Name: _____

Biostatistics 1st year Comprehensive Examination: Theory

June 6th, 2016: 9am to 5pm

Instructions:

- 1. There are six questions and 6 pages (not including the cover sheet).
- 2. Answer each question to the best of your ability. Be as specific as possible and write as clearly as possible.
- 3. Put your name and problem number on every sheet of paper; **only use one side** of the paper (the exams will be scanned electronically).
- 4. This is an in-class examination; do not discuss any part of this exam with anyone while you are taking the exam. NO BOOKS, NO NOTES, NO FRIENDS, NO PETS, NO INTERNET DEVICES, and NO OUTSIDE ASSISTANCE.
- 5. You may leave the examination room to use the restroom or to step out into the hallway for a short break. **HOWEVER, YOU MUST LEAVE YOUR CELL PHONE AND ALL EXAM MATERIALS IN THE EXAMINATION ROOM.** If there is an emergency, please discuss this with the exam proctor.
- 6. Vanderbilt's academic honor code applies; *adhere to the spirit of this code*.

Question	Points	Score	Comments
1	50		
2	50		
3	50		
4	50		
5	50		
6	50		
Total	300		

1. Let $X_1, ..., X_n \stackrel{iid}{\sim} f_X(x)$ be location-shifted exponential random variables with

$$f_X(x) = \theta e^{-\theta(x-2)}$$
 for $x > 2$, $\theta > 0$

- a. Find the expectation of X_i and variance of X_i ?
- b. What is the minimal sufficient statistic for θ ?
- c. Is this distribution part of the exponential family? Justify your answer.
- d. Derive a methods of moments estimator (MME) for θ .
- e. Is the MME an unbiased estimator of θ ? Justify your answer.
- f. Construct a 95% confidence interval for θ . Be sure to specify any necessary notion of supporting conditions.

Now suppose θ is a random variable with density

$$f_{\theta}(\theta) = \beta e^{-\beta \theta}$$
 where $\infty > \beta > 0$

- g. Does the expectation of X_i and variance of X_i change? If so, find it.
- h. Find the posterior distribution of θ given x_1, \dots, x_n and suggest a Bayes estimator of θ .
- i. Show that the posterior mean and methods of moments estimator (MME) are approximately equal in large samples.

- 2. Let *X* and *Y* be independent continuous random variables with pdfs $f_X(x)$ and $f_Y(y)$.
 - a. Show that the pdf of Z = Y + X is given by the convolution formula

$$f_Z(z) = \int f_X(w) f_Y(z-w) dw$$

b. Derive the analogous "multiplicative" convolution formula for Z = XY. For this problem, only consider the case when X and Y are positive random variables.

Let $M_Z(t)$ represent the moment generating function for a random variable *Z*.

c. Let Z be a continuous random variable. Define $M_Z(t)$ and show how a moment generating function is used to find the n^{th} moment of Z.

Now suppose that $X \sim N(\mu, \sigma^2)$ and $Y \sim N(\mu, \sigma^2)$. The moment generating function for $X \sim N(\mu, \sigma^2)$ is $e^{\mu t + \sigma^2 t^2/2}$.

- d. Use the convolution formula to find the distribution of Z = Y + X.
- e. Use the moment generating function to find the distribution of Z = Y + X.

Now let random variables *X* and *Y* be *discrete* with probability mass functions $f_X(x) = (3 - x)/15$ for $x \in \{-2, -1, 0, 1, 2\}$ and $f_Y(y) = (1 - y)^2/6$ for $y \in \{-1, 0, 2\}$. Also, *X* and *Y* are independent.

- f. Find the pmf of Z = XY (i.e., find P(Z = z) for all z).
- g. Find P(Z > Y).

3. Let $X_1, ..., X_n \stackrel{iid}{\sim} N(\mu, 1)$ be independent of $Y \sim Ber(1/n)$ where P(Y = 1) = 1/n. Consider the following estimator of μ :

$$\hat{\mu}_n = (1 - Y) \, \overline{X}_n + Y \, n^2$$

- a. Is $\hat{\mu}_n$ an unbiased estimator of μ ? If yes, show it. If not, determine the bias.
- b. Show that the limiting distribution of $W_n = \sqrt{n}(\hat{\mu}_n \mu)$, call it *W*, is normal. Hint: Consider conditioning on *Y*.
- c. Define the limiting bias of an estimator and find it for $\hat{\mu}_n$.
- d. Define the asymptotic bias of an estimator and find it for $\hat{\mu}_n$.
- e. Is $\hat{\mu}_n$ a consistent estimator of μ ? Prove it or show why not.
- f. What does this problem illustrate about the relationship between convergence in distribution and convergence in moments?
- g. What is the limiting distribution of $\frac{1+\sqrt{5}}{2}(\bar{X}_n)^{\pi/2}$? Justify your answer.

