Vanderbilt University Biostatistics Comprehensive Examination

PhD Theory Exam Series 2

May 21-May 24, 2024

Instructions: Please adhere to the following guidelines:

- This exam is scheduled to be administered on Tuesday, May 21 at 9:00am, and will be due on Friday, May 24 at 5:00pm. This deadline is strict: late submissions will not be accepted.
- To turn in your exam, please use your assigned Box folder and e-mail your word-processed exam to Dr. Andrew Spieker by the deadline. This level of redundancy is designed to ensure that your exam is received by the deadline. If you would like to e-mail exam drafts along the way, that is perfectly acceptable—do not be concerned about spamming my inbox.
- There are four problems. Note that not all questions and their sub-questions are weighted equally. You are advised to pace yourself and to not spend too much time on any one problem.
- Answer each question clearly and to the best of your ability. Partial credit will be awarded for partially correct answers.
- Be as specific as possible in your responses.
- You may consult reference material (e.g., course notes, textbooks), though the work you turn in must be your own (this means no generative AI). This is an *individual effort*. Do not communicate about the exam with anyone. Vanderbilt University's academic honor code applies.
- Please direct clarifying questions by e-mail to Dr. Andrew Spieker, Dr. Bob Johnson, and Dr. Amir Asiaee.

- 1. 25 pts Background: A random process $C(N) = \{N(t), t \in [0, \infty)\}$ is said to be a counting process if N(t) is the number of events occurring from time 0 up to and including time t. For a counting process, we assume N(0) = 0. A counting process C(N) is called a Poisson process with rate $\lambda > 0$ (fixed) if all of the following conditions hold:
 - N(0) = 0,
 - $\mathcal{C}(N)$ has independent increments (times between sequential events), and
 - the number of events in any interval of length $\tau > 0$ has $Poisson(\lambda \tau)$ distribution.
 - (a) Consider a Poisson process with rate λ . Let T_1 be the "arrival" time of the first event and T_n be the interarrival time between the $(n-1)^{\text{st}}$ and the n^{th} events. Show that $\{T_n : n = 1, 2, ...\}$ are independently and identically distributed exponential random variables with parameter λ .
 - (b) Does a Poisson process have stationary increments? Explain your answer.
 - (c) Let $Y_n \sim \text{Binomial}(n, \lambda/n)$ where $\lambda > 0$. Show that $Y_n \xrightarrow{d} Y \sim \text{Poisson}(\lambda)$ using characteristic functions.
 - (d) Argue that a counting process, $\mathcal{C}(M)$, with the following properties is a Poisson process.
 - M(0) = 0;
 - $\mathcal{C}(M)$ has independent and stationary increments; and
 - $P\{M(\Delta) = 0\} = 1 \lambda\Delta + o(\Delta),$ $P\{M(\Delta) = 1\} = \lambda\Delta + o(\Delta), \text{ and }$ $P\{M(\Delta) \ge 2\} = o(\Delta)$

for $\Delta > 0$ and fixed $\lambda > 0$. (Recall that the *little o* notation, $o(\Delta)$, may replace some $h(\Delta)$ if $h(\Delta)$ is negligible compared to Δ as $\Delta \to 0$; that is, $h(\Delta)/\Delta \to 0$ as $\Delta \to 0$).

- (e) Consider again the process defined in (a). Let $G_k = \sum_{i=1}^k T_i$, the time to the k^{th} event.
 - [i] Plot the sequence $\{G_n\}$ up to n = 1000. Generate data using the following code:
 - 1 n=1000; lambda = 1
 - 2 set.seed(1395271)
 - 3 G=c(0,cumsum(rexp(n,rate=lambda)))

Discuss the plot. Is it helpful in viewing the properties of the sequence?

- [ii] Prove that $G_k \sim \text{Gamma}(k, \lambda)$. What are the mean and variance of G_k ? Determine $\text{Cov}[G_k, G_m]$.
- [iii] Could we have just as well replaced the third line of the code in (e)[i] with the following code: G=c(0,rgamma(1:n,1:n,rate=lambda))? Explain your answer.
- [iv] We want to show in a figure where the sequence is potentially *out of control* by noting where G_n is above or below $E[G_n] \pm 2\sqrt{\operatorname{Var}[G_n]}$. To simplify this, redraw the plot in (e)[i] after centering each G_n ; that is, plot $G_n - E[G_n]$. Include red curves (use 1wd=3) that are ± 2 standard deviations from 0. Discuss the plot. Did the sequence remain in *control* up to n = 1000?
- [v] How does this stochastic sequence relate to the standard Brownian motion?
- [vi] What is the probability (or approximate probability) that the <u>centered</u> sequence first passes the horizontal line at 25 no later than the 750th step in the sequence? Use the following to add the line to your last figure: abline(h=25,lty=2,col="blue",lwd=2). You may use simulation to estimate and check your result, but you should provide an estimate using Brownian motion.

