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Abstract—Traditional in-house, laboratory-based medical
imaging studies use hierarchical data structures (e.g., NFS file
stores) or databases (e.g., COINS, XNAT) for storage and
retrieval. The resulting performance from these approaches is,
however, impeded by standard network switches since they can
saturate network bandwidth during transfer from storage to
processing nodes for even moderate-sized studies. To that end,
a cloud-based “medical image processing-as-a-service” offers
promise in utilizing the ecosystem of Apache Hadoop, which is a
flexible framework providing distributed, scalable, fault tolerant
storage and parallel computational modules, and HBase, which
is a NoSQL database built atop Hadoop’s distributed file system.
Despite this promise, HBase’s load distribution strategy of region
split and merge is detrimental to the hierarchical organization of
imaging data (e.g., project, subject, session, scan, slice).

This paper makes two contributions to address these concerns
by describing key cloud engineering principles and technology
enhancements we made to the Apache Hadoop ecosystem for
medical imaging applications. First, we propose a row-key design
for HBase, which is a necessary step that is driven by the
hierarchical organization of imaging data. Second, we propose
a novel data allocation policy within HBase to strongly enforce
collocation of hierarchically related imaging data. The proposed
enhancements accelerate data processing by minimizing net-
work usage and localizing processing to machines where the
data already exist. Moreover, our approach is amenable to the
traditional scan, subject, and project-level analysis procedures,
and is compatible with standard command line/scriptable image
processing software. Experimental results for an illustrative
sample of imaging data reveals that our new HBase policy results
in a three-fold time improvement in conversion of classic DICOM
to NiFTI file formats when compared with the default HBase
region split policy, and nearly a six-fold improvement over a
commonly available network file system (NFS) approach even
for relatively small file sets. Moreover, file access latency is lower
than network attached storage.
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I. INTRODUCTION

Traditional grid computing approaches separate data stor-
age from computation. To analyze data, each dataset must be
copied from a storage archive, submitted to an execution node,
processed, synthesized to a result, and results returned to a
storage archive. This is the workflow traditionally adopted in
processing medical imaging datasets. However, when imag-
ing datasets become massive, the bottleneck associated with
copying and ensuring consistency overwhelms the benefits of
increasing the number of computational nodes. For example,
consider the activity of converting Digital Imaging and Com-
munications in Medicine (DICOM) files to NiFTI (a research

file format); if converting a 50 MB volume takes 15 seconds,
an ideal Gigabit network (≈ 100MB/s) saturates with slightly
less than 30 simultaneous processes.

These challenges are further amplified considering the
current trends where vast magnetic resonance imaging (MRI)
and computed tomography (CT) databases are accumulating
in radiology archives (at the rate of nearly 100 million exam-
inations per year in the U.S.). However, we lack the image
processing, statistical, and informatics tools for large-scale
analysis and integration with other clinical information (e.g.,
genetics and medical histories). An efficient mechanism for
query, retrieval, and analysis of all patient data (including
imaging) would enable clinicians, statisticians, image scien-
tists, and engineers to better design, optimize, and translate
systems for personalized care into practice. Thus, a cloud-
based service to address these needs holds promise.

It may however appear tempting to reuse existing cloud-
based solutions for social networks and e-commerce, which
provide a solution to this problem that is both simple and
relatively inexpensive. These solutions combine the storage
and execution nodes such that each task can be done with
minimal copying of data. For example, the Apache Hadoop
ecosystem [1], which provides Big Data processing capabili-
ties, has been extensively used in these contexts.

Two reasons preclude such a naïve reuse. First, although
such big data architectures have been applied in online com-
merce, social media, video streaming, high-energy physics,
and proprietary corporate applications, these technologies have
not been widely integrated with medical imaging data formats
(e.g., DICOM) for medical image processing. Second, sev-
eral approaches have followed the path of general machine
learning literature and seek to implement algorithms specifi-
cally designed to take advantage of big data architecture [6],
[11], [32], exploit the MapReduce framework to sift through
datasets [25], or use distributed file systems [30], [36]. While
such approaches have been effective for genetics studies [9],
[36], they have not yet proven effective within current medical
image computing workflows.

The fundamental reason for this shortcoming is that sub-
stantial resources have been invested in creating existing
algorithms, software tools and pipelines, and hence there is a
substantive (often prohibitive) cost associated with algorithm
re-implementation and re-design specifically for big data medi-
cal imaging. Consequently, there is a need for new approaches
that will not require algorithm re-design while still are able
to exploit the potential of elastic, cloud-based frameworks,
such as Apache Hadoop, that have shown promise in other
application domains. However, as we show empirically, the
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default policies in the Apache Hadoop ecosystem are not
effective in supporting big data medical imaging problems.

To address these problems, we present design principles
and empirical validation for a new data model for use with
cloud-based distributed storage and computation systems that
provides practical access to distributed imaging archives, inte-
grates with existing data workflows, and effectively functions
with commodity hardware. Our approach makes specific im-
provements to the Apache Hadoop ecosystem, notably HBase,
which is a NoSQL database built atop Hadoop’s distributed
file system. Specifically, we make the following contributions:

• A row-key design for Apache HBase: A hierarchical
key structure is proposed as a necessary step to accom-
modate nested layers of priority for data-collocation.

• New RegionSplit policy: A computationally efficient
approach is proposed to optimally manage data collo-
cation in the context of the hierarchical key structure.

• Experimental results: The proposed innovations are
evaluated in the context of a routine image analysis
task (file format conversion) in a private research cloud
comprising a typical Gigabit network with 12 nodes.

The performance of this new system is evaluated on small
(7 GB) to moderate-sized (530 GB) test cases to characterize
the overhead associated with this model and demonstrate
tangible gains on widely available network and computational
hardware. We believe that the proposed improvements to the
Apache Hadoop ecosystem will greatly reduce the technical
barriers to performing high-throughput image processing nec-
essary to integrate imaging data into actionable metrics for
personalized medicine. The novelty of the approach lies in our
integrated solution for a novel application. The row-key design
and linearizing most heavily used fields have been used in
other contexts [21], [28], [31]. Yet, realizing new opportunities
to apply existing techniques to a different realm (medical
image processing), with its specific ontologies and patterns of
data size/access, is essential to driving innovations. Our effort
is a mix of research and experimental work to demonstrate
applicability to medical imaging, which, to date, has not used
a data-collocation computational model, and instead typically
relies on monolithic data warehouses.

