———————

COMPILING, BUILDING, AND
INSTALLING PROGRAMS ON
THE CLUSTER

N

BUILDING COMPUTER PROGRAMS

* The process of converting a human-readable file to a machine-readable file.

C program (simple text file written Binary executable file (a set of CPU
in C programming language) instructions encoded in 0’s and 1’s)
Hello World!
#include <stdio.h> \ /0101010100001010101001\ K, :
' 0101110101010010100000 \ 9
int main() 0101110101001011000111 '
{ 0110101010101010101010
. 10100010101010101111112
“ I AW
f;ﬁfrg :euo WorldfAn®), 0010111101110000111010
} ’ 1010100111101010111101

\ / \0101010000110101010101/

0 Sophisticated programs (e.g. a compiler) are
used to perform this multi-step conversion.

THE BUILD PROCESS

Human-readable

. B e e ~
Higher-level '/ Source code \‘
language | (e.g. C program) !
A | I
I I
' :
I
| |
I I
I I
- :
‘\ /

External

A)

Not all languages are compiled
languages! The process to the

left applies to programs

kwritten in C, C++, and Fortrary

libraries

| = I

language

_ 25 \
Lower-leve| ! i Binary executable | Machine-readable (i.e.

I I

1 1

can be executed by CPU)

PREPROCESSOR

\
In C, preprocessor directives

begin with the # symbol and are
NOT considered C code. y

* Expands or removes special lines of code prior to compilation.

Include statements: Define statements: Header guards:

a N N N

#include <stdio.h> #define P1 3.1415 #define FOO_H
#include “myHeader.h”
void myFunc(int);

#endif
« Copies contents of stdio.h * Replaces all instances of PI * Prevents expanding multiple
into file. within file with 3.1415. copies of the same header file

by defining a unique “macro”
for each header file.

COMPILER

* Converts expanded source code to assembly code.

(T Ry U

main:
int main() .cfi_startproc Portability is an issue with
{ pushq %erbp compiled languages since
printf(“Hello World\n”); cfi_def_cfa_offset 16 assembly language contains
return O; movq %rsp %rbp

instructions that are specific to

\} / \ / \ a CPU’s architecture. /

* Assembly-level instructions are specific to a processor’s Instruction Set Architecture (ISA).

 Example ISAs are x86, x86_64, and ARM. Most machines in HPC today support x86_64.

ASSEMBLER AND LINKER

* Assembler: converts assembly code to object code.

* Object code is in a binary format but cannot be executed by a computer’s OS.
» External libraries are often distributed as shared object files that are object code.
* Hides specific implementation since these files are not human readable.

* No need to be recompiled for each application that uses the library.

e Stored efficiently in binary format.

Linker: stiches together all object files (including any external libraries) into the final binary executable file.

 Many applications often contain multiple source files, each
of which need to be included in the final executable binary.

* The job of the linker is to combine all these object files
together into a final executable binary (a.k.a. “executable”

or “binary”) that can be run.
Executable

USING COMPILERS ON THE CLUSTER (1/3)

IMPORTANT NOTE: In practice, the steps performed by the preprocessor, compiler, assembler, and linker are
generally obscured from the user into a single step using (in Linux) a single command. In the next several slides, we
will refer to this single command as a compiler, but note that we’re actually talking about a tool that is a
preprocessor + compiler + assembler + linker.

* GCC: GNU Compiler Collection

Free and open source

Most widely used set of compilers in Linux

C compiler: gcc
C++ compiler: g++
Fortran compiler: gfortran

* Intel Compiler Suite

Licensed and closed source, but ACCRE
purchases a license

Often produces faster binaries than GCC
Occasionally more difficult to build code
due to lack of community testing

C compiler: icc

C++ compiler: icpc

Fortran compiler: ifort

$ pkginfo | grep gcc_compiler
gcc_compiler GCC Compiler

gcc_compiler_4.9.0 GCC Compiler
gcc_compiler_4.9.3 GCC Compiler
gcc_compiler_5.2.0 GCC Compiler

$ setpkgs -a gcc_compiler_5.2.0

$ gcc —--version

gcc (GCC) 5.2.0

$ pkginfo | grep intel_cluster_studio_compiler
intel_cluster_studio_compiler 1Intel Cluster Studio Co
mpiler (Including Intel MPI)

$ setpkgs -a intel_cluster_studio_compiler
$ icc —--version
icc (ICC) 14.0.2 20140120

USING COMPILERS ON THE CLUSTER (2/3)

gcc hello.c

* Builds C program with the GCC C compiler.