2. 25 pts Suppose X_1, \ldots, X_n are i.i.d. random variables having the common distribution function F and density function f that you may assume in this problem to have a continuous first derivative. Let \widehat{F}_n denote the empirical distribution function of the X_i 's, and let $\{a_n\}_{n=1}^{\infty}$ denote some sequence of positive numbers. Consider the following estimator of f:

$$\widehat{f}_n(x) = \frac{\widehat{F}_n(x+a_n) - \widehat{F}_n(x-a_n)}{2a_n}$$

- (a) Argue that $Q_n(x) = 2na_n \hat{f}_n(x) \sim \text{Binomial}(n, p_n(x))$, where $p_n(x) = F(x + a_n) F(x a_n)$.
- (b) Determine $E[\widehat{f}_n(x)]$, and show that $E[\widehat{f}_n(x)] \longrightarrow f(x)$ if $a_n \longrightarrow 0$.
- (c) Determine $\operatorname{Var}[\widehat{f}_n(x)]$, and show that $\operatorname{Var}[\widehat{f}_n(x)] \longrightarrow 0$ if $a_n \longrightarrow 0$ and $na_n \longrightarrow \infty$.
- (d) Suppose again that $a_n \longrightarrow 0$ and $na_n \longrightarrow \infty$. Use the Lyapunov Central Limit Theorem to argue that:

$$\frac{2na_n\left(\widehat{f}_n(x) - \mathbf{E}[\widehat{f}_n(x)]\right)}{\sqrt{np_n(1-p_n)}} \xrightarrow{d} \mathcal{N}(0,1)$$

(e) Argue that if $n^{1/2}a_n^{3/2} \longrightarrow C \in [0,\infty)$, we can push the result of part (d) further as follows:

$$\sqrt{2na_n}\left(\frac{\widehat{f_n}(x) - f(x)}{\sqrt{\widehat{f_n}(x)}}\right) \stackrel{d}{\longrightarrow} \mathcal{N}(0,1).$$

Use this result to determine the form of a confidence interval for f(x) that would be asymptotically valid for, e.g., sequences of the form $a_n = n^{-r}$, 1/3 < r < 1.

(f) Suppose that $F(x) = 1 - \exp(-x)$, with n = 100. Below is sample code; run it line-by-line and be certain you understand each step. Present and comment on the graphical output.

1	set.seed(2024)
2	n <- 100
3	<pre>zz <- ecdf(rexp(n, rate = 1))</pre>
4	x <- seq(0,8,0.001)
5	an1 <- n^(-1/200)
6	an2 <- n^(-1/2)
7	<pre>fn1.hat <- (zz(x + an1) - zz(x - an1))/(2*an1)</pre>
8	<pre>fn2.hat <- (zz(x + an2) - zz(x - an2))/(2*an2)</pre>
9	plot(x, fn1.hat, type = "l", ylim = c(0, 1))
10	<pre>lines(x, dexp(x), col = "blue", lwd = 2)</pre>
11	<pre>plot(x, fn2.hat, type = "1", ylim = c(0, 1))</pre>
12	<pre>lines(x, dexp(x), col = "blue", lwd = 2)</pre>

- (g) Again consider the case in which $F(x) = 1 \exp(-x)$. Conduct a simulation study in which you vary the simulation parameters as follows:
 - Sample sizes: $n = 10^2$, $n = 10^3$, and $n = 10^4$.
 - Sequences: $a_n = n^{-3/4}$, $a_n = n^{-1/3}$, and $a_n = n^{-1/10}$.
 - Values of x at which to estimate f(x): x = 0.25, x = 1, and x = 4.

Present and compare the following finite-sample properties of $\widehat{f}_n(x)$, accounting for your findings:

- The average values of $\widehat{f}_n(x)$, $\sqrt{2na_n}(\widehat{f}_n(x) \mathbb{E}[\widehat{f}_n(x)])$, and $\sqrt{2na_n}(\widehat{f}_n(x) f(x))$ at each x.
- The empirical standard errors of $\widehat{f}(x)$ across simulation replicates.
- The coverage of a 95% confidence interval for f(x), formed based on the result of part (e).

