
Vanderbilt University Biostatistics Comprehensive Examination

MS Theory Exam/
PhD Theory Exam Series 1

May 23, 2022

Instructions: Please adhere to the following guidelines:

• This exam begins on Monday, May 23 at 9:00am. You will have until 5:00pm to complete it.

• There are six equally weighted problems of varying length and difficulty. Note that not all sub-
problems are weighted equally. You are strongly advised not to spend too much time on any one
problem.

• Answer each question clearly and to the best of your ability. Partial credit will be awarded for
partially correct answers.

• Be as specific as possible, show your work when necessary, and please write legibly.

• This is a closed-everything examination, though you will be permitted to use a scientific calculator.

• This examination is an individual effort. Vanderbilt University’s academic honor code applies.

• Please address any clarifying questions to the exam proctor.



1. 25 pts Consider a research study of a particular disease in mice. Researchers evaluate offspring from two
animals; each offspring has a known 25% chance of having the disease of interest. Assume for the purposes
of this problem that the disease status is independent across all offspring.

Suppose the first 11 offspring from the breeding pair are evaluated, and let X denote the number of offspring
with the disease.

(a) Determine the probability mass function, pX(x).

(b) Use the definition of expected value to compute E[X].

(c) Use the definition of variance to compute Var[X].

Suppose the breeding pair continues to breed and produce offspring. Let Y denote the number of offspring
examined (not including the original 11) until the next offspring with the disease is identified.

(d) Determine the moment generating function, MY (t), for Y .

(e) Use your answer to part (d) to compute E[Y ].

(f) Use your answer to part (d) to compute Var[Y ].

Assume now that the total number of offspring examined, N , is a random variable, withN ∼ Poisson(λ = 20).
Assume that, given N , the number of offspring in this sub-study with the disease, Z, follows the same family
of distributions as in part (a).

(g) Determine the value of E[Z].

(h) Determine the value of Var[Z].

The researchers devise a diagnostic test for the disease of interest based on a continuous biomarker. They
now randomly sample n0 = 100 offspring without the disease and n1 = 100 offspring with the disease (these
sample sizes are fixed and known). Suppose that at a particular threshold for the continuous biomarker, 95
mice test positive: 20 mice without the disease and 75 mice with the disease.

(i) Determine an estimate of each of the following quantities:

• The sensitivity, P(test positive|disease).

• The specificity, P(test negative|no disease).

• The positive predictive value, P(disease|test positive).

• The negative predictive value, P(no disease|test negative).

(j) The researchers use the data to construct an empirical receiver operating characteristic curve based on
the diagnostic test. Briefly explain why the empirical “area under the ROC curve” can be no larger
than 0.95 (based on the data provided in the description above). You may feel free to draw a picture to
justify your argument—no formal proof is required.



2. 25 pts Suppose X and Y are random variables having joint density function given by:

fX,Y (x, y) = x+ y, 0 < x < 1, 0 < y < 1.

Further, let U = X + Y and let V = X − Y .

(a) Show that fX,Y (x, y) is a valid joint probability density function.

(b) Determine the joint cumulative distribution function of (X,Y ).

(c) Determine P(Y 1/3 < X).

(d) Determine the value of Cov[U, V ].

(e) Determine the joint density function for (U, V ).

(f) Are U and V independent? Justify your response.

For parts (g) and (h), suppose you sample n i.i.d. pairs (X1, Y1), . . . , (Xn, Yn) from fX,Y (x, y).

(g) Let Un =
∑n

i=1(Xi +Yi). Determine a sequence of positive numbers, an, and a real number, b, such that
the following statement is true:

anUn
a.s.−→ b.

Justify your steps by naming any theorems you invoke.

(h) Let Vn =
∑n

i=1(Xi−Yi). Determine a sequence of positive numbers, cn, such that the following statement
is true:

cnV
2
n

d−→ χ2
1.

Justify your steps by naming any theorems you invoke.



3. 25 pts The number of colds per year, X, for a randomly selected resident in a northern region is assumed
to have the discrete distribution pθ(x) = θ−1, x = 1, 2, . . . , θ, where the parameter θ is an unknown positive
integer. It is desired to find a reasonable candidate for the minimum variance unbiased estimator (MVUE)
of θ using the information contained in a random sample X1, . . . , Xn from pθ(x).

(a) Prove that U = max{X1, . . . , Xn} is the maximum likelihood estimator of θ and is a sufficient statistic.

(b) Show that T = 2X1 − 1 is an unbiased estimator of θ.

(c) Given that U is a complete sufficient statistic for θ, derive an explicit expression for the MVUE, θ̃, of θ.

(d) Check your work in part (c) by confirming that θ̃ = 2X1 − 1 when n = 1. Then, show directly that
E[θ̃] = θ for all n.

