Name:	
Biostatistics 1 st year Comprehensive Examination:	
Applied in-class exam	

June 8th, 2016: 9am to 1pm

Instructions:

- 1. This is exam is to be completed independently. Do not discuss your work with anyone else.
- 2. There are four questions and 9 pages.
- 3. Answer to the best of your ability. Read each question carefully.
- 4. Be as specific as possible and write as clearly as possible.
- 5. This is a closed-book in-class examination. **NO BOOKS, NO NOTES, NO INTERNET DEVICES, NO CALCULATORS, NO OUTSIDE ASSISTANCE.**
- 6. You may leave the examination room to use the restroom or to step out into the hallway for a short breather. **HOWEVER, YOU MUST LEAVE YOUR CELL PHONE AND ALL EXAM MATERIALS IN THE EXAMINATION ROOM.** If there is an emergency, please discuss this with the exam proctor.
- 7. Vanderbilt's academic honor code applies; adhere to the spirit of this code.

Question	Points	Score	Comments
1	42		
2	42		
3	42		
4	84		
Total	210		

** Note: Every sub-question is worth 6 points. There are 35 sub questions for 210 points.

1. These are *True or False* questions. Use a separate sheet of paper to indicate which option (*True or False*) you are choosing for each answer. **Write a brief justification for each answer (1-3 sentences).**

A new blood pressure medication is tested against a placebo. A Wilcoxon-Mann-Whitney test on systolic blood pressure (SBP) has a p-value = 0.001.

a. **True** or **False**: We can conclude at a 1% significance level that the true medians of the drug and placebo exposed populations are different.

A new blood pressure medication is tested against a placebo. An unequal variance two-sample t-test on systolic blood pressure (SBP) has a p-value = 0.001.

b. **True** or **False**: We should conclude at a 1% significance level that the sample means of the drug and placebo groups are different.

A new blood pressure medication is tested against a placebo. The mean and a BCA bootstrapped 95% confidence interval are 120 (110, 129).

c. **True** or **False**: We can conclude at a 5% significance level that the true mean SBP of the drug exposed populations are different.

A new blood pressure medication is tested against a placebo in a randomized controlled trial. The number of patients achieving SBP < 130 for each exposure will be used in a Chisquared test, which will be evaluated at a 5% level.

d. **True** or **False**: The Type I error rate for this experiment is exactly 5%.

A new blood pressure medication is tested against a placebo. The number of patients achieving SBP < 130 for the drug exposure will be used to find an Exact Binomial 95% confidence interval to estimate the true percentage achieving controlled BP.

e. **True** or **False**: The coverage rate for the confidence interval being used here can be assumed to be >95%.

A new blood pressure medication is tested against a placebo. The number of patients achieving SBP < 130 for the drug exposure will be used with a non-informative prior to find a 95% credible interval to estimate the true percentage achieving controlled BP.

- f. **True** or **False**: The coverage rate for the credible interval being used here can be assumed to be \geq 95%.
- g. **True** or **False**: When two studies yield the exact same *p*-value, both studies have generated equivalent amounts of statistical evidence.

2. A large "new-user" propensity score matched study using electronic health records data compared a dual therapy regimen of an antihypertensive medication plus a diuretic administered as individual pills versus as one combination pill (two pills vs one pill). Systolic blood pressure (SBP) was observed approximately six months after randomly assigned therapy was begun. A table summarizing key data from this study follows; STATA output for these data are on the following page.

		Systolic Blood Pressure (SBP)			
Treatment	N	Mean	Standard Deviation		
Two Pills	400,000	125	15		
One Pill	400,000	124	13		

- a. Using standard notation, write out the null and alternative hypotheses for a two-sample equal variance t-test of the mean difference in SBP for two pills vs one pill.
- b. Write out a test statistic that can be used to test the hypothesis from part (a) and insert the appropriate numbers from the table above (do not solve it).
- c. Interpret the STATA output using a *formal hypothesis test* with a pre-specified size of 5%. Provide a correct interpretation that is also suitable for a non-statistician.
- d. Interpret the STATA output using a *formal significance test*. Provide a correct interpretation that is also suitable for a non-statistician.
- e. Interpret the STATA output using an approach other than classical testing. Provide a correct interpretation that is also suitable for a non-statistician. If your ideal statistics are not reported here, define those missing statistics and provide an example to illustrate how they would be interpreted.
- f. The sample standard deviations are very close in this example. What would be a potential advantage of using an equal-variance t-test in this case?
- g. Histograms of SBP in both arms show the distributions are positively skewed. What concerns, if any, do you have about using a two-sample unequal variance t-test in this case?

