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Big data framework for medical image processing

1. High volume ->100
million scan/year in
US ->storage &

“ ! process
\@ 2. Not widely used

1. Unstructured raw data’ "“f;
2. Variety (type, time) N
3. Multi-level analysis
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1. Gene data

2. Satellite data

3. Geographic map
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Need for data colocation

= Convert Digital Imaging and
Communications in Medicine
( ) to Neuroimaging
Informatics Technology Initiative

(NiFTI)
= DICOM

= Standard image formats for modern
medical image equipments

m )-Dslice

= NiFTI DICOM
= Research software file format
= 3-D, 4-D
" 15t step in processing
NiFTI
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Why need data colocation cont’d

Minimizing
2 movement

& Group of 1 gigabit network etwork

DICOM e .
2% — 100 MB/s = x = 30 g

15 s

X

T Max Simultaneous

Conversion time Processes
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Background for data colocation

= Hadoop distributed file system (HDFS)
= MapReduce — dispatch computations to data
= Inefficient for large volume small data

. NoSQL database

= <key, value> store built upon HDFS
= Logically physically sort the row key

= Flexible translation layer — region split policy
R P ACHE
- BHSEA

= Hadoop & HBase colocate

= Locate relevant data as close as possible
Group based analysis: project / subject / session / scan based
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(1) Build up a data

colocation framework

(3) Identity and reduce
barriers of traditional
medical image processing
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Problem of making data colocation - DICOM to NiFTI

1. Global Unique Identifier (GUID)

- Group 1 (0002) uID =
- Element 1 (0002,0000)

L L]
fl |e I nte rn a I - Element 2 (0002,0001) |  1.3.6.1.4.1.9590.100.1.2.336483979439530040030534907062472991977

- Element 3...etc.

- Group 2 (0008) >> UID = dicomuid
- r o
structure. Siove 3ot v -
Image Pixel Intensity Data: | 1 3 6.1,4.1.9590.100.1.2.40419407030739407830123013024244357273

10011010011001011010100
i

>> UID = dicomuid

2. HBase default region split policy
- split
3. Default HBase MapReduce |
group analysis

UID =

1.3.6.1.4.1.9590.100.1.2.165570795910085071629537344733378934868

fo o> |

R I  Projectt_Subject!_xxx Map 1 Map 2
I I I Project1_Subject2_xxx
1
1 Find Return first row ; ;
Find largest I approximately key of the '4>© B  Projectt_Subjects oo
stores I mid datablock datablock I —> Computation
‘|, e 1
Find largest Region 2
storefiles
Region 1
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Challenge of making data colocation

= Can Hadoop & HBase be used in big data
medical image processing for minimizing the
data movement via network on commodity
hardware?
= Data storage

= Structurize data placement order
= Enforce relevant proximity

= Data access & processing — Tuning MapReéduee-

= Utilize the benefit of data storage
= Reduce the effort of algorithm/software re-design
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Our solution for data colocation

1. CUStom hiera rChicaI ID Projl_Subj2_Session3_Scan4 Slice5_example.dcm
2. Custom region split policy —

session

3. Custom HBase MapReduce

Group analysis

Avoid algorithm re-design

1 Dataset 2 Logical input split 3 Job dispatch
selection
‘ Select fersaciicales ot For each split

> Find start / stop Key >

\

A

» .
i Balassts Initialize a split with Table.scan Assion diMeitass
N ‘ Traverse row keys
Region Get all : i ; . .
: > find split shortest different prefix structure basing on
@ Locatelreglon InternalScan row keys Project/Subject/Session/Scan/Slice 9 Filled

[
[
[
: ilabl

Find largest S avallable

stores 1 : slot
‘L I i _Custom E Find split point closest to Regionserver
Find largest : " mid place of the storefile e @ Datanode
storefiles i 1 e S e S

Map Retrieve Process | Generate
Task Image Image | Output
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Validation for our data colocation

= Data access latency
= Average data retrieval time per dataset

Grid Naive Custom Key / Custom Key /
Engine HBase Standard Split Custom Split
NAS HBase HBase
latency 476 19.02 3.29 2.56

(s)
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Validation for our data colocation

= Data processing throughput (dataset / minute)
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Lesson’s learned from our data colocation prototype

Hadoop & HBase-based toolkit for medical
m A b|g data data colocation image processing (HadoopBase-MIP)

R e T T T T e e e e e e e e i e R R R e

Default split policy Project_Subject_Session_Scan E

\ Had HB luster based private cloud |
fra mewo rk : adoop + ase(;:SlésC%rre:)se private clou i SCNAT
o Improve data prOCESSIng . - Zookeeper i
th rOugh pUt ; HBase E Custom
= Reduce data processing data § HMastor(s) || RegionServer(s) | 1, _eretes
' : enerator
access laten cy MapReduce RegionSplitPolicy | ’

Bao, et al. "Cloud Engineering Principles and Technology Enablers for Medical Image
Processing-as-a-Service." IC2E 2017.
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4

> (1) Build up a data
colocation framework

4

—

(3) Identity and reduce
barriers of traditional
medical image processing
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Performance metrics user may care

" The total time as experienced by the Cluster
user. :
" Job ExecutionTime
= Elapsed time on each core when a >
process starts across all cores in a
cluster.
dop-2 b4

Resource time |
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Limitation of HadoopBase-MIP prototype framework

Different types fast - long

Single image; Group image based

Different number

Large dataset analysis 3 MapReduce :
g Yy IO Delete Monitor
&> ©

Large dataset
summary
statistics:

Image averaging

HadoopBase-MIP?

split tasks - Map
combine tasks - Reduce
chunk size = |5153/#groups]|
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Challenge to understand & optimize HadoopBase-MIP

" What is the to
know when HadoopBase-MIP
helps or hurts compared with
traditional cluster?

