

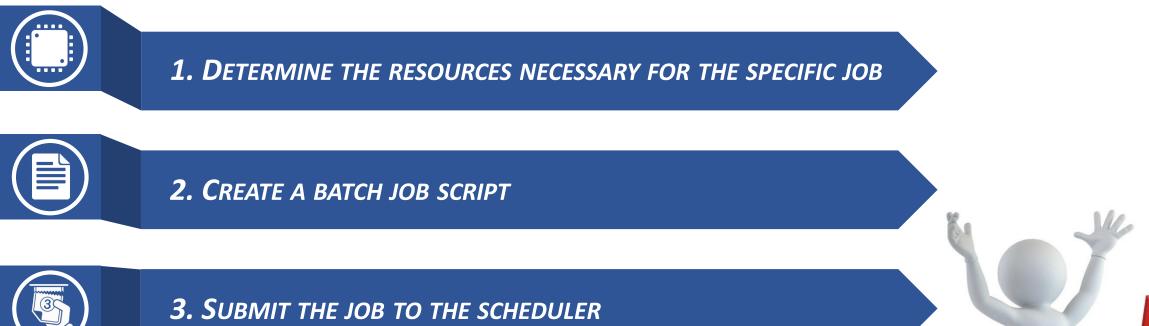
WHAT IS SLURM?

Slurm is an open source cluster management and job scheduling system for Linux clusters.

PARTITIONS

Compute nodes are grouped into logical sets called **partitions** depending on their hardware characteristics or function:

•••••	production (default)	Standard CPU nodes			
•••••	debug	Standard CPU nodes for debug (fast allocation times)			
•••••	maxwell	Nodes with Nvidia Maxwell GPUs			
•••••	pascal	Nodes with Nvidia Pascal GPUs			
•••••	turing	Nodes with Nvidia Turing GPUs (coming soon)			



Ask ACCRE if you would like to get access to specific partitions.

 ••••• ••••• ••••• ••••• ••••• ••••• 		 ••••• ••••• ••••• ••••• ••••• ••••• 	 ••••• ••••• ••••• ••••• ••••• ••••• 	 ••••• ••••• ••••• ••••• ••••• ••••• 	 ••••• ••••• ••••• ••••• ••••• •••••
 ••••• ••••• ••••• ••••• ••••• ••••• 		 	 	 	
 ••••• ••••• ••••• ••••• ••••• 	 ••••• ••••• ••••• ••••• ••••• ••••• 	 ••••• ••••• ••••• ••••• ••••• ••••• 	 	 	

JOB EXECUTION WORKFLOW

DETERMINE RESOURCES FOR JOB

NUMBER OF CPU CORES

- From 1 to the maximum allowed for your group's account.
- Default is one CPU core.

AMOUNT OF MEMORY

- Up to 246 GB per node.
- Default is 1 GB per core.