STATA Output for Question #2

Two-sample t test with equal variances

<u> </u>	Obs	Mean	Std. Err.	Std. Dev.	[95% Conf.	Interval]
1 2	400000	124 125	.0205548	13 15	123.9597 124.9535	124.0403 125.0465
combined	800000			14.04456	124.4692	124.5308
diff		-1	.0313847		-1.061513	938487
Ho: diff = Ha: di	= mean(1) - = 0 lff < 0 = 0.0000	, ,	Ha: diff !=	0	of freedom Ha: d	= -31.8626 = 799998 diff > 0) = 1.0000

Two-sample t test with unequal variances

	•			Std. Dev.	-	-
1 2	400000 400000	124 125	.0205548	13 15	123.9597 124.9535	124.0403 125.0465
combined	800000	124.5	.0157023	14.04456	124.4692	124.5308
diff		-1	.0313847		-1.061513	938487
diff = Ho: diff = Ha: di	= mean(1) -	mean(2)	Satterthwai Ha: diff !=	te's degrees	t : of freedom : Ha: d	= -31.8626

3. Consider the following R code:

```
# initialize variables
reps <- 10^5
n <- 30
p1 < -0.20
p2 < -0.20
r.s <- rep(NA, reps)
r.t <- rep(NA, reps)</pre>
d.st <- rep(NA, reps)</pre>
# run simulation study
for(i in 1:reps){
  x1 < - rbinom(n,1,p1)
  x2 < - rbinom(n,1,p2)
  p \leftarrow mean(c(x1,x2))
  a <- (sum(x1)-n*p)^2 / (n*p)
  b <- (sum(x2)-n*p)^2 / (n*p)
  c <- (sum(1-x1)-n*(1-p))^2 / (n*(1-p))
  d \leftarrow (sum(1-x2)-n*(1-p))^2 / (n*(1-p))
  s <- a+b+c+d
  v \leftarrow (var(x1) + var(x2))/2
  t <- ((mean(x1)-mean(x2)) / sqrt((1/n+1/n)*v))^2
  r.s[i] <- (s > qnorm(0.975)^2)
  r.t[i] <- (t > qnorm(0.975)^2)
  d.st[i] \leftarrow abs(s-t)
# calculate results
mean(r.s)
mean(r.t)
mean(d.st)
```

Question 3 (parts e through g continue on the next page):

- a. Describe the values s will take as explicitly as possible.
- b. Describe the values t will take as explicitly as possible.
- c. Make an educated guess for the value of mean (r.s). Explain your guess or explain why no reasonable guess can be made.
- d. Make an educated guess for the value of mean (r.t). Explain your guess or explain why no reasonable guess can be made.

Question 3 continued:

- e. Make an educated guess for the value of mean (d.st). Explain your guess or explain why no reasonable guess can be made.
- f. Set n <- 10^9 and make an educated guess for the value of mean(d.st) with this change. Explain your guess or explain why no reasonable guess can be made.
- g. Set $n < -10^9$ and p2 < -0.21 and make an educated guess for the value of mean (r.s) with these changes. Explain your guess or explain why no reasonable guess can be made.

4. A prediction model is developed for outcome Y using predictors X_1 and X_2 . Both predictors are ratio scale measures: X_1 is continuous, but X_2 is discrete and only takes the values 1, 2, 3. Consider the following model:

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_1 X_2 + \varepsilon$$

- a. State at least 3 key assumptions that would made for a typical multiple regression model of this sort. Explain how each assumption could be checked with a given dataset, if it is possible to do so.
- b. Suppose the predictor X_1 is replaced with $X_1^* = X_1 1.5$ and the original model is refit. Denote the new coefficients as β_k^* for k = 0,1,2,3. How do these new coefficients relate to the original coefficients β_k ? For each k = 0,1,2,3, find an expression for β_k^* as a function of β_k .
- c. Collect the X_1 terms and rewrite the original model so that it looks like a simple linear regression of Y on X_1 where X_2 is treated as a constant. What are the intercept and slope parameters in this model? Interpret the coefficients of this model and explain why the model expressed in this form might be useful.