" What is the to
know the for large
dataset image averaging?

= Do theoretical models translate
practical things?

O GRID ENGINE
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Lessons learned from

theoretical bounds & system optimization

Theoretical bounds Real time large datasets image averaging
R1a0tg)% of wall-clock time on proposed 209 core Hadoop v.s.SGE1 [ 20-40 vears ol I 40 - 60 years old | > 60 years old |
‘ / >\\ y -/‘. - \ 3 /. \ —— v
—~ 900 10.8 5 AW/ |
© \ ; )4
S 800 e Los ‘ /
8 Traditional / >
S 600 B\
Y \
©
~ 500
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e ;
5
2 HadoopBase —
g 300 -MIP THN
(&) N 2 g
2 200 = v
= E )\ 4
= 100 *N
0
0 200 400 600 800

Dataset size (MB )

Bao, ct al. "Theoretical and empirical comparison of big data Bao, ct al.. "A Data Colocation Grid Framework for Big Data Medical Image

image processing with apache Hadoop and sun grid Processing-Backend Design." SPIE Medical Imaging 2018.
C @ O (@ (@ (& C
engine." SPIE Medical Imaging 2017.
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(1) Build up a data

colocation framework

(3) Identity and reduce
barriers of traditional

medical image processing

%
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Why we care about quality assurance for

multi-level analysis

= Multi-level analysis

As a researcher in brain image processing, Professor Bennett Landman goes

| through a lot of data — up to 96 hours to process one head! When he first
‘ arrived at Vanderbilt, he would push ACCRE to its limits and take down ACCRE

| t? about every six months. Nowadays, he manages his own experimental cluster
' > with 480 CPUs and 2TB of RAM while using ACCRE for less risky computing
w tasks. For Professor Landman, ACCRE provides many advantages: it's cheap,
i ‘

Prof. Bennett Landman
IMAGE PROCESSING

reliable, stable, and easy to manage, it's backed up regularly, it makes it easy

to collaborate with others, and it raises less legal concerns than a cloud-
based server. Professor Landman provides support to ACCRE's operations as
the co-chair of its Faculty Advisory Board.

ualascud

= Cost and resource
conservation in cloud?
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Challenges for faster

multi-level analysis quality assurance

* How can we detect outliers in
15t level as as possible?

2nd level

Pre-processing Registration

FA

* How can we draw expected
conclusion as as i b

2

pOSSibIE? dtiQA E..........%%.........
* How to automate the quality [7h0u’”5 - total imgﬂ 0.02hours - total imges
cluster cores

Single core

asSsurance process?
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Our solution for efficient

multi-level analysis quality assurance

= Collect enough intermediate
result from 15t |evel.

= Run 2"9 |evel group analysis
incrementally.
u A semi-automatic
analysis result to identify error / real-time monitor and
] checkpoint
weird outcome. framework

= Draw expected conclusion early.
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Job
submitted

A 4

Hadoop default
job status

v

Check job
success ratio

Collect intermediate
results

v

Prepare statistical
analysis

Retrieve history
analysis result

Do 2nd level
statistical analysis

A




Validation for our quality assurance monitor

m Cost conservation

- Wall Clock Time .
80 3000
2500
60 2000
40 — 1500
1000
= 500
0 0
Default Monitor Proposed Default Proposed
Monitor Monitot Monitor
m Default Monitor m Default Monitor

m Proposed Monitor m Proposed Monitor
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Validation for our quality assurance monitor

= Early error detection

TTS age-effect intermediate analysis
- with bad examples

2.5 —-0.1 —=0.05 0.01

~R % ®
- R
1 2 3

Normal

1.5

Ratio of signficanece (%)

0.5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Intermediate round
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Validation for our quality assurance monitor

= Draw conclusion early

TTS dataset age-effect intermediate analysis
- removed bad examples
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Lessons learned from our quality assurance monitor

= Reproducible result with Kodiweera et al. Neurolmage 2016
= Our innovation help us re-think current Multi-level analysis
= Can be easily extended to current pipeline using traditional cluster

Bao et al.,, “ Technology Enablers for Cloud-based Multi-level Analysis Applications in Medical Image Processing
IEEE BigData 2018 (accepted) ( )
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Thank you very much. Questions?

HadoopBase-MIP System Interface

D

O : MapReduce Load :

c

& Upload Retrieve Delete Template Balancer Monitor

n

Sl | Q] o |® | & |
' 1. Table scheme for rapid NoSQL query

— 4. Large

o 2. Structured row key design dataset

© . 7. 8. Incremental

c>> imsei %_nt?;; g eterogeneous learner

E 9 cluster monitor

3. Novel region split policy

6. Group-
image-based
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