GB per node	# nodes
20	90
44	45
58	55
120	344
246	44

Slurm will immediately kill your

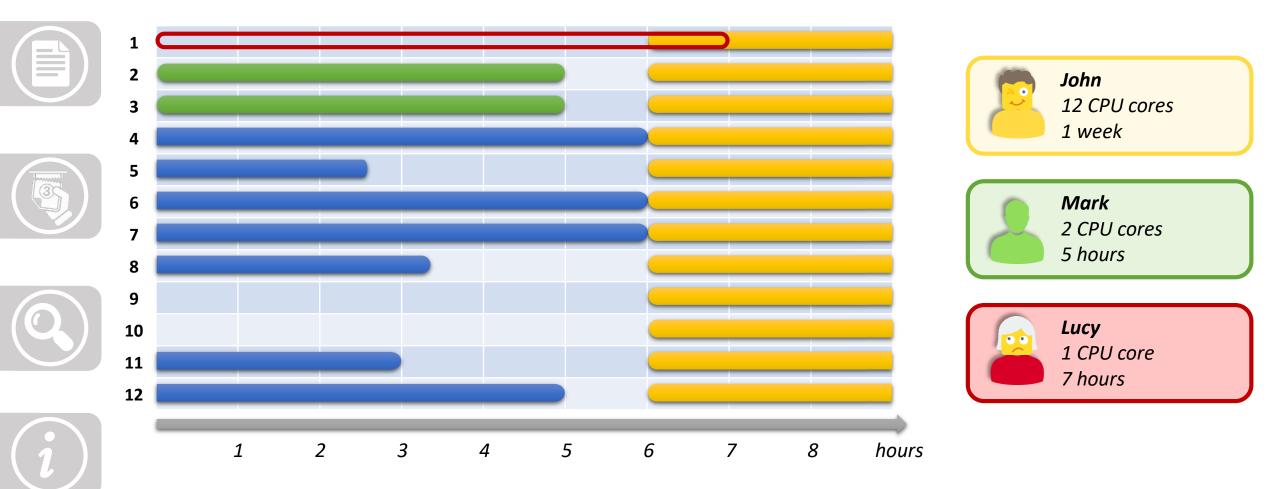
job if your process exceeds the

requested amount of

resources.

ΤΙΜΕ

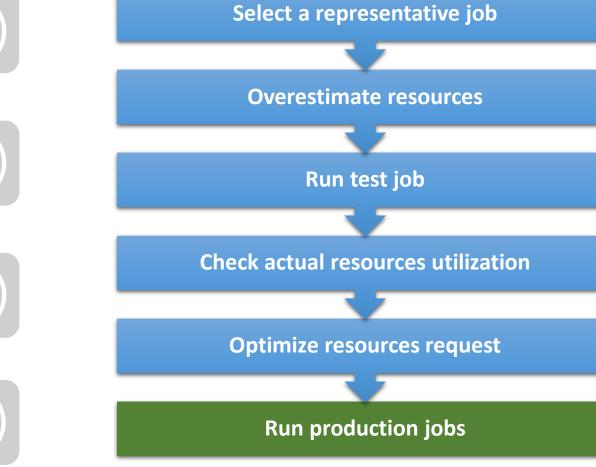
- Job duration on production can be set up to **14 days**.
- Default is 15 minutes.
- **DEBUG QUEUE:** max 30 minutes

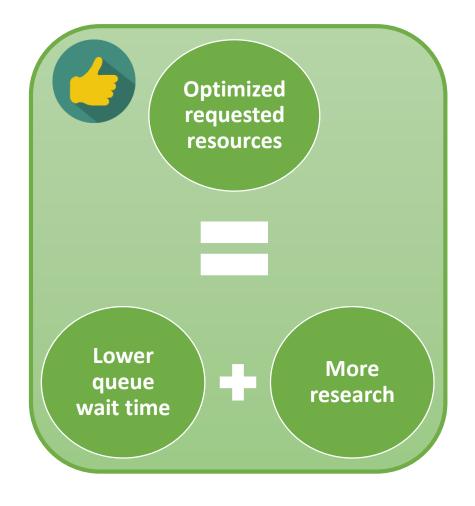

Slightly overestimate the requested job resources, but do not greatly overestimate to avoid unnecessary long wait times.

DETERMINE RESOURCES FOR JOB - BACKFILL

Backfill scheduling will start lower priority jobs if doing so does not delay the expected start time of any higher priority job.

DETERMINE RESOURCES FOR JOB - OPTIMIZATION





How to define the right amount of resources for my job?

CREATE A BATCH JOB SCRIPT

A **batch job** consists of a sequence of commands listed in a file with the purpose of being executed by the OS as a single instruction.

SHEBANG

- Specify the script interpreter (Bash)
- Must be the first line!

SLURM DIRECTIVES

- Start with "#SBATCH": Parsed by Slurm but ignored by Bash.
- Can be separated by spaces.
- Comments between and after directives are allowed.
- Must be before actual commands!

SCRIPT COMMANDS

 Commands you want to execute on the compute nodes.

myjob.slurm #!/bin/bash #SBATCH -- nodes=1 # Nodes **#SBATCH** --ntasks=1 **#SBATCH** --mem=1G #SBATCH --time=1-06:30:00 #SMaxChob-dabation=myjob #SBATCH --output=myjob.out # Just a comment module load GCC Python python myscript.py

CREATE A BATCH JOB SCRIPT - THE ESSENTIALS

--nodes=N

• Request *N* nodes to be allocated. (*Default*: *N*=1)

--ntasks=N

- Request *N* tasks to be allocated. (*Default*: *N*=1)
- Unless otherwise specified, one task maps to one CPU core.