(e) Do you notice any undesirable properties of θ̃ as an estimator of θ? Explain.



4. 25 pts Suppose X1, . . . , Xn are i.i.d. real-valued random variables having common density function

fλ(x) =
λ

2
e−λ|x|

for an unknown parameter λ > 0.

(a) Suppose you seek a method-of-moments estimator for λ. Very briefly, why would a method-of-moments
estimator based on µ1 = E[X] not be an appropriate approach to this problem?

(b) Determine the value of µ2 = E[X2].

(c) Use your answer to part (b) to propose a method-of-moments estimator for λ (call it λ̃n), and determine
its asymptotic distribution.

(d) Determine the maximum likelihood estimator for λ (call it λ̂n), and determine its asymptotic distribution.

(e) How does the asymptotic efficiency of λ̂n compare to that of λ̃n?



5. 25 pts A scientist is studying the teratogenic effects of a certain chemical on rat fetuses. Two fetuses from
each pregnant female rat that was exposed to the chemical during gestation were observed. A fetus was
determined to be abnormal (i.e., dead or malformed) or normal. Suppose that π is the probability that a
fetus is abnormal, 0 < π < 1. Further, for the ith of n litters, each litter being of size two, let the random
variable Xij take the value 1 if the jth fetus is abnormal and take the value 0 otherwise, j = 1, 2.

Since the two fetuses in each litter have experienced the same gestational conditions, the dichotomous random
variables Xi1 and Xi2 are expected to be correlated. To allow for such a correlation, the following correlated
binomial model is proposed: For i = 1, 2, ..., n,

p0 = P(Xi1 +Xi2 = 0) = (1− π)2 + θ

p1 = P(Xi1 +Xi2 = 1) = 2(π(1− π)− θ)
p2 = P(Xi1 +Xi2 = 2) = π2 + θ,

where –min{π2, (1 − π)2} < θ < π(1 − π). Note that by this setup, Cov[Xi1, Xi2] = θ. Let Yk denote the
number of litters out of n where k of the two fetuses are abnormal, k = 0, 1, 2.

(a) Show that the maximum likelihood estimators π̂ of π and θ̂ of θ are, respectively:

π̂ =
1

2
+
Y2 − Y0

2n
, and

θ̂ =
Y2
n
− π̂2

(b) Derive expressions for E[π̂] and Var[π̂].

(c) The scientist wants to test the null hypothesis that normal and abnormal fetuses are equally likely against
the general alternative of different likelihoods. State the null hypothesis in terms of π. State the null
hypothesis in terms of pk, k = 0, 1, 2.

(d) Determine a likelihood ratio test statistic and describe specifically how you would use it to conduct an
α-level hypothesis test.

(e) Another test is based on

Z =
π̂ − π0√

V̂ar[π̂]

,

and rejects H0 if |Z| > zα. Argue that this is equivalent to the Wald test.

(f) Under what conditions would you expect the tests of parts (d) and (e) to have type 1 error rates of
approximately α?



6. 25 pts Let x1, . . . , xn denote a fixed and known sequence, with 1/c ≤ x1, . . . , xn ≤ c for a known c ≥ 1 that
does not depend upon n. Suppose Y1, . . . , Yn are i.i.d., with Yi ∼ Poisson(xiθ). The goal is to estimate the
fixed, unknown parameter θ > 0.

(a) Obtain the maximum likelihood estimator, θ̂n, for θ and show that it is unbiased for θ.

In parts (b) and (c), consider Bayesian estimation of θ under the prior θ ∼ Gamma(α, β). To be clear, the
prior density function is given by:

π(θ) =
βα

Γ(α)
θα−1e−βθ,

with prior mean given by E[θ] = α/β.

(b) Determine (and name) the posterior distribution π(θ|Y1, . . . , Yn).

(c) Determine the posterior mean, E[θ|Y1, . . . , Yn]. Show that it can be expressed as a convex combination
of the prior mean and the maximum likelihood estimator in the following way:

E[θ|Y1, . . . , Yn] = wn × E[θ] + (1− wn)× θ̂n,

Specifically determine the weights, wn, as part of your response.

Now, consider the posterior mean, E[θ|Y1, . . . , Yn], as an estimator of θ (call it θ̃n) under the frequentist
paradigm.

(d) Argue that θ̃n is not, in general, unbiased for θ.

(e) Argue that θ̃n is consistent for θ.

(f) Suppose the only conditions imposed on the fixed, known values of x1, . . . , xn is that they are positive
and finite. Argue that these conditions are insufficient to guarantee consistency of θ̃n (i.e., for θ). For
this problem, all that is required is to determine a sequence of positive numbers, x1, . . . , xn, such that
consistency does not hold.


