
The Pluggable Authentication Module (PAM)
security framework gives developers of
applications and services the ability to add
authentication without re-inventing the wheel
by providing access to well tested
authentication implementations. More
importantly it does so in a way that allows the
authentication mechanism to be changed
without any change to the authentication
enabled application or service. Not only can
the authentication mechanism be changed
but new modules implementing new security
mechanisms can be added to extend the
authentication implementations offered by
PAM. This decouples software from
authentication and gives system
administrators power to configure
authentication for new applications and
services to meet the needs of their site.

The four primary components of the PAM framework
are the PAM aware application, the PAM library, the
PAM configuration for the application, and the PAM
modules. There are actually four types of modules,
authentication (“auth”) modules verify identity,
“account” modules check that the account associated
with the identity is allowed to use the application or
service under the present conditions, “password”
modules are for updating credentials, and “session”
modules define behavior at the start and end of a
authentication session.

Exploring PAM
An established pluggable authentication framework

Introduction

Architecture

Demo: 2FA for Hello World!

http://www.linux-pam.org/

https://www.openpam.org/

https://www.vanderbilt.edu/accre/sc18/pam

Additional Info

Matthew Heller1

1Vanderbilt University, Nashville, TN 37203

PAM originated from Sun Microsystems in 1995 and is now
available on Linux via the Linux-PAM project and on macOS,
*BSD, and other Unix flavors via the OpenPAM project. The
two implementations are not 100% compatible but software
can support both with minimal effort.

The conversation mechanism is customizable yet it is based
on queries and answers in unstructured text which makes
machine to machine usage difficult and less reliable. A
conversation mechanism can be made to send queries to
remote clients but the security of the transport of that
sensitive info is outside the scope of PAM and the burden
falls on application to, for example, establish a secure TLS
channel. The PAM framework also is inflexible in some ways
that limit the types of Kerberos authentication transactions
that are possible. For these reasons other technologies like
GSSAPI, SPNEGO, SASL are often favored for uses
involving Kerberos authentication, web apps, and/or
machine-to-machine communication.

Evaluation
PAM aware
app_foo

libpam

/e tc/pam .d /app_foo
a u t h s u f f i c i e n t
p am_ r o o t o k . s o
a u t h r e q u i r e d p am_oa t h . s o
. . .
. . .
a c c ou n t r e q u i r e d b a z . s o
a c c ou n t r e q u i r e d
pam_a c c es s . s o
s e s s i o n r e q u i r e d q u u x . s o

pam_rootok.so pam_access.so baz.so quux.so

Configura tion

PAM modu les

PAM
Conversa tion

ca llback

Password : *********

Request Response
A llow /Deny

User

/etc/pam.d/hello_pam

hello_pam.c main() function

See presentation for full source code, compilation
details, and setup of shared secret for one-time-
password

Here is the classic ‘Hello World!’
program adapted to utilize PAM. To
the right is the result when the
associated PAM configuration
requires two factor authentication
(2FA), a time-based on-time
passcode plus local user account
password. However an edit to the
configuration file can cause
completely different type of
credentials to be requested with no
change to the program.

In minimal form adding PAM to an
application comprises of simply a
call to start a transaction with a
reference to a conversation
function to be used for user
interaction, a call to trigger
authentication, and a call to end
the transaction. The conversation
function here is misc_conv for text
based interaction which is included
with Linux-PAM. Custom
conversation functions can be
created to fit other uses and user
interfaces.

PAM configuration is rule based and it allows multiple security
modules to be combined to express a wide variety of policies. Here
we require that both the one-time password module and the included
common user authentication of the local system both approve the
credentials provided for a successful login.