--mem=<mark>//</mark>G

- Request *N* gigabytes of memory <u>per node</u>. (*Default*: *N*=1)
- --time=d-hh:mm:ss
 - Request *d* days, *hh* hours, *mm* minutes and *ss* seconds. (*Default*: 00:15:00)

--job-name=<string>

• Specify a name for the job allocation. (*Default*: batch file name)

--output=<file_name>

- Write the batch script's standard output in the specified file.
- If not specified the output will be saved in the file: slurm-<jobid>.out

CREATE A BATCH JOB SCRIPT - EMAIL NOTIFICATION

--mail-user=<address>

- Send email to *address*.
- It accepts multiple comma separated addresses.

--mail-type=<event>

• Define the events for which you want to be notified:

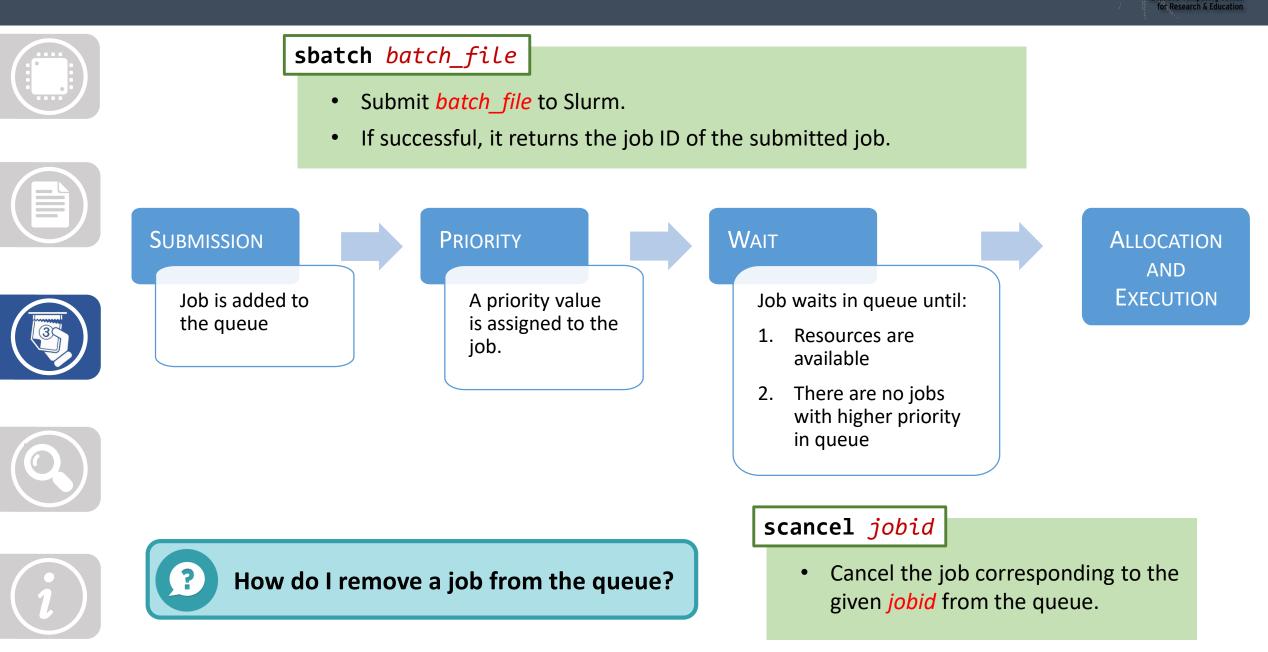
BEGIN	Job begins
END	Job ends
FAIL	Job fails
ALL	BEGIN+END+FAIL
TIME_LIMIT_50	Elapsed time reaches 50% of allocated time
TIME_LIMIT_80	Elapsed time reaches 80% of allocated time
TIME_LIMIT_90	Elapsed time reaches 90% of allocated time