The rest of the paper is organized as follows: Section II
describes our contributions; Section III describes our evalu-
ation approach and presents experimental results; Section IV
compares our work with related work; and finally Section V
presents concluding remarks alluding to ongoing and future
work, and discusses the broader applicability of our approach.

II. ENHANCEMENTS TO THE APACHE ECO-SYSTEM

The task of processing medical images at scale requires
a distributed image processing architecture that is aware of
the underlying hierarchical imaging data and its meta-data.
Our system is based upon the Hadoop framework, which
was originally designed for file-system management and dis-
tributed processing [10], [14]. We combine Hadoop with
Apache HBase, a NoSQL database which implements Google’s
BigTable [8], [14]. The specific contribution of our work is
a novel data storage mechanism that uses the hierarchical

structure of imaging studies to collocate data with physical
machines.

Before delving into our solution, we provide an overview
of the problem domain we are working in, technologies we
have used and the challenges faced.

A. DICOM and NiFTI Overview and Key Challenges

DICOM (Digital Imaging and Communications in
Medicine) is the international standard for medical images
and related information (ISO 12052). It defines the formats for
medical images that can be exchanged with the data and quality
necessary for clinical use (http://dicom.nema.org/). It has a
hybrid structure that contains regular data (patient/clinical
information), multimedia data (images, video). Data inside a
DICOM file is formed as a group of attributes [27].

When a patient gets a Computed Tomography (CT) or
Magnetic resonance imaging (MRI) scan, for example a pa-
tient’s brain image, a group of 2-dimensional DICOM images
are generated slice by slice. A non-exhaustive set of medical
imaging DICOM attributes for the slices include: project,
subject, session and scan, where a project is a particular study,
a subject is a participant within the study, a session is a single
imaging event for the subject, and a scan is a single result
from the event.

In order to study the entire brain, all 2-dimensional DI-
COM images should be collected together. Even though med-
ical imaging data is stored as DICOM images, a substan-
tial amount of medical image analysis software are NiFTI-
aware (e.g. FSL (http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/), AFNI
(https://afni.nimh.nih.gov/afni/), SPM (http://www.fil.ion.ucl.
ac.uk/spm/) and Freesurfer (http://freesurfer.net/)). NiFTI is
a medical image data format, which is termed as a “short-
term measure to facilitate inter-operation of functional MRI
data analysis software package,” developed and founded by the
NiFTI Data Format Working Group (http://nifti.nimh.nih.gov/).

Converting a large group of slices of DICOM images
belonging to one patient into a small number of NiFTI format
images (many-to-many relationship) is a significant step in any
medical imaging study. Any processing of DICOM datasets
will need to determine which CT/MRI scan that slice belongs
to and using the Session attribute which records when the
CT/MRI scan volume is carried out. However, finding a
Session needs to first know the attribute Subject that it belongs
to. Finally, the Project attribute collects all subjects together.
Thus, for medical imaging applications involving DICOM, the
following attributes are necessary: project → subject →
session → scan → slice.

B. Apache HBase Overview and Key Challenges

HBase [26] uses the Hadoop Distributed File System
(HDFS) to provide distributed and replicated access to data.
We chose HBase since it can group data logically and phys-
ically based on row-key value. However, HDFS can only
provide logical order. HBase also provides a flexible translation
layer (region-split policy) for dealing with data collocalization
statically or dynamically.

The key concepts from the HBase architecture are summa-
rized in Table I. Briefly, HBase maintains tables, which have
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a row key that is commonly used as an index, and where data
columns are stored with the row key. All data in HBase is “type
free,” which are essentially in the format of a Byte Array. The
table is sorted and stored based on the row key.

TABLE I. HBASE ARCHITECTURE KEY CONCEPTS SUMMARY

Concept Comment
Table / HTable A collection of related data with a column-based

format within HBase.

Region HBase Tables are divided horizontally by row
key range into “Regions.” A region contains all
rows in the table between the region’s start key
and end key.

Store Data storage unit of HBase region.

HFile / Storefiles The unit of Store, which is collocated with a
Hadoop datanode and stored on HDFS.

memStore When write data is uploaded to a HTable, it is
initially saved in a cache as memStore. Once the
cache size exceeds a pre-defined threshold, the
memStore is flushed to HDFS and saved as
HFile.

HMaster HBase cluster master to monitor a
RegionServer’s behavior for load balancing.Table
operator. e.g., create,delete and update a table.

Regionserver Serves read/write I/O of all regions in a cluster
node. When Regionservers collocate with
Hadoop datanode, it can achieve data locality.
Subsequently, most reads are served by the
RegionServer from the local disk and memory
cache, and short circuit reads are enabled.

Rowkey A unique identifier of a row record in table.

Column family Columns in Apache HBase are grouped into
column families.

Column identifier The member in column family, also called as
column qualifier. Multiple column identifiers can
be used within one column family.

HBase tables are divided into “regions” for distributed
storage such that each region contains a continuous set of row
keys from the overall table. The data in a region is physically
collocated with an HDFS data node to provide data locality,
which is performed by an operation called major compaction.
When the region size grows above a pre-set physical size
threshold, a “RegionSplitPolicy” takes effect and divides the
region into smaller pieces. The newly created regions are
automatically moved to different nodes for load balancing
of the entire cluster. The row key and RegionSplitPolicy are
integral to the performance and data retrieval of HBase and
Hadoop.

Although HBase/HDFS is widely used in practice, multiple
challenges manifest in the context of medical imaging applica-
tions. First, there is no standard for the default row key design.
Intuitively, the data should be placed as sparse as possible and
distributed evenly across various points of the regions in the
table. Such a strategy can avoid data congestion in a single
region, which otherwise could give rise to read/write hot-spots
and lower the speed of data updates. Because row keys are
sorted in HBase, using randomly generated keys when input
as data to HBase would help leverage the data distribution in
the table. As shown later, however, such an approach incurs
performance penalties for medical imaging applications.

