.

(b) Does a Poisson process have stationary increments? Explain your answer.

(c) Let Yn ∼ Binomial(n, λ/n) where λ > 0. Show that Yn
d−→ Y ∼ Poisson(λ) using characteristic

functions.

(d) Argue that a counting process, C(M), with the following properties is a Poisson process.

• M(0) = 0;

• C(M) has independent and stationary increments; and

• P{M(∆) = 0} = 1− λ∆+ o(∆),

P{M(∆) = 1} = λ∆+ o(∆), and

P{M(∆) ≥ 2} = o(∆)

for ∆ > 0 and fixed λ > 0. (Recall that the little o notation, o(∆), may replace some h(∆) if h(∆) is
negligible compared to ∆ as ∆ → 0; that is, h(∆)/∆ → 0 as ∆ → 0).

(e) Consider again the process defined in (a). Let Gk =
∑k

i=1 Ti, the time to the kth event.

[i] Plot the sequence {Gn} up to n = 1000. Generate data using the following code:

1 n=1000; lambda = 1

2 set.seed(1395271)

3 G=c(0,cumsum(rexp(n,rate=lambda)))

Discuss the plot. Is it helpful in viewing the properties of the sequence?

[ii] Prove that Gk ∼ Gamma(k, λ). What are the mean and variance of Gk? Determine Cov[Gk, Gm].

[iii] Could we have just as well replaced the third line of the code in (e)[i] with the following code:
G=c(0,rgamma(1:n,1:n,rate=lambda))? Explain your answer.

[iv] We want to show in a figure where the sequence is potentially out of control by noting where Gn is
above or below E[Gn]± 2

√
Var[Gn]. To simplify this, redraw the plot in (e)[i] after centering each

Gn; that is, plot Gn −E[Gn]. Include red curves (use lwd=3) that are ±2 standard deviations from
0. Discuss the plot. Did the sequence remain in control up to n = 1000?

[v] How does this stochastic sequence relate to the standard Brownian motion?

[vi] What is the probability (or approximate probability) that the centered sequence first passes the
horizontal line at 25 no later than the 750th step in the sequence? Use the following to add the line
to your last figure: abline(h=25,lty=2,col="blue",lwd=2). You may use simulation to estimate
and check your result, but you should provide an estimate using Brownian motion.



2. 25 pts Suppose X1, . . . , Xn are i.i.d. random variables having the common distribution function F and

density function f that you may assume in this problem to have a continuous first derivative. Let F̂n denote
the empirical distribution function of the Xi’s, and let {an}∞n=1 denote some sequence of positive numbers.
Consider the following estimator of f :

f̂n(x) =
F̂n(x+ an)− F̂n(x− an)

2an
.

(a) Argue that Qn(x) = 2nanf̂n(x) ∼ Binomial(n, pn(x)), where pn(x) = F (x+ an)− F (x− an).

(b) Determine E[f̂n(x)], and show that E[f̂n(x)] −→ f(x) if an −→ 0.

(c) Determine Var[f̂n(x)], and show that Var[f̂n(x)] −→ 0 if an −→ 0 and nan −→ ∞.

(d) Suppose again that an −→ 0 and nan −→ ∞. Use the Lyapunov Central Limit Theorem to argue that:

2nan

(
f̂n(x)− E[f̂n(x)]

)
√

npn(1− pn)

d−→ N (0, 1).

(e) Argue that if n1/2a
3/2
n −→ C ∈ [0,∞), we can push the result of part (d) further as follows:

√
2nan

 f̂n(x)− f(x)√
f̂n(x)

 d−→ N (0, 1).

Use this result to determine the form of a confidence interval for f(x) that would be asymptotically valid
for, e.g., sequences of the form an = n−r, 1/3 < r < 1.

(f) Suppose that F (x) = 1−exp(−x), with n = 100. Below is sample code; run it line-by-line and be certain
you understand each step. Present and comment on the graphical output.