CREATE A BATCH JOB SCRIPT - ACCOUNTS AND PARTITIONS

--account=<account>

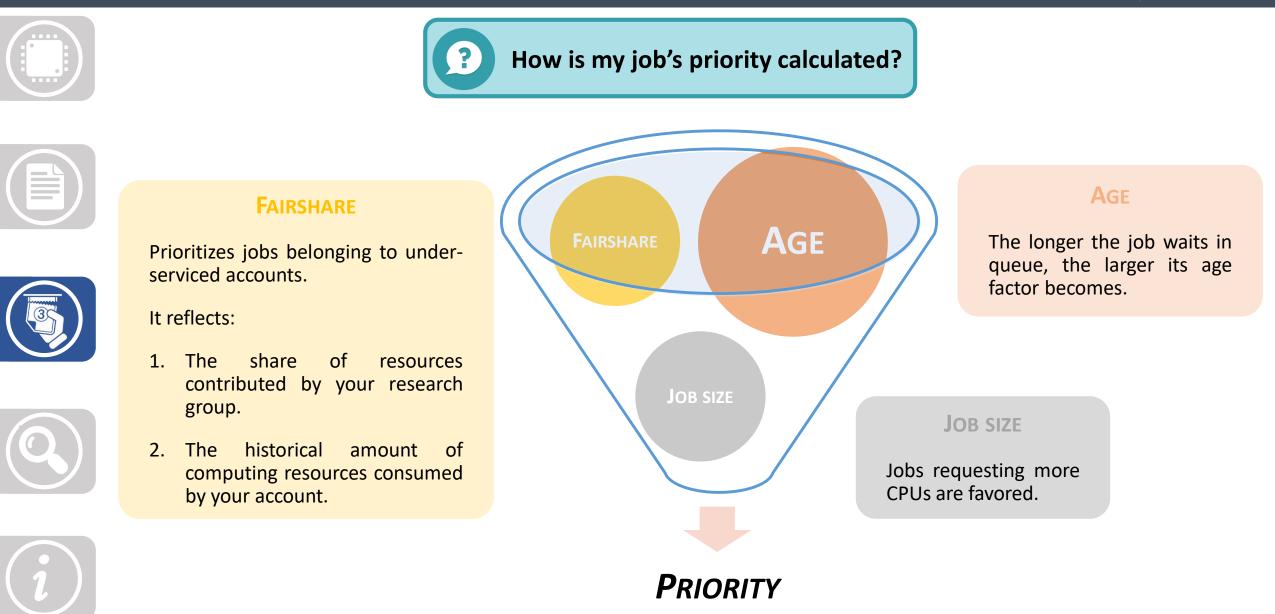
Run a job using resource quotas for the group <account>

• Run a job on nodes in *<partition>*. (*Default*: "production")


How do I know my available account and partition combinations?

slurm_groups

• Display a list of slurm account and partition combinations available to your ACCRE user.


\$ slur	n_groups		
Accoun	ts	Partitions	
	gpu_acc gpu_acc	debug production maxwell pascal debug production	

SUBMIT JOB TO THE SCHEDULER

SUBMIT JOB TO THE SCHEDULER

CHECK JOB STATUS

		squeue - • Sho			bs for user	vunetia	Ι.		
	J(9528 9528	vmps10 ~]\$ squeue OBID PARTITION 3424 production 3421 production 3398 production	l Mdru mdru mdru	NAME un_1 un_2	USER vanzod vanzod vanzod	ST R PD PD	TIME 1-03:53:33 0:00 0:00	NODES 1 2 3	NODELIST(REASON) vmp825 (Priority) (AssocGrpCpuLimit)
					0,		NODELIST (REA ws the allocated	l nodes.	
	STATUS		 For pending jobs shows the wait reason: 						
		R = Running			Priority		Other jobs in qu	eue have h	higher priority.
		PD = Pending			Resources	5	Insufficient reso	urces avail	able on the cluster.
		CA = Cancelled		Ass	ocGrpCpuL	imit	Reached maxime all jobs belongin		er of allocated CPUs by ser's account.
				Ass	ocGrpMemL	imit	Reached maxim by all jobs belon		t of allocated memory user's account.
i				Asso	ocGrpTimeL	.imit	Reached maximal all jobs belongin		t of allocated time by ser's account.