* Produces a binary called a.out that can be run by typing ./a.out

gcc -0 hello hello.c

* Produces a binary called hello that can be run by typing ./hello

Error messages result when the build

details about why the build failed.

process fails. The compiler should provide

~

J

Warning messages occur when a

compiler, but it makes an assumption
and continues the build process.

program’s syntax is not 100% clear to the

J

$ gcc -0 hello hello.c

hello.c: In function ‘main’:

hello.c:33:4: expected ‘;’ before ‘return’
return 0;

$ gcc -0 hello hello.c
hello.c: In function ‘main’:

hello.c:23:4: implicit declaration of function
‘printf’ [-Wimplicit-function-declaration]
printf("Hello world!\n");

hello.c:23:4: incompatible implicit declaration
of built-in function ‘printf’

hello.c:23:4: note: include ‘<stdio.h>’ or provide a dec
laration of ‘printf’

USING COMPILERS ON THE CLUSTER (3/3)

gcc -0 hello -Wall hello.c gcc -E hello.c
* -Wall will show all warning messages * Show expanded source code
gcc -0 hello -g hello.c gcc -S hello.c
e -g will build the binary with debug symbols * Create assembly file called hello.s

gcc -0 hello -03 hello.c

gcc —-c hello.c

e -0O3 will build the binary with level 3 optimizations « Create object file called hello.o

* Levels 0 to 3 (most aggressive) available

* Can lead to faster execution times _ o
_ _ _ _ c Vectorized loop execution is enabled
e Defaultis -00in GCC and -02 in Intel suite with =03 for GCC and =02 for Intel.
icc -0 hello -xHost hello.c 4 Using the —xHost option leads to poor h
* Use Intel’s C compiler to aggressively optimize for the specific CPU binary portability. iny use.thls option if
microarchitecture you are sure the binary will always be
! \ executed on a specific processor type.

EXTERNAL LIBRARIES (1/2)

» Statically Linked Library: naming convention: liblibraryname.a (e.g. libcurl.a is a static curl library)

* Linker copies all library routines into the final executable.
e Requires more memory and disk space than dynamic linking.

* More portable because the library does not need to be available at runtime.

* Dynamically Linked Library: naming convention: liblibraryname.so (e.g. libcurl.so is a dynamic curl library)

* Only the name of the library copied into the final executable, not any actual code.
* At runtime, the executable searches the LD_LIBRARY_PATH and standard path for the library.

* Requires less memory and disk space; multiple binaries can share the same dynamically linked library at once.

» By default, a linker looks for a dynamic library rather than a static one.

* Do NOT need to specify the location of a library at build time if it’s in a standard location (/lib64, /usr/lib64, /
lib, /usr/lib). For example, libc.so lives in /lib64.

EXTERNAL LIBRARIES (2/2)

* Linking to libraries in non-standard locations requires the following information at build-time:

* Name of library (specified with -llibraryname flag)
* Location of library (specified with -L/path/to/non/standard/location/lib)
* Location of header files (specified with —-I/path/to/non/standard/location/include)

gcc -L/usr/local/gsl/latest/x86_64/gcc46/nonet/lib -I/usr/local/gsl/latest/x86_64/
gccd46/nonet/include -1gsl -1gslcblas bessel.c -Wall -03 -o calc_bessel

* Inthis example, two libraries (gsl and gslcblas) are linked to the final executable.
e Alternatively, use LIBRARY_PATH and C_INCLUDE_PATH to specify locations of libraries and headers.