4. We observe pairs $(Y_1, x_1), ..., (Y_n, x_n)$. A simple linear regression model for *n* observations is

$$Y_i = \beta_0 + \beta_1 x_i + \varepsilon_i$$
 for $i = 1, ..., n$

Assume that $E[\varepsilon_i] = 0$ and $Var[\varepsilon_i] = \sigma^2$ for all *i*, and that ε_i is independent of ε_j for all $i \neq j$. Throughout this problem, the x_i are considered fixed and known. All summations are over i = 1, ..., n unless otherwise specified.

Note: You may use matrix notation to solve this problem. Just be sure to clearly define *all* of your notation. Using matrix notation is not required.

a. Show that the least squares estimators of β_0 and β_1 are:

$$\hat{\beta}_0 = \overline{y} - \hat{\beta}_1 \overline{x}$$
 and $\hat{\beta}_1 = \frac{\sum x_i y_i - n\overline{x} \, \overline{y}}{\sum x_i^2 - n\overline{x}^2} = \frac{\sum (x_i - \overline{x}) y_i}{\sum (x_i - \overline{x})^2}$

b. Show that $(\hat{\beta}_0, \hat{\beta}_1)$ are unbiased estimators of (β_0, β_1) .

Now assume that $\varepsilon_i \sim N(0, \sigma^2)$.

- c. Find the likelihood function for (β_0, β_1) and derive the MLEs for β_0 and β_1 . How do they compare to the least squares estimators?
- d. Show that $\hat{\beta}_1 \sim N(\beta_1, \sigma^2 / \sum (x_i \overline{x})^2)$.
- e. Explain why replacing σ^2 with its estimate, $s^2 = \sum (y_i \hat{\beta}_0 \hat{\beta}_1 x_i)^2 / (n-2)$, leads to a *t*-distribution for $\hat{\beta}_1$. Identify the degrees of freedom. A formal proof is not necessary.
- f. Given a fixed sample size *n* where we are allowed to sample any x_i , how should we select $x_1, ..., x_n$ to obtain the most efficient estimator of β_1 ?

5. Let $Y_1, ..., Y_n \stackrel{iid}{\sim} f(Y; \theta)$ where $f(\cdot)$ is a member of the exponential family with

 $f(Y;\theta) = \exp\{\theta t(Y) - \kappa(\theta) + c(Y)\}$

Here $t(\cdot)$ and $c(\cdot)$ are functions of the data *Y*, and $\kappa(\cdot)$ is a function of the parameter θ . Assume any necessary derivatives or inverses are well defined, e.g. $\kappa'(\theta)$ and ${\kappa'}^{-1}$ exist.

- a. Find the MLE of θ .
- b. Find an estimate of the expected fisher information in the sample y_1, \dots, y_n .
- c. Let S_i be the score function for the *i*th observation. Find a large sample approximation to the distribution of the average score function $\overline{S} = \frac{1}{n} \sum_i S_i$. Hint: consider $\sqrt{n} \overline{S}$.

Now suppose that $Y_1, ..., Y_n \stackrel{iid}{\sim} g(Y)$ where $E_g[Y]$ exists and $\kappa(\theta) = \theta^2/2$.

- d. When the working model fails, what quantity does the MLE estimate?
- e. What is the limiting distribution of $\sqrt{n}(\hat{\theta}_n \theta)$ under model failure? Here $\hat{\theta}_n$ is the MLE.
- f. Find a robust large-sample $100(1 \alpha)\%$ CI for $E_g[t(Y)]$. Define your notation and identify key assumptions.

- 6. Let $X_1, ..., X_n \stackrel{\text{iid}}{\sim} Ber(\theta)$ where $n \ge 2$. Consider $W(X_1, ..., X_n) = X_1 X_2$ such that $E[W] = P(W = 1) = P(X_1 = 1 \text{ and } X_2 = 1).$
 - a. Find E[W].
 - b. Show that MVUE for θ^2 is $\overline{X}\left(\overline{X} \frac{1}{n}\right)\frac{n}{n-1}$.
 - c. Let *V* be the variance of the MVUE for θ^2 . Find *V* or suggest a reasonable approximation.
 - d. Find the Cramer-Rao Lower Bound on the variance of an unbiased estimator of θ^2 .
 - e. Compare the variance you obtained in part (b) to the CRLB from part (c). Note any useful conclusions.
 - f. What is the minimum achievable length of an approximate large-sample CI for θ^2 when the CI is based on an unbiased estimator of θ^2 ?