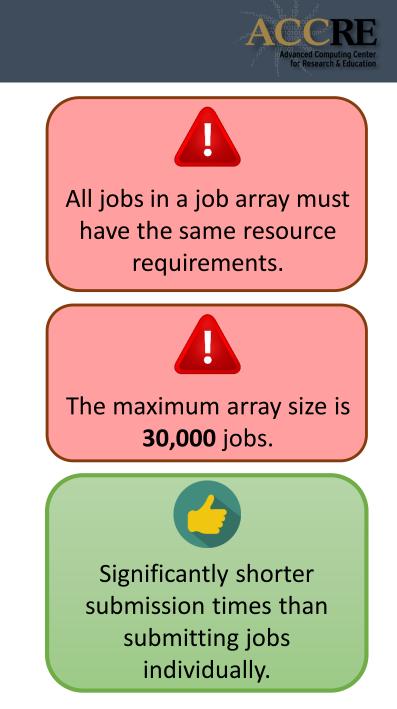
RETRIEVE JOB INFORMATION

rtracejob jobid

• Print requested and utilized resources (and more) for the given *jobid*.

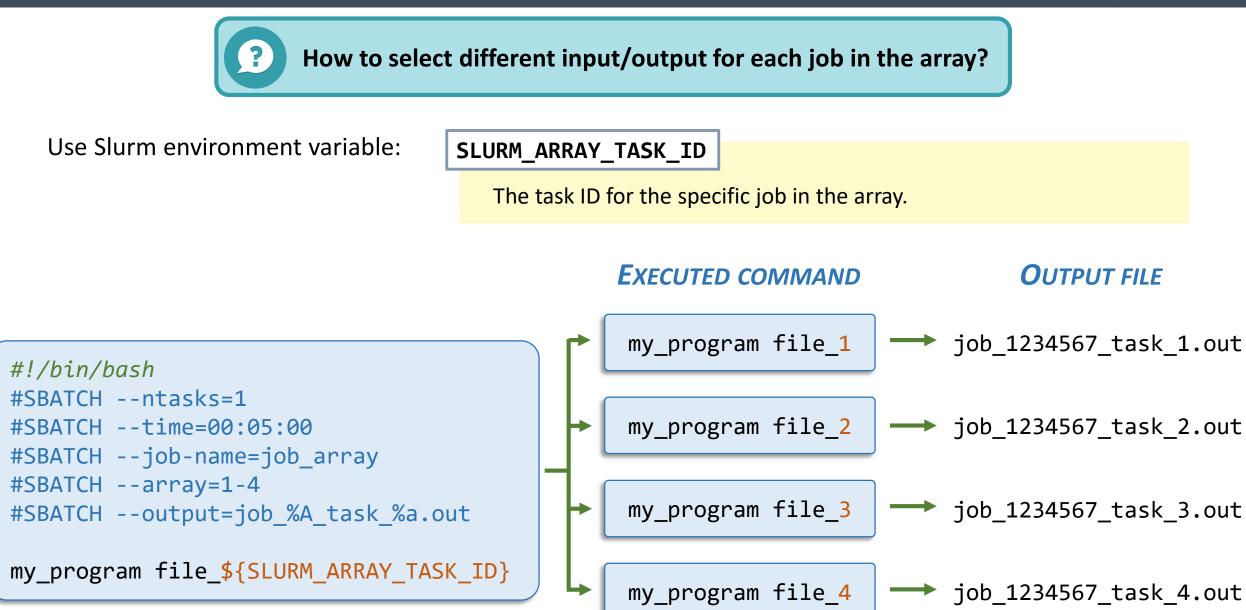
User: vanzod	JobID: 9837216
+	+
Account	accre
Job Name	test_job
State	Completed
Exit Code	0:0
Wall Time	3-00:00:00
Requested Memory	40Gn
Memory Used	40333256K
CPUs Requested	8
CPUs Used	8
Nodes	1
Node List	vmp372
<u>Wait Time</u>	<u>5.2 mi</u> nutes
Run Time	452.0
Submit Time	Mon Aug 8 09:14:53 2016
Start Time	Mon Aug 8 09:14:55 2016
End Time	Mon Aug 8 16:46:56 2016
+ Today's Date +	Mon Aug 8 16:51:13 2016