Second, since the original DICOM file name is a unique
identifier called Global Unique identifier [17], if the task of
interest is storing slice-wise DICOM data within HBase, then
a naïve approach would be to use the DICOM GUID. Since
the GUID is a hash of the data, it will not collocate data
together and thus will saturate the network at the time of
retrieving all DICOM images of a scan volume. Further, the

standard RegionSplitPolicy will randomly assign files with
hashed DICOM GUID file names as row keys to regions based
on the key and a convenient split point based on region size,
which may not be efficient as we show later.

C. Modified Row Key Design

To address the challenges outlined above, we propose
a modified row key design for HBase based on the row
key design requirements, which calls for preserving the
structure of DICOM comprising the project, subject, session
and scan. To maintain this structure, we propose using <
ProjectID > _ < SubjectID > _ < SessionID >
_ < ScanID > as the identifier with other optional
characteristics, such as the “slice” appended to this iden-
tifier. This is how our collection of images are named
in a hierarchical manner. For example, a row key looks
like Proj1_Subj2_Session3_Scan4_Slice5_example.dcm,
where “.dcm” is the filename extension for DICOM. Since
HBase organizes data linearly based on row key, this new
strategy will maintain data within a project that is split with a
minimal, or just one more than the minimal number of splits
across regions as possible, when used in conjunction with the
default RegionSplitPolicy supported by HBase.

D. Modified RegionSplitPolicy for Medical Imaging

The default HBase policy that we evaluate and com-
pare against is the IncreasingToUpperBoundRegion-
SplitPolicy [2]. IncreasingToUpperBoundRegionSplitPol-
icy is based on a trigger point that dynamically updates
itself from a specified minimum to a maximum (e.g., from
512 MB to 10 GB based on the total number of regions
in a RegionServer). When a region split is triggered, the
RegionServer first finds the largest files in the largest stores.
The policy finds the first row key of the largest data block
in each storefile. This key is called the “midkey” of a region
and is decided based on region mid size. Thus, this split point
can separate an existing associated imaging dataset into two
regions without considering which row keys values lie in the
split region. The newly created two regions will move through
the whole cluster for storage balancing.

HBase also provides KeyPrefixSplitKeyPolicy
(which inherits from IncreasingToUpperBoundRegionSplitPol-
icy) as one of the default split policy which is designed for
grouping rows sharing a fixed pre-set length of keys [2]. How-
ever, it cannot dynamically group the subjects based on the
order of project, subject, session etc based on highest available
level (project,subject, session, scan) as we do in our modified
approach. Moreover, it may cause a region to fail to split when
all rows’ key have identical length of prefix (especially when
prefix length is very short). This will make a region too large
and impact the data balancing of the cluster. If the prefix length
is very long, the effect of KeyPrefixSplitKeyPolicy would have
no difference with IncreasingToUpperBoundRegionSplitPol-
icy. So we chose IncreasingToUpperBoundRegionSplitPolicy
as the baseline comparison of HBase default split strategy.

To overcome these issues, we propose a novel RegionSplit-
Policy, which has knowledge of the modified row key structure
(see Section II-C) thereby maximizing data co-localization. It
is critical to do it this way because typically users will select

129



Fig. 1. Comparison of the default RegionSplitPolicy (IncreasingToUpperBoundRegionSplitPolicy) and our custom RegionSplitPolicy. The standard policy splits
the data within a region equally based on the data in the region. The custom policy considers the projects, subjects, sessions and scans in the region and makes
a split to maximize data co-locality.

a cohort (set of subjects, sessions) for processing. The data
under the same subjects or sessions are always processed to-
gether, not individually, e.g., in DICOM conversion the unit of
processing is scan volumes. Thus, it is important to maximally
collocate relevant image data under the same level for further
group retrieval and processing/analysis, while reducing the data
movement in MapReduce operations pertaining to the DICOM
to NiFTI conversion, which is discussed in Section III-D1.

Our new RegionSplitPolicy also inherits from Increasing-
ToUpperBoundRegionSplitPolicy but does the split differently.
First it considers all row keys in a region. If multiple projects
exist in the region, it splits the projects into separate regions.
If the region is homogeneously a single project, it finds the
highest available level (subject, session, scan) in the region
on which it can split and balance the data between the new
regions. Figure 1 compares the operation of the standard
RegionSplitPolicy with our custom policy.

The challenge for our optimized RegionSplitPolicy is to
find a split point based on all row keys of a Region. HBase
provides a client API to retrieve data called scan (here, we
refer to it as simple_scan). A user can customize the scan to
define the range of row keys with which the column family and
identifiers need to be retrieved. Users can also set customized
filters to refine the query scan. A region has internal attributes
that record the values of the start row key and end row key
of the region. Since there are no attributes of records for any
other row keys in a region except start/end row key, we need
to use external ways to retrieve all row keys of a region.

In order to get all keys in a region, two existing approaches
can be used in traditional HBase: (1) According to start/end
key of region, a user specifies a column to scan. The scan is
first executed on the entire table, finds the right RegionServer
that hosts the region using Zookeeper quorum, and retrieves
the row key; (2) Use HBase default RowKey filter to customize
the scan. However, both approaches are slower compared to
our approach described below.

As shown in Figure 1, we are capable of locating the largest
storefiles. In this way, we can apply a more advanced HBase
scan API (called “Region Internal scan”), which we have found

to be 163 times faster than simple_scan on average in our
tests to find all hierarchy row keys involved in the region.
The Internal scan can directly operate on storefiles located on
HDFS without starting a scan from the entire table. This gives
us all the row keys of a split region. Next, the split point is
selected according to the following conditions: (1) it ensures
that the maximum related data is collocated in a hierarchy, and
(2) once we have identified the level of structure which will
be the potential point to split, we traverse the candidates and
return the point that can most evenly balance the size of the
two new regions in order to avoid the overhead of too many
small regions emerging. Thus, if there are many projects of a
region, we should split rows by < ProjectID >; if all row
keys start with same project, and there is not only one subject,
we should split rows by < ProjectID > _ < SubjectID, so
on so forth.