Please use a total of M = 10,000 simulation replicates per setting. You can use graphical and/or tabular methods to present your results; this problem is open-ended. Include your R code as an appendix.

3. 20 pts This problem aims to enrich your understanding about how the ridge penalty affects the leverage of individual observations in a simple linear regression model, and further seeks to elucidate what can go wrong if you fail to center a predictor prior to regularization. To that end, consider the setting in which you seek to estimate shrunken coefficients from the simple linear regression model $E[Y|X = x] = \beta_0 + \beta_1 x$ via the ridge penalty. For simplicity, and without any serious loss to generality, consider X to be uniformly distributed between 0 and 1. Given a sample size of n > 2, define the leverage for an observation $\mathbf{x} = \begin{bmatrix} 1 & x \end{bmatrix}$ as:

$$P_{\lambda}(x) = \boldsymbol{x}^T (\mathbf{X}^T \mathbf{X} + \lambda \mathbf{I})^{-1} \boldsymbol{x}$$

where $\lambda \ge 0$ marks the penalty and **X** is the $n \times 2$ design matrix for the uncentered data. Throughout this problem, you may freely use without proof the following two facts:

- The graph of $y = ax^2 + bx + c$ ($a \neq 0$) corresponds to a parabola with vertex occurring at x = -b/2a.
- The matrix products **AB** and **BA** have the same eigenvalues (**A** and **B** must clearly be square and of the same dimension for them to be conformable for multiplication in both directions).
- (a) Determine the value of x, call it x_{λ} , at which $P_{\lambda}(x)$ is minimized. Conclude that $x_{\lambda} < x_0$ for $\lambda > 0$.
- (b) Prove as a lemma to part (c) that if **A** and **B** are positive definite matrices of the same dimension, then $\mathbf{A} \succ \mathbf{B}$ implies that $\mathbf{B}^{-1} \succ \mathbf{A}^{-1}$. Please recall that the notation $\mathbf{A} \succ \mathbf{B}$ is a shorthand way to communicate that $\mathbf{A} \mathbf{B}$ is a positive definite matrix.
- (c) Show that for $x \in (0, 1)$, $P_{\lambda}(x) > P_{\lambda'}(x) > 0$ if $\lambda' > \lambda \ge 0$. Confirm this by running the following code (which might also help you with subsequent parts of this problem):

```
P <- function(x, X, lambda = 0) {
    x.t <- matrix(cbind(1, x), ncol = 2)
    p <- x.t %*% solve(t(X) %*% X + lambda * diag(2)) %*% t(x.t)
    return(diag(p))
}
set.seed(2024)
n <- 100
X <- cbind(1, runif(n, 0, 1))
x.p <- seq(0,1,0.01)

plot(x.p, P(x.p, X = X, lambda = 0), frame.plot = FALSE, xlab = "x",
    ylab = "Leverage", type = "l", lwd = 2, ylim = c(0, 0.04))
lines(x.p, P(x.p, X = X, lambda = 10))
lines(x.p, P(x.p, X = X, lambda = 20))</pre>
```

- (d) Argue that for $\lambda > 0$, $P_{\lambda}(x)$ is not a function of $P_0(x)$. A response relying on proper graphical reasoning will be considered sufficient for this problem (for instance, you may wish to include a graph and label it in a way that illustrates your point).
- (e) Characterize the behavior of $P_{\lambda}(x)$ as $\lambda \nearrow \infty$ (i.e., for a fixed n > 2).
- (f) Characterize the behavior of $P_{\lambda}(x)$ as $n \nearrow \infty$ (i.e., for a fixed $\lambda > 0$).
- (g) Comment on the pragmatic implications of your findings in this problem; your answer can be heuristic and conceptual, but it should be thoughtful. If you need a starting point in crafting a response, re-read the first sentence of the problem description. A thoughtful response will consider how the answers to previous parts of the problem might change if the X's are centered in advance to have mean zero.