1 set.seed(2024)

2 n <- 100

3 zz <- ecdf(rexp(n, rate = 1))

4 x <- seq(0,8,0.001)

5 an1 <- n^(-1/200)

6 an2 <- n^(-1/2)

7 fn1.hat <- (zz(x + an1) - zz(x - an1))/(2*an1)

8 fn2.hat <- (zz(x + an2) - zz(x - an2))/(2*an2)

9 plot(x, fn1.hat, type = "l", ylim = c(0, 1))

10 lines(x, dexp(x), col = "blue", lwd = 2)

11 plot(x, fn2.hat, type = "l", ylim = c(0, 1))

12 lines(x, dexp(x), col = "blue", lwd = 2)

(g) Again consider the case in which F (x) = 1 − exp(−x). Conduct a simulation study in which you vary
the simulation parameters as follows:

• Sample sizes: n = 102, n = 103, and n = 104.

• Sequences: an = n−3/4, an = n−1/3, and an = n−1/10.

• Values of x at which to estimate f(x): x = 0.25, x = 1, and x = 4.

Present and compare the following finite-sample properties of f̂n(x), accounting for your findings:

• The average values of f̂n(x),
√
2nan(f̂n(x)− E[f̂n(x)]), and

√
2nan(f̂n(x)− f(x)) at each x.

• The empirical standard errors of f̂(x) across simulation replicates.

• The coverage of a 95% confidence interval for f(x), formed based on the result of part (e).

Please use a total of M = 10,000 simulation replicates per setting. You can use graphical and/or tabular
methods to present your results; this problem is open-ended. Include your R code as an appendix.



3. 20 pts This problem aims to enrich your understanding about how the ridge penalty affects the leverage of
individual observations in a simple linear regression model, and further seeks to elucidate what can go wrong
if you fail to center a predictor prior to regularization. To that end, consider the setting in which you seek to
estimate shrunken coefficients from the simple linear regression model E[Y |X = x] = β0 + β1x via the ridge
penalty. For simplicity, and without any serious loss to generality, consider X to be uniformly distributed
between 0 and 1. Given a sample size of n > 2, define the leverage for an observation x = [1 x] as:

Pλ(x) = xT (XTX+ λI)−1x ,

where λ ≥ 0 marks the penalty and X is the n× 2 design matrix for the uncentered data. Throughout this
problem, you may freely use without proof the following two facts:

• The graph of y = ax2 + bx+ c (a ̸= 0) corresponds to a parabola with vertex occurring at x = −b/2a.

• The matrix products AB and BA have the same eigenvalues (A and B must clearly be square and of
the same dimension for them to be conformable for multiplication in both directions).

(a) Determine the value of x, call it xλ, at which Pλ(x) is minimized. Conclude that xλ < x0 for λ > 0.

(b) Prove as a lemma to part (c) that if A and B are positive definite matrices of the same dimension,
then A ≻ B implies that B−1 ≻ A−1. Please recall that the notation A ≻ B is a shorthand way to
communicate that A−B is a positive definite matrix.

(c) Show that for x ∈ (0, 1), Pλ(x) > Pλ′(x) > 0 if λ′ > λ ≥ 0. Confirm this by running the following code
(which might also help you with subsequent parts of this problem):

P <- function(x, X, lambda = 0) {

x.t <- matrix(cbind(1, x), ncol = 2)

p <- x.t %*% solve(t(X) %*% X + lambda * diag(2)) %*% t(x.t)

return(diag(p))

}

set.seed(2024)

n <- 100

X <- cbind(1, runif(n, 0, 1))

x.p <- seq(0,1,0.01)

plot(x.p, P(x.p, X = X, lambda = 0), frame.plot = FALSE, xlab = "x",

ylab = "Leverage", type = "l", lwd = 2, ylim = c(0, 0.04))

lines(x.p, P(x.p, X = X, lambda = 5))

lines(x.p, P(x.p, X = X, lambda = 10))

lines(x.p, P(x.p, X = X, lambda = 20))

(d) Argue that for λ > 0, Pλ(x) is not a function of P0(x). A response relying on proper graphical reasoning
will be considered sufficient for this problem (for instance, you may wish to include a graph and label it
in a way that illustrates your point).