The observed average run time range to determine one
split point using our custom split policy is 28.22-58 ms, and
1.43-1.64 ms for the default HBase split policy with similar
CPU usage (19.39% vs. 19.81%), which means the proposed
split policy does not involve any substantial overhead when
compared with the default one. The increased time in our
policy is due to the need to retrieve and analysis all row keys
of a region. Despite this one-time initial cost, as we show in
our experimental results, the performance improvements are
substantial.

E. Putting the Pieces Together

Figure 2 presents the overall structure of our modified
Apache Hadoop ecosystem focusing particularly on the HBase
modifications. HBase resides upon HDFS. Zookeeper monitors
the health status of RegionServer. When users create a HBase
table, they need to pinpoint the RegionSplitPolicy to HMaster,
and the pre-set split policy is automatically triggered once
when a Table region needs to be split. Our custom split policy
is made the default split policy. The input DICOM is de-
identified (for privacy preservation purposes) and is normalized
to the hierarchy structure by a local row key generator before
storing into HBase.

130



Fig. 2. Overall Structure of Hadoop / HBase / Zookeeper Cluster with the
Proposed Custom Row Key and Region Split Policy

F. Generality of the proposed approach

Our proposed approach has broader applicability than just
DICOM2NiFTI. In recent work [4], we proposed a framework
to evaluate the suitability of our approach for a larger set of
medical imaging problems. Beyond that, multimedia process-
ing always involves “large” data set compared with medical
imaging data. For instance, video transcoding has been applied
on Hadoop, each video is about 200 MB, and experiment data
sizes are from 1 - 50 GB [20], [29]. Based on video record
time and content, we can easily create a hierarchy category to
name the video, and conduct group processing by omitting the
reduce phase.

Gene data have many different styles with diverse at-
tributes. Genes with similar expression patterns must be col-
located for group analysis since genes that behave similarly
might have a coordinated transcriptional response, possibly
inferring a common function or regulatory elements [5]. Thus,
genes data group/hierarchy storage, retrieval and analysis is
applicable by our framework.

Another scenario where our work is applicable includes
Satellite data/image processing on data about earth surface,
weather, climate, geographic areas, vegetation, and natural
phenomenon [16], which can be studied according to day-
based, multiple-day-based, or seasonal-based [15]. As a result,
time-oriented hierarchical structure can help group the data
from the satellite for further processing. similarly, Internet of
things collect data from various facilities like sensors. Accord-
ing to the sensors’ supervision area, a component hierarchy-
based data collection can be implemented. For instance, high-
speed train fault and repair prediction is applied before a train
runs [34]. Analyzing mass historical data from a group of
Electric Multiple Unit (EMU) of a train’s components has
potential to be implemented in our framework.

III. EVALUATIONAL METHODOLOGY AND

EXPERIMENTAL RESULTS

This section presents results of evaluating our Apache
Hadoop/HBase modifications and comparing them with default
strategies.

A. Testing Scenarios

To investigate the performance of our HBase modifications,
we evaluated the standard DICOM to NiFTI file format con-

version using three test scenarios using HBase and Hadoop,
and one with Network Attached Storage (NAS) as follows.

1) Scenario: “Naïve HBase” – The project data was
anonymized such that the original GUIDs were lost
prior to this project and could not be recovered
associated with data retrieval. True DICOM GUIDs
are globally unique and contain both source (root
stem) and random components. The MD5 tag mimics
the random components from a single source vendor.
Using MD5 hash key value meets the HBase original
preferred key design for reducing hot-spot for table
read/write. The DICOM files are distributed to all
HBase regions, and we use an additional table to
record the hierarchy structure of a scan dataset. We
test using a random key, and MD5 hash of the data,
as the key in HBase. With this comparison, we test
the native capabilities of Hadoop and HBase without
any of our proposed optimizations.

2) Scenario: “Custom Key/Default Split HBase” –
This scenario evaluates the custom key grouping and
ordering of the DICOM file logically and physically
in HBase by our custom key value prefix introduced
in Section II-C. When a HBase region exceeds a pre-
defined size, we use the default split policy to split
a region into two child regions without considering
the key values of the split region. In this case, the
files belonging to the same project, subject, session,
scan are distributed into two different regions. The
two regions may move to different cluster nodes, and
the replication of both regions may also be placed on
random Hadoop datanodes. When retrieving all files
of a cohort (i.e., a set of scan volumes) for further
processing, the MapReduce job dispatches computa-
tions to nodes that contain the datasets of interest.
When no single node contains all requested data for
a single job (either due to a large request or local
storage scarcity), the minimal necessary data will be
retrieved over network. So we test our proposed row
key with the default RegionSplitPolicy.

3) Scenario: “Custom Key/Custom Split HBase” –
Our custom RegionSplitPolicy has the capabilities to
maximally collocate relevant data in the same group,
with the order of project, subject, session and scans.
We test our complete design with our proposed row
key and custom RegionSplitPolicy and compare it
with Custom Key/Default Split HBase to see how
data retrieval matters in MapReduce. Theoretically,
this approach involves less data collection and move-
ment via the network than the other two HBase
methods and makes processing faster.

4) Scenario: “Sun Grid Engine NAS” – Traditional
grid computing approaches separate data storage from
computation. As a comparative method, we use a tra-
ditional Sun grid engine (SGE) to distribute portable
bash script (PBS) jobs to computational nodes ac-
cessing data from a Network Attached Storage (NAS)
device.