JOB ARRAYS

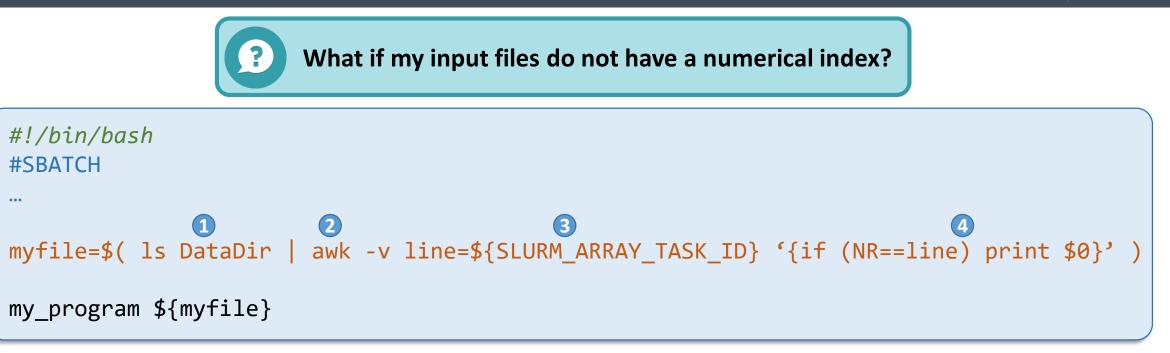


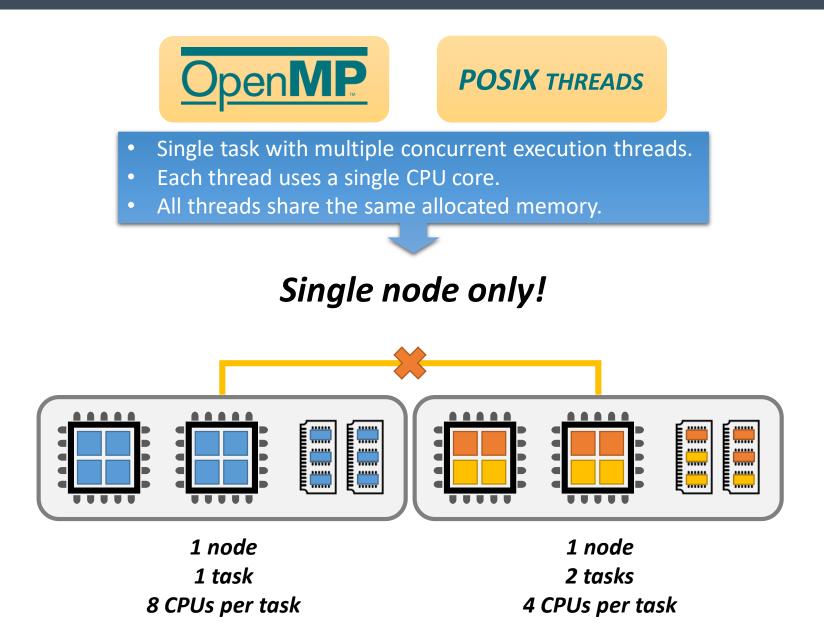
To each job within the array is assigned a unique **task ID**.

--array=start-end[:step][%limit]


- Define task ID interval from *start* to *end* <u>as unsigned integer values</u>.
- The *step* between successive values can be set after colon sign.
- Set the *limit* to the number of simultaneously running jobs with "%".
- Individual task IDs can be specified as a comma separated values list.