(e) Characterize the behavior of Pλ(x) as λ ↗ ∞ (i.e., for a fixed n > 2).

(f) Characterize the behavior of Pλ(x) as n ↗ ∞ (i.e., for a fixed λ > 0).

(g) Comment on the pragmatic implications of your findings in this problem; your answer can be heuristic
and conceptual, but it should be thoughtful. If you need a starting point in crafting a response, re-read
the first sentence of the problem description. A thoughtful response will consider how the answers to
previous parts of the problem might change if the X’s are centered in advance to have mean zero.



4. 30 pts It is often of interest to predict multiple outcomes from a common set of predictors. Though each
outcome could be modeled as a distinct regression task, there may be between-outcome correlations. Consider
a data set with N independent observations, each having D features and T outcomes. Let ynt denote the t

th

outcome for the nth observation, and let xnd represent the dth feature for the nth observation. Assuming the
outcomes are linearly dependent on the features, the relationship can be modeled as:

ynt =
D∑

d=1

xndbdt + ent = xT
nbt + ent,

where xn,bt ∈ RD, and ent is random noise. The data set comprises pairs of input-output vectors D =
{(xn,yn)}Nn=1, with xn ∈ RD and yn ∈ RT . The linear model in matrix form is expressed as:

Y = XB+E, Y ∈ RN×T , X ∈ RN×D, E ∈ RN×T , and B ∈ RD×T .

The noise vectors en are assumed to be multivariate normal with mean zero and a covariance matrix Σ—that
is, en ∼ N (0,Σ). Let Ω = Σ−1 denote the precision matrix.

(a) Derive the negative log-likelihood NNLD(B,Ω) ≡ − logLD(B,Ω), and simplify by removing non-
essential terms.

(b) Treating the precision matrix, Ω∗, as known, derive the closed-form solution for B̂, which minimizes
NNLD(B,Ω∗). Demonstrate that B̂ does not depend upon Ω∗, effectively reducing the estimation to T
independent ordinary least squares problems. Hint : Use the trace trick.

(c) Introduce a Frobenius-norm penalty of the matrix B to the negative log-likelihood as a way to mitigate
overfitting. Call the objective function PNLLD(B,Ω∗), for “penalized negative log-likelihood.” Derive
an equation that characterizes B̂ under this regularization (a closed-form derivation is not necessary).
Illustrate that the resulting penalized MLE solution is not equivalent to T independent ridge regressions.
Specifically, demonstrate how the coefficients are coupled across tasks via Ω∗.

(d) Consider the scenario in which both Ω and B are unknown. Is is known that PNNLD(B,Ω) is not jointly
convex with respect to these variables.

[i] Demonstrate that when Ω is fixed, PNLLD is convex in B. Hint : Note that the variables here are
matrices and although the first derivative with respect to a matrix is easy, the second derivative
required to show convexity is complicated. For that, you can vectorize the variables and use the
Kronecker product identity: vec(ABC) = (CT ⊗A)vec(B), where ⊗ is the Kronecker product.

[ii] When B is fixed, PNLLD is convex in Ω, a fact you are free to use without further proof. Based
on these convexity properties, propose a gradient descent-based approach to find a local minimum
for the penalized maximum likelihood estimation described in part (c). You should compute the
gradients for the updates.

(e) Given the challenges of estimating Ω in high-dimensional settings with limited samples, it becomes
necessary to assume a simpler structure for Ω using regularization norms.

[i] Discuss and compare two regularization approaches: the nuclear norm, ∥Ω∥nuc ≡
∑T

i=1 σi(Ω), and

the ℓ1-norm, ∥Ω∥1 ≡
∑T

i=1

∑T
j=1 |ωij |. Based on their properties and their implications for the

estimated precision matrix, argue which norm is more appropriate and why.

[ii] Demonstrate that f(Ω) ≡
∑T

t=1 ∥Ωt,:∥2 qualifies as a norm (here, Ωt,: is the tth row of the matrix
Ω) and discuss what type of prior belief about the interrelationships between tasks is reflected by
this norm.