B. Hardware

Twelve physical machines were used consisting of 108
cores of AMD Operon 4184 processors, 40 cores of Intel
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Xeon E5-2630 processors and 8 cores of Intel Xeon W3550
processors running Ubuntu 14.04.1 LTS (64 bit). At least 2
GB RAM was available per core. In total, 190 GB of storage
was allocated to HDFS and a Gigabit network connected
all of machines. The type for the local disks was Seagate
ST32000542AS. Each machine was used as a Hadoop Datan-
ode and HBase RegionServer for data locality. All machines
were also configured using the Sun Grid Engine (Ubuntu
Package: gridengine-* with a common master node). NAS
was provided via CIFS using a Drobo 5N storage device
(www.droboworks.com) with a 12 TB RAID6 array.

C. Data and Processing

To evaluate the test scenarios, 991,000 DICOM files from
clinical CT scanners corresponding to 41 subjects and 812
scan volumes were retrieved in de-identified form under IRB
approval from a study on traumatic brain injury. The pro-
cessing system for each scan retrieves the data from storage
(see test scenarios in Section III-A), applies a command line
program and converts the DICOM files to NiFTI using dcm2nii
(www.nitrc.org/projects/dcm2nii/). We performed tests with
subsets of data with different datasets to assess the scalability
of each proposed system and relative overhead (either fixed or
scalable) versus processing load. To further test the system’s
scalability and upper limit on throughput (i.e., number of
datasets processed per minute), we incrementally increased the
size of datasets 2, 4, ... 10 times of the original 812 scan
volumes. Thus, the average processing speed of one dataset
from 812 to 8120 datasets scenario are same, and the impact
of the fixed overhead will decrease as the number of datasets
increase. Table II presents the dataset total file size for different
number of datasets. Each dataset denotes the number of scans
with average 126 DICOMs per scan.

TABLE II. DICOM DATASETS SIZE INFO

Datasets Total Scan
size (GB)

104 7.16

186 10.93

294 19.05

407 27.55

497 34.12

606 41

718 47.14

812 53.01

1624 106.02

Datasets Total Scan
size (GB)

2436 159.03

3248 212.04

4060 265.05

4872 318.06

5684 371.07

6496 424.08

7308 477.09

8120 530.1

D. Apache Hadoop/HBase Experimental Setup for DI-
COM2NiFTI

The Hadoop/HBase cluster is configured by Hadoop
(2.7.1), HBase (1.1.2) and Zookeeper (3.4.6). HDFS uses
default 3 replicas with rack awareness. In our experimental
setup, the Sun grid engine does the balancing and makes
sure that the jobs ran as soon as space was available within
the specified node list when processing is executed on a
traditional grid [13]. For Hadoop scenarios, MapReduce is
a programming model and an associated implementation for
processing large datasets in the Hadoop ecosystem [10]. YARN
is used for resource (CPU/Memory) allocation and MapReduce

job scheduling [33]. We use the default YARN capacity FIFO
(First in First Out) scheduler, which aims at maximizing the
throughput of cluster with capacity guarantees when the cluster
is being shared with multi tenants.

The software tools to generate row keys from DICOM data
were implemented in open source. The custom region split pol-
icy was implemented as a Hadoop extension class. All software
is made available in open source at NITRC project Hadoop for
data collocation (http://www.nitrc.org/projects/hadoop_2016/).
Manual inspection of region stores was used to verify data col-
location under multiple configurations of Hadoop Datanodes
to ensure that the desired data collocation and region splits
were occurring.

1) MapReduce Implementation of DICOM2NiFTI using
HBase: The MapReduce model should complete two main
tasks: data retrieval from HBase and data processing (DICOM
to NIFTI conversion). The Map phase always tries to ensure
that the computation tasks are dispatched where data resides,
and those tasks are vividly called data-local maps. A compro-
mise scenario is when data is not on the local node where the
running map task is located, but at least the data are on the
same rack, and those maps are rack-local maps. In the Reduce
phase, the output,< key, value > pairs from Map phase are
to be shuffled/sorted and sent to random cluster nodes.

If data retrieval is done in the Map phase while processing
in the Reduce phase, then the computation and data can be
on different nodes. A potential way to execute the processing
is remote access (i.e. SSH) where data originally locates and
applies processing. SSH limitations may occur, however, and
block further connection, and as a result the processing cannot
be fully completed. If both data retrieval and processing occurs
in the Reduce phase, namely, each reduce task collects all row
keys related with one scan volume, then downloads and collect
DICOM files from HBase according to the keys, and finally
executes the conversion in Reduce phase. In this strategy,
network congestion will occur when the node that holds the
Reduce task may not have all needed DICOM files. Since
those DICOM files are aggregated in the same Region / node
owing to our proposed custom split policy, so Reduce task has
to retrieve all datasets through the network and will lead to
congestion.

Thus, these approaches break our primary goal for data
collocation with Hadoop and HBase with minimum data
movement. As a result, our proposed Hadoop enhancements
with data collocation in the context of the hierarchical key
structure, data retrieval and processing occur in the Map phase
and the Reduce phase is a no-op for our application.

In a traditional “word count” example, the input of MapRe-
duce is a HDFS folder. The input folder is split into several
pieces based on the files in the selected folder. Then each
piece starts a map task with < key, value > pair, the input
Map Key is file names and input Map value is file content.
However, this approach is not practical in HBase. The HBase
region has a corresponding folder on HDFS, and all data
stores/hfiles in this region are placed in the region. When the
region collocates to a Hadoop datanode to achieve data locality,
all data store/hfiles are compacted to a giant file, which means
that a traditional MapReduce like wordcount strategy cannot
split an input HBase folder for further processing.
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Figure 3 shows the modified work-flow. HBase provides
a default API for running HBase-oriented MapReduce. The
input of the MapReduce is a HBase-scan, which represents
an interval of consecutive table row key values of a selected
column. The HBase-scan is split based on relevant regions,
and the input < key, value > pairs are values about row keys
of a region and the content of the specified column. In short,
if the input HBase-scan occurs across n regions, then only n
map tasks are generated. The challenge for traditional HBase-
oriented MapReduce for DICOM is there are usually more
than one datasets of DICOM files under the same scan in a
region. So we refined the above approach to specify the input
of MapReduce to be a selected cohort of scan volumes, and
the number of Map tasks is based on the number of scans.