For parts d through g, please refer to Table 1.

- d. Provide an interpretation of the estimated coefficient on X_1 . Also interpret the corresponding confidence interval.
- e. Is the predictor X_2 important to the model? Explain.
- f. Refer to rewritten model in part (c). Using the estimated coefficients, sketch the estimated mean function for each value of X_2 . What is the role of the interaction coefficient in how these lines are related? Explain.
- g. What is correlation between *Y* and its predicted value? Explain.

Question 4 continued on next page (parts h through n).

Question 4 continued.

For parts h through n, please use Tables 1 &2 and Figures 1 & 2.

- h. Suppose we were to regress Y on X_1 alone. How would the R-squared for this simple regression model compare to the proposed model? Of these two regression models, which do you recommend? Explain. (See Table 2.)
- i. A colleague recommends that X_2 be treated as a categorical variable. How would this affect the regression results? Do you agree with your colleague's recommendation? Explain. (See Figures 1& 2)
- j. Compare and discuss the graph you constructed in part (f) with Figure 2. How are they different? How are they similar?

For parts k through m, refer to Table 3 and Figure 3. A new variable, X_4 , is to be considered for the model. It's correlation with Y is 0.89 and it is correlated with both X_1 and X_2 : 0.49 and 0.69, respectively.

- k. Table 3 shows the partial and semi-partial correlations. Interpret these correlations and discuss their influence on you when building a parsimonious prediction model.
- l. An *added variable plot* related to adding X_4 to the proposed model is shown in Figure 3. Explain how this plot is derived. Should you add X_4 to the model?
- m. The fitted model with X_4 being the only prediction variable yields an *adjusted R-squared* of 0.7789. Adding X_1 yields an *adjusted R-squared* of 0.9131. Adding X_2 yields an *adjusted R-squared* of 0.9162. What is the *adjusted R-squared* after adding the interaction between X_1 and X_2 ? [Hint: The information in Table 3 will be useful.]
- n. Using the information available to you, which model would you choose as your final prediction model? Explain.

Tables

Table 1: Regression table . regress Y c.X1##c.X2

Source	ss	df	MS		ber of obs	=	30 34.67
Model Residual	1114.13129 278.532822	3 26	371.377095 10.7128008	Pro	b > F quared R-squared	= =	0.0000 0.8000 0.7769
Total	1392.66411	29	48.0229003	_	t MSE	=	3.273
Y	Coef.	Std. Err.	t	P> t	[95% Cc	nf.	Interval]
X1 X2	-1 1.5	.6498699 1.254622	-1.54 1.20	0.136 0.243	-2.33582 -1.07891		.3358266 4.078913
c.X1#c.X2	1	.3148409	3.18	0.004	.352835	2	1.647165
_cons	8.88e-16	2.050264	0.00	1.000	-4.21437	8	4.214378

Table 2: Correlation matrix

. cor Y X1 X2 (obs=30)

	Y	X1	X2
Y	1.0000		
X1	0.7394	1.0000	
X2	0.7694	0.5780	1.0000

Table 3: The variable X1X2 is defined as $X_1 \times X_2$.

pcorr Y X4 X1 X2 X1X2 (obs=30)

Partial and semipartial correlations of Y with

Variable 	Partial Corr.	Semipartial Corr.	Partial Corr.^2	Semipartial Corr.^2	Significance Value
X4	0.7911	0.3538	0.6258	0.1252	0.0000
X1	0.2598	0.0736	0.0675	0.0054	0.1906
X2	0.2060	0.0576	0.0424	0.0033	0.3025
X1X2	0.0656	0.0180	0.0043	0.0003	0.7451

Figures

Figure 1: Schematic boxplots of Y over X₂.

Figure 2: Each line is the least squares regression over the points of the same color.

Figure 3: The avplot for X_4 after fitting the proposed model.