--array=0-7
$$\longrightarrow$$
 0, 1, 2, 3, 4, 5, 6, 7
--array=1-13:3 \longrightarrow 1, 4, 7, 10, 13
--array=2,3,6,15 \longrightarrow 2, 3, 6, 15





5

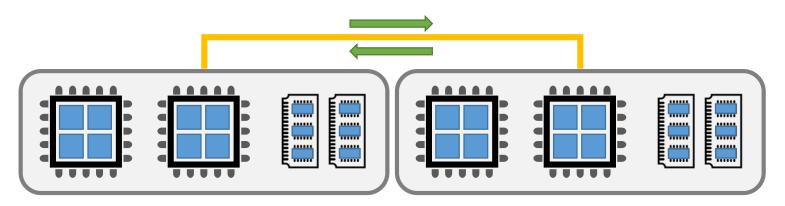
- Get the list of files names in the data directory in alphabetical order
- 2 Send the list to awk
- Pass the value of the bash variable SLURM_ARRAY_TASK_ID to the awk variable "line"
- 4 Print only the NRth line in the list of files names for which NR corresponds to the job task ID
- S Pass the file name in the myfile variable to the main program

MULTITHREADED JOBS

--cpus-per-task=N

• Request **N** CPU cores to be allocated <u>for each task</u>.

With OpenMP in your batch script don't forget to set: export OMP_NUM_THREADS = \$SLURM_CPUS_PER_TASK


DISTRIBUTED MEMORY JOBS

MESSAGE PASSING INTERFACE (MPI)

- Multiple tasks with private memory allocations.
- Tasks exchange data through communications.
- Tasks can reside on the same node or on multiple nodes.

Single or multiple nodes

2 nodes 8 tasks per node 1 CPU per task

--nodes=N

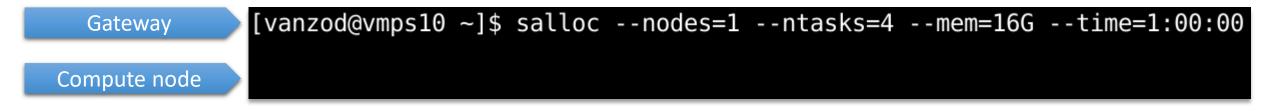
• Request *N* nodes to be allocated.

--tasks-per-node=N

- Request *N* tasks **per node**.
- Unless otherwise specified, one task maps to one CPU core.

In the batch script, run the MPI program with:

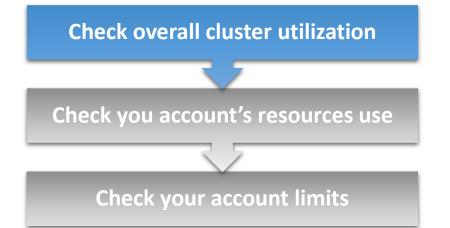
srun ./program_name


• Run MPI program called *program_name*.

INTERACTIVE SHELL JOB

salloc options

- Obtain job allocation with shell access.
- Accepts all the same *options* previously seen for sbatch.


TROUBLESHOOTING

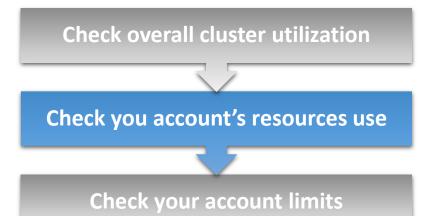
Why is my job still pending?

SlurmActive -m mem

- Show the overall cluster utilization.
- Count as available cores only the ones with at least *mem* amount of memory (in GB). <u>Default</u>: 1GB

[vanzod@vmps08 ~]\$ SlurmActive -m 10

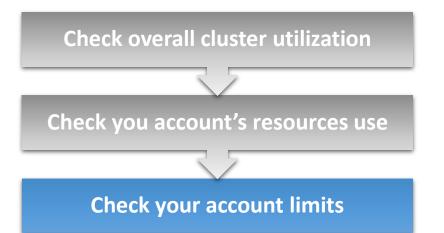
Standard Nodes Info:	554 of 567 nodes active 4664 of 5912 processors in use by local jobs 945 of 5912 processors are memory-starved 303 of 5912 available processors	(97.71%) (78.89%) (15.98%) (5.13%)
GPU Nodes Info:	Fermi: 40 of 52 GPUs in use Maxwell: 9 of 48 GPUs in use	(76.92%) (18.75%)
Phi Nodes Info:	0 of 2 nodes active 0 of 32 processors in use by local jobs 8 of 32 processors are memory-starved	(0.00%) (0.00%) (25.00%)
ACCRE Cluster Totals:	567 of 594 nodes active 4769 of 6192 processors in use by local jobs 966 of 6192 processors are memory-starved 457 of 6192 available processors	
3041 running jobs, 2069	pending jobs, 1 jobs in unrecognized state	


TROUBLESHOOTING

?