DICOM with the same row-key prefix sticks together in
order. Querying all DICOM images of a scan volume does
not need to iterate over all input key values. Instead, we just
need to define a search range (first/last row-key record of the
selected cohort scan). Thus, we use an additional table to store
the range of each scan volumes and do a one-time update
once new images are uploaded to HBase. The Map Phase first
retrieves the data from HBase and stores DICOM files to local
node. Once done, it converts the DICOM files to NiFTI using
dcm2nii as presented in Figure 3. For fair comparisons between
Hadoop methods and approach on NAS, additional steps such
as uploading the NiFTI result to HBase are not launched.

We did not include writing back to the original storage
which is done typically in HBase to keep regions balanced and
consistent across all cluster for each individual experiment. We
did this because when writing back the result to HBase, the
size of the region may change and may trigger a split, which
takes time to localize a newly created region, particularly if it
needs to be distributed to a different machine.

Fig. 3. Custom HBase oriented MapReduce basing on input selected groups
of scan volumes

2) Guidelines used for Scaling Hadoop / HBase Cluster :
Scalability is one of the most important properties for Cloud
usage. We test and scale our clusters for studying intrinsic
scalability performance. The following summarizes how we
scaled the Hadoop / HBase cluster step by step.

• For scaling down, RegionServer should first be grace-
fully stopped [2], and relationship of data collocation
between Datanode and RegionServer are no longer ex-
ists. Then major compaction on the affected data from

stopped RegionServer must be applied to collocate to
the rest of the cluster [2]. When all data-locality is
achieved again, decommissioning the Datanode and
re-balancing of the cluster is performed. If decom-
mission order is reversed, redundant replications are
to be stored into HDFS which exponentially decreases
the available size of the Hadoop cluster.

• For scaling up, a new Hadoop Datanode must be com-
missioned first and then a new HBase RegionServer
is added, followed by a major compaction to achieve
data locality. If there is no Datanode, adding a new
RegionServer can collocate to nothing, which makes
reverse commissioning order no sense.

E. Results of Data Transfer Latency

The latency represents the data access latency
for one dataset of slice images that belong to one
project_subject_session_scan. First, we evaluated the latency
in retrieving imaging data in each of the four scenarios.
Table III shows average latency for all datasets. For naïve
Hadoop, we retrieved data to a random node since the data
were not collocated. For custom key / standard split, we
retrieved the data to the machine which contained the first
element in the scan. For custom key / custom split, we
retrieved the data to the machine where the data were located
entirely. For Grid Engine NAS, we retrieved the data from the
NAS to a local machine serially (i.e., with one core in use).

TABLE III. LATENCY RESULTS IN SECONDS FOR EACH OF THE FOUR

TEST SCENARIOS.

Approach
Grid

Engine
NAS

Naive
HBase

Custom
key/

Standard
split

HBase

Custom
key/

Custom
split

HBase
Latency(s) 4.76 19.02 3.29 2.56

The naïve Hadoop strategy performed markedly worse
than the other methods because it needs to open and close
connections with multiple other machines in order to download
the data, and the initialization and setup of each ZooKeeper
connection involves overhead. Using the NAS with a single
connection is relatively effective since the data are coming
from one fixed location and there is low overhead in opening
and closing connections. In comparing the default split policy
to our proposed policy, we see an improvement in average
performance. Any increase comes from the cases where scans
are split between machines and thus data needs to be retrieved
from other locations on the network which degrades latency.

F. Data Processing Throughput for DICOM to NiFTI Conver-
sion

Each of the four scenarios executed a DICOM to NiFTI
conversion as described in Section III-C. Figure 4A presents
an analysis of throughput. The Grid Engine NAS performed
the worst (fewest datasets per minute, longest run times) across
all dataset sizes. In all scenarios, the NAS device saturated at
20 MB/s (approximately 18 datasets per minute) throughput
despite the gigabit network access. This was likely due to
numerous small files that are generated with “classic” DICOM
scanning as direct read/write to the NAS device demonstrated
substantively higher performance.
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Fig. 4. Throughput analysis for each of the test scenarios (104 - 812 datasets).
(A) presents the number of datasets processed per minute by each of the
scenarios as a function of the number of datasets selected for processing. (B)
shows the fraction of time spent on overhead relative to the number of datasets.

The naïve HBase approach scaled better than the NAS
approach with a throughput ranging from 31 MB/s (with 104
datasets) to 58 MB/s (with 718-812 datasets). The performance
leveled off at 52 datasets/minute for a factor of almost three-
fold improvement over NAS. The custom key / default policy
HBase approach performed even better with a throughput
of 34 MB/s (with 104 datasets) to 94 MB/s (with 718-812
datasets). The custom key / custom policy HBase approach
further increased throughput performance from 37 MB/s (with
104 datasets) to 114 MB/s (with 812 datasets).

The naïve method’s performance increases flatly because
of uncertainty in the placement of data loading. It performs
better than processing on the NAS device because not all data
needs to be retrieved from the other node; some of the files are
placed on same node with Map computation in most cases. On
the other hand, the custom key custom policy HBase involves
lesser data movement with better performance rather than the
custom key / default policy HBase, both of whose processing
are executed within most data-local map and a few rack-local
map according to YARN allocation.

The root cause in reducing the processing time with the
new policy is attributed to the following. Our approach (i.e.,
Custom key/Custom split HBase) groups the data based on
the image’s hierarchical structure. When processing the data
(i.e., DICOM to NiFTI conversion), a single task needs to load
a subset of images that under the same structure (all image
slices under the same project_subject_session_scan). Owing to
the Hadoop MapReduce computation paradigm’s data locality
feature, the job task can easily be dispatched to where the
data is and hence the data retrieval is predominantly local so
that it reduces the time for the computation to reach the data
compared with SGE, which transfers data over the network.

1) Overhead Considerations with the Hadoop Framework:
We define the overhead time as the difference between the
actual wall clock time and the theoretical minimum time.
The theoretical minimum time assumes all CPU slots are
used except the last round of parallel jobs, and the average
processing time of one dataset is empirically calculated by
processing all pre-stored datasets on one machine without any
data retrieval latency.