4. <u>30 pts</u> It is often of interest to predict multiple outcomes from a common set of predictors. Though each outcome could be modeled as a distinct regression task, there may be between-outcome correlations. Consider a data set with N independent observations, each having D features and T outcomes. Let y_{nt} denote the t^{th} outcome for the n^{th} observation, and let x_{nd} represent the d^{th} feature for the n^{th} observation. Assuming the outcomes are linearly dependent on the features, the relationship can be modeled as:

$$y_{nt} = \sum_{d=1}^{D} x_{nd} b_{dt} + e_{nt} = \boldsymbol{x}_n^T \mathbf{b}_t + e_{nt}$$

where $\boldsymbol{x}_n, \mathbf{b}_t \in \mathbb{R}^D$, and e_{nt} is random noise. The data set comprises pairs of input-output vectors $\mathcal{D} = \{(\boldsymbol{x}_n, \mathbf{y}_n)\}_{n=1}^N$, with $\boldsymbol{x}_n \in \mathbb{R}^D$ and $\mathbf{y}_n \in \mathbb{R}^T$. The linear model in matrix form is expressed as:

 $\mathbf{Y} = \mathbf{X}\mathbf{B} + \mathbf{E}, \quad \mathbf{Y} \in \mathbb{R}^{N \times T}, \ \mathbf{X} \in \mathbb{R}^{N \times D}, \ \mathbf{E} \in \mathbb{R}^{N \times T}, \ \text{and} \ \mathbf{B} \in \mathbb{R}^{D \times T}.$

The noise vectors \mathbf{e}_n are assumed to be multivariate normal with mean zero and a covariance matrix Σ —that is, $\mathbf{e}_n \sim \mathcal{N}(\mathbf{0}, \Sigma)$. Let $\Omega = \Sigma^{-1}$ denote the precision matrix.

- (a) Derive the negative log-likelihood $\text{NNL}_{\mathcal{D}}(\mathbf{B}, \mathbf{\Omega}) \equiv -\log \mathcal{L}_{\mathcal{D}}(\mathbf{B}, \mathbf{\Omega})$, and simplify by removing non-essential terms.
- (b) Treating the precision matrix, Ω^* , as known, derive the closed-form solution for $\widehat{\mathbf{B}}$, which minimizes $\mathrm{NNL}_{\mathcal{D}}(\mathbf{B}, \Omega^*)$. Demonstrate that $\widehat{\mathbf{B}}$ does not depend upon Ω^* , effectively reducing the estimation to T independent ordinary least squares problems. *Hint*: Use the trace trick.
- (c) Introduce a Frobenius-norm penalty of the matrix **B** to the negative log-likelihood as a way to mitigate overfitting. Call the objective function $\text{PNLL}_{\mathcal{D}}(\mathbf{B}, \Omega^*)$, for "penalized negative log-likelihood." Derive an equation that characterizes $\widehat{\mathbf{B}}$ under this regularization (a closed-form derivation is not necessary). Illustrate that the resulting penalized MLE solution is not equivalent to T independent ridge regressions. Specifically, demonstrate how the coefficients are coupled across tasks via Ω^* .
- (d) Consider the scenario in which both Ω and **B** are unknown. Is is known that $\text{PNNL}_{\mathcal{D}}(\mathbf{B}, \Omega)$ is *not* jointly convex with respect to these variables.
 - [i] Demonstrate that when Ω is fixed, PNLL_D is convex in **B**. *Hint*: Note that the variables here are matrices and although the first derivative with respect to a matrix is easy, the second derivative required to show convexity is complicated. For that, you can vectorize the variables and use the Kronecker product identity: $vec(ABC) = (C^T \otimes A)vec(B)$, where \otimes is the Kronecker product.
 - [ii] When **B** is fixed, $\text{PNLL}_{\mathcal{D}}$ is convex in Ω , a fact you are free to use without further proof. Based on these convexity properties, propose a gradient descent-based approach to find a local minimum for the penalized maximum likelihood estimation described in part (c). You should compute the gradients for the updates.
- (e) Given the challenges of estimating Ω in high-dimensional settings with limited samples, it becomes necessary to assume a simpler structure for Ω using regularization norms.
 - [i] Discuss and compare two regularization approaches: the nuclear norm, $\|\mathbf{\Omega}\|_{\text{nuc}} \equiv \sum_{i=1}^{T} \sigma_i(\mathbf{\Omega})$, and the ℓ_1 -norm, $\|\mathbf{\Omega}\|_1 \equiv \sum_{i=1}^{T} \sum_{j=1}^{T} |\omega_{ij}|$. Based on their properties and their implications for the estimated precision matrix, argue which norm is more appropriate and why.
 - [ii] Demonstrate that $f(\mathbf{\Omega}) \equiv \sum_{t=1}^{T} \|\mathbf{\Omega}_{t,:}\|_2$ qualifies as a norm (here, $\mathbf{\Omega}_{t,:}$ is the t^{th} row of the matrix $\mathbf{\Omega}$) and discuss what type of prior belief about the interrelationships between tasks is reflected by this norm.