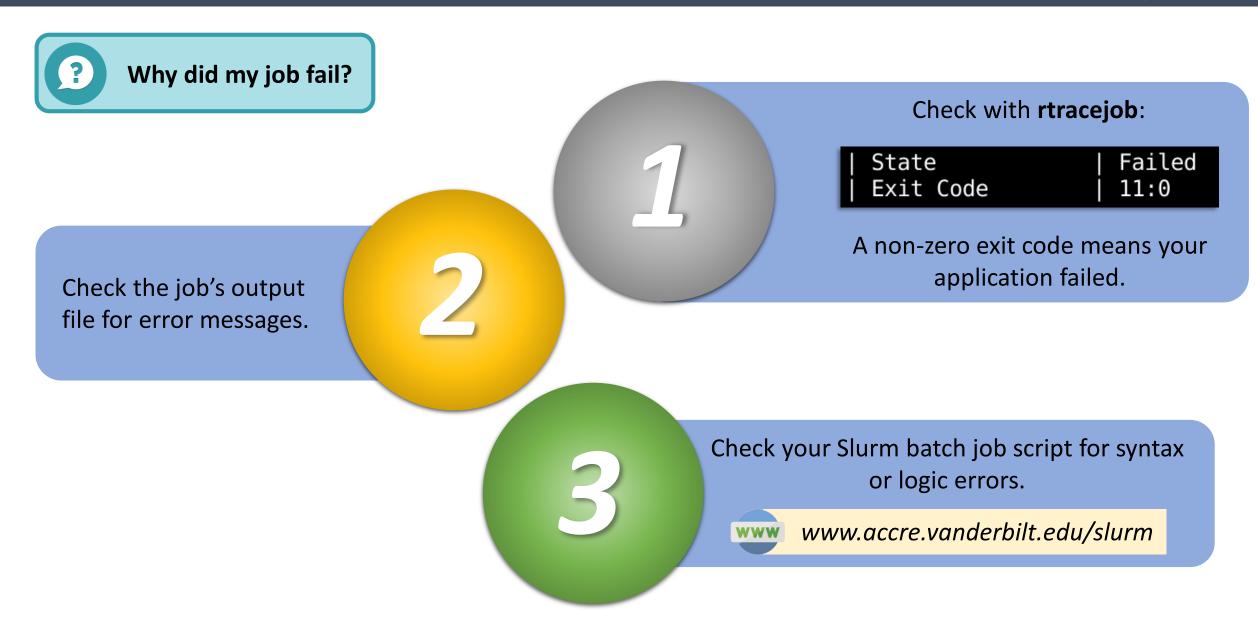
Why is my job still pending?

qSummary -g group



•	Show the total number of jobs and CPU cores allocated
	or waiting for allocation for the selected group.

[vanzod@vmp GROUP	s09 ~]\$ qSum USER	mary -g capra ACTIVE_JOBS		PENDING_JOBS	PENDING_CORES
capra_lab	chenl11 colbrall fishae sivleyrm zhanj10	148 3 1 3 125 16	203 10 1 3 125 64	156 0 0 0 156 0	156 0 0 156 0


• Show the cluster resources limits for a specific *group*.

<pre>[vanzod@vmps09 ~]\$ showLimits -g capra_lab ACCOUNT GROUP FAIRSHARE MAXCPUS MAXMEM(GB) MAXCPUTIME(HRS)</pre>							
capra_lab_account 16	272	2720	26112				
capra_lab 1	-	-					

Users in the same group share the same amount of resources.

TROUBLESHOOTING

NEED MORE HELP?

DO NOT submit tickets in "Rush cluster"! Rush tickets are for cluster-wide issues only.