The computing grid had 156 cores available. Therefore,
up to 156 jobs could run simultaneously in any of the test

scenarios. With the three Hadoop scenarios, we have logs of
both the time spent within each job on the compute node
(including time to establish data connection, retrieve the data,
and clean up the connection) and the actual wall clock time.
For each of the Hadoop scenarios, we computed the average
actual time spent executing the processing (including data
retrieval), which ranged from 22 s to 35 s. For each of the
data submission tasks, we can identify the minimum number
of jobs that would need to run in serial by dividing the number
of scan volumes by the number of cores. The fastest time that
the Hadoop scheduler could run the jobs is the length of the
serial queue times the job length, but in all cases the actual
wall time exceeded this value.

The ratio of overhead time to total time is shown in
Figure 4B. Fitting a linear analysis to each of the three
scenarios shows that the SGE strategy had 95% overhead
penalty due to data transfer latency. The naïve HBase strategy
had a marginal penalty of 85% per additional dataset. The
custom key / default split policy reduced the overhead penalty
to 75% per additional dataset. Finally, the custom key / custom
split policy resulted in 70% per additional dataset.

2) Upper Bound and Asymptotic Limits on Achievable
Throughput: Figure 4A illustrates the processing on SGE,
which saturates the Gigabit network. The HBase approach
does not incur as much network congestion because most map
tasks are data-local or rack-local. Thus, we were not able to
observe any perceived network-imposed limitations even until
812 datasets. The upper limit on the throughput stems from
other overheads in the framework, which we address in the
paper. This is further verified in Section III-G. These overheads
are either fixed or scale according to cluster size. Consequently,
to reduce the impact of fixed overhead, we tested our system
for more number of datasets.

To understand the asymptotic limits on the performance of
our approach, consider Figure 5A which presents the result
of processing scans per minute with more datasets according
to Table II. We also provide the theoretical minimum time
performance in Figure 5B. The data processing overhead is
affected by the data retrieval and the fixed overhead stemming
from MapReduce job initialization and zookeeper connection.
The theoretical ideal solution fluctuates within the first 812
datasets due to differences in scan volumes. It then shows a flat
performance because the datasets from 1,624 to 8,120 are du-
plicated from the first 812 datasets. We can see both Hadoop’s
throughput gradually increased although the theoretical time
oscillated at which point both Hadoop scenarios present a
similar flat performance. These result trends empirically reveal
the reduction of the impact of the fixed overhead.

Since the network is not a factor, we conclude that to obtain
even higher throughput, we will need to scale the hardware by
adding more cores since the number of cores is the limiting
factor.

It is worth mentioning that to reduce the effort of re-
implementing locally installed binary executables command-
line problem our society mainly use (the program usually
follows with system environment path), the proposed approach
would temporally store the image byte array from HBase
to a local place of the computation machine which arises
overhead. For SGE scenario, since it uses NFS to attach
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Fig. 5. Throughput analysis for all test scenarios (104 - 8,120 datasets). (A)
presents the number of datasets processed per minute by each of the scenarios
as a function of the number of datasets selected for processing. (B) shows
the relationship of throughput according to actual wall time and theoretical
minimum ideal solution time.

the remoted NAS, the data retrieval is “like” to access local
storage, so it does not need to temporally storage strategy as
proposed Hadoop/HBase does. This paper aims to discuss and
present empirical experiments result to proof the feasibility the
framework.

G. Evaluating the Scalability of the Framework

We wanted to understand how does the scale of the cluster
impact performance. Thus, we experimented by linearly de-
creasing the size of the cluster and observe if the performance
decreased in similar manner. In our experiments, each machine
acted as a Hadoop Datanode and HBase RegionServer for
data locality as introduced in Section III-B. The order of
decommisioning of Datanode and RegionServer is important
when scaling the size of the cluster. Both the custom key with
default and with custom split policy are compared on scaled
cluster (5-10 Hadoop/HBase nodes). Decreasing the size of
the cluster can linearly increase the total time with processing
5,684 datasets, which is presented in the trends of Figure 6A.

Fig. 6. Throughput analysis for Hadoop scenarios (5,684 datasets) with
different size of cluster (6 - 10 nodes, each node have 12 cores). (A) presents
the comparison between two Hadoop scenarios with custom key. (B) shows
the relationship between two Hadoop scenarios and theoretical ideal solution.

As mentioned before, DICOM to NiFTI conversion is the
processing task we used in this research. One single task
would use a dataset that has all the slices of images under the
same dataset of project_subject_session_scan. The empirical
results show that about 5% dataset of the scans would be

split. Meanwhile, rack-local map cannot be ignored. We can
conclude that the similar performance is due to the small
proportion of split dataset in custom key/custom split strategy.
If the dataset for a job is session-based rather than scan-
based, the split ratio of dataset should be more distinctive,
because custom key/custom split strategy groups images under
same hierarchical structure better than default Hadoop/HBase
strategy.

Based on the previous discussion, we can conclude that the
Hadoop scenario performance is not limited by the network
bandwidth but by the total available CPU cores and memory.
While for SGE scenario, when scaling the cluster size would
meet the meet deployed network bandwidth limitation. Thus,
scaling up the size of the cluster can increase high performance
computing capability for medical imaging processing in an
affordable local/cloud-based commodity grid.

IV. RELATED WORK

Recent trends indicate a substantial interest in adopting
the MapReduce paradigm – and thereby the Apache Hadoop
ecosystem – for medical image data processing. Several med-
ical image processing studies have encountered one or more
of the trio of computation, storage and network bandwidth
bottlenecks, and have developed optimizations to overcome
these encountered problems. This section compares our work
with prior efforts in medical imaging and beyond.

A. Related Work involving Medical Imaging Applications

A recent study [25] illustrates how transitioning the
medical image processing computations to the MapReduce
paradigm and the Apache Hadoop framework pays rich divi-
dends over traditional processing approaches, which often are
sequential in nature. Our work differs from this prior work in
that not only is our use case different – we focus on mapping
DICOM images to NiFTI formats – but more importantly
we demonstrate new optimization strategies for the Apache
Hadoop ecosystem instead of simply leveraging the default
strategies provided by Apache Hadoop, which is the case with
most prior efforts. In fact the authors in this related work point
out the need to identify opportunities for optimizations, which
is precisely the intent of our presented research. Similarly, [19]
demonstrates how the Apache Hadoop ecosystem can be used
in medical imaging but do not report on any optimizations.

The work reported in [27] is synergistic to our work in that
it focuses on the row- versus column-oriented storage issues
for DICOM images. The authors highlight the pros and cons
of row- versus column-oriented storage policies, and indicate
how the complex structure of the DICOM images requires
a hybrid mechanism for storage. Specifically, their approach
stores frequently used attributes of a DICOM file into row-
based layer/store, and optional/private attributes into a column-
based store so that it will reduce null values. The motivation
stems from the fact that if all DICOM attributes are stored
into a row-based store, then a search or joining operation will
unnecessarily involve numerous null values thereby adversely
impacting efficiency.

The SYSEO project [7] also describes a hybrid row-column
data store for DICOM images using similar criteria as in [27] to
decide between row- versus column-based storage. Their work
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was motivated by the need to find alternatives to existing but
prohibitively expensive solutions for medical image storage.
Moreover, image annotation and query retrieval were addi-
tional dimensions that needed improvements in performance.

Our work do not treat DICOM file attributes as much depth
as in [27], i.e., we need not to know the details of the attributes
stored in a DICOM file when we store it to HBase; rather we
simply store the entire DICOM file to HBase. For our DICOM
to NiFTI processing, the processing operation can directly
fetch the related attributes from DICOM files and convert
them into NiFTI files. For other forms of medical imaging
applications and data processing, such as image annotations,
we may need to incorporate these hybrid storage mechanisms
along with our optimizations, which forms our future work.

B. Related Work in other Application Domains

Several prior research efforts have proposed different per-
formance optimizations to different elements of the Apache
Hadoop ecosystem for domains beyond just medical image
processing. The MHBase project [23] describes a distributed
real-time query processing mechanism for meteorological data
with the intent to provide safe storage and efficiency.

Recent work in Internet of Things (IOT) [24] proposes
an optimization based on high update throughput and query
efficient index framework including pre-splitting the HBase
region for reducing the cost of data movement. Likewise, [22]
addresses the problem of the HBase multidimensional data
queries (upto four-dimension) in IOT with better response time.
A recent work [35] demonstrates an optimized key-value pair
schema for speeding up locating data and increase cache hit
rate for biological transcriptomic data. The performance is
compared with relational models in MySQL cluster and Mon-
goDB. The authors in [18] present an optimized HBase table
schema focusing on merging information to fit in combination
with customer cluster and constructing an index factor scheme
to improve the calculation of strategy analysis formulas.

In summary, the above-referenced prior efforts tend to
focus on optimizing the table schema, row key design for
data fast access, update and query. For our work, we not only
provide an innovative row key hierarchical design, but also
optimize the default RegionSplitPolicy which goes deep into
the HBase architecture. Our goal is to maximally collocate
relevant data on same node for further and faster group
processing. Moreover, most prior works do not consider the
cloud-based service aspect that we do.

V. CONCLUSIONS

Billions of magnetic resonance imaging (MRI) and com-
puted tomography (CT) images on millions of individuals are
currently stored in radiology archives [3]. These imaging data
files are estimated to constitute one-third of the global storage
demand [12], but are effectively trapped on storage media. The
medical image computing community has heavily invested in
algorithms, software, and expertise in technologies that assume
that imaging volumes can be accessed in their entirety as
needed (and without substantial penalty). Despite the promise
of big data, traditional MapReduce and distributed machine
learning frameworks (e.g., Apache Spark) are not often con-
sidered appropriate for “traditional” / “simple” parallelization.

In this paper we demonstrate that Apache Hadoop MapRe-
duce can be used in place of a PBS cluster (e.g., Sun Grid
Engine) and can be offered as a cloud-based service. Moreover,
with our approach, even a naïve application of HBase results in
improved performance over NAS using the same computation
and network infrastructure.

We present a row key architecture that mirrors the com-
monly applied Project / Subject / Session / Scan hierar-
chy in medical imaging. This row key architecture improves
throughput by 60% and reduces latency by 577% over the
naïve approach. The custom split policy strongly enforces data
collocation to further increase throughput by 21% and reduce
latency by 29%. With these innovations, Apache Hadoop and
HBase can readily be deployed as a service using commodity
networks to address the needs of high throughput medical
image computing.

Our experiments promote a general framework for medical
imaging processing (e.g., structured data retrieval, access to
locally installed binary executables/system resources, struc-
tured data storage) without comingling idiosyncratic issues
related to image processing (e.g., parameter settings for local
tissue models, smoothing kernels for denoising, options for
image registration). DICOM2NiFTI is a routine first step in
processing and often a bottleneck for quality control on large
datasets. Hence, the application demonstrates the system’s
correctness and scalability across a complex organization of
files.

The system was implemented on a small, private data
center, which includes the Sun Grid Engine. As the number
of machines increases, NFS becomes nonviable with a single
host, and distributed storage (e.g., GPFS) is commonly used on
large clusters with 10+ Gbps networks. The proposed data and
computation co-location solution is an alternative and could
scale to well-more CPU-cores than beyond a GPFS solution
on the same underlying network.

Finally, as implied by the trends in Figure-4, the benefits
of distributing computation with storage increase with larger
datasets. Exploration of the asymptotic performance limits is of
great interest, but beyond the scope of this paper that illustrates
meaningful gains on problems of widely applicable scale. The
optimization of characterization of these approaches on hetero-
geneous grid is an area of great possibility. In particular, the
Apache Hadoop YARN scheduler could be further optimized
to exploit intrinsic relationships in medical imaging data.

The work presented in this paper is available in open source
at www.nitrc.org/projects/hadoop_2016
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