* Check the LD_LIBRARY_PATH and output of the /dd command before running the program:

 LD_LIBRARY_PATH shows list of directories that linker searches for dynamically linked libraries

* Run/dd./my prog to see the dynamically linked libraries needed by an executable and the current path
to each library

PORTABILITY

[@ Can | build an executable on computer A and run it on computer B?]

It depends! Are the platforms the same?

(Support for specific vectorization \
extensions is also required for

portability. For example, you cannot
build a program with AVX2 on platform A
and run it on platform B if AVX2 is not
\ supported by platform B!)

e CPU instruction set architecture (e.g. x86_64)
* Operating system

e External libraries

Platform

* This is why you often see different installers for different operating systems - the installer is simply copying a
pre-built binary to your machine!

» Different CPU architectures are present on the cluster, so be sure to compile without overly aggressive
optimizations or specify the target CPU architecture/family in your SLURM script
(e.g. #SBATCH --constrain=haswell)

OTHER COMPILER FUN FACTS

* Many different compilers exist but not all compilers are created equal!

* GCC, Intel, Absoft, Portland Group (PGl), Microsoft Visual Studio (MSVS), to name a few.
* Some are free, others are not!

* Itis not unusual (especially with large projects) for compiler A to build a program while compiler B fails.
* Error messages and levels of verbosity can also vary widely.

* Performance of program can be very compiler-dependent!

e This is especially true in scientific and high-performance computing involving a lot of numerical processing.

* Compiler optimizations are especially tricky, sometimes the compiler needs help from the programmer (e.g.
re-factoring code so the compiler can make easier/safer decisions about when to optimize code).

* Some compilers (especially Intel’s) tend to outperform their counterparts because they have more intimate/
nuanced information about a CPU’s architecture (which are often Intel-based!).

AUTOMATING THE PROCESS: MAKEFILES (1/3)

The Make tool allows a programmer to define the dependencies between sets of files in
programming project, and sets of rules for how to (most often) build the project.

e Default file is called Makefile or makefile.

* Allows build process to be broken up into discreet steps, if desired. For example, separate rules can be
defined for (i) compiling+assembling, (ii) linking, (iii) testing, and (iv) installing code.

* Make analyzes the timestamps of a target and that target’s dependencies to decide whether to execute a

compiler assembler linker

projectl.o

(By defining dependencies, you can \ projectl.c
avoid unnecessarily rebuilding certain
files. For example, in the example on
the right, project2.c does not need to common.h
be re-compiled if changes have been

\ made to projectl.c.)

executable

project2.c

AUTOMATING THE PROCESS: MAKEFILES (2/3)

 Make analyzes the timestamp of a target’s last modification and compares it to that of the target’s
dependencies to decide whether to execute the command(s) defined for that target’s rule.

Makefile Template Example Makefile (see previous slide)
target: dependencies #rule Gecutable: projectl.o proect2.o \
<tab> commandl # shell command gcc —o executable projectl.o project2.0
<tab> command?2 # shell command

projectl.o: projectl.c common.h
K j gcc —c projectl.c # generates projectl.o
. _ N project2.0: roject2.c common.h

* A “target” is a label/identifier for a rule \ gcc —c project2.c # generates project2.0 /
e Often the target is either the name of a

file or a conventional rule (e.g. “install”) * There are often multiple rules defined
* Dependencies are files that the target per Makefile

depend on e By just typing “make”, the first rule in the

« Commands must be preceded by a tab file will be executed

AUTOMATING THE PROCESS: MAKEFILES (3/3)

$ s
common.h Makefile projectl.c project2.c * Notice that Make is smart enough to not
_ _ rebuild the program if no files have been
-C -0 projectl.o projectl.c modified since our last build.

-Cc -0 project2.0 project2.c _
gcc -0 executable projectl.o project2.o * Make is also smart enough to only re-
$ make compile project2.c when it has been

: “executable' is up to date. changed but projectl.c has not.

—c -0 projeth._o projectz:c To learn more about Makefiles, check out
gcc -0 executable projectl.o project2.o c Sheltollowineitoiials

$ make clean _ : : o
rm —f projectl.o project2.o executable https://swcarpentry.github.io/make-novice/

make make clean
* Generally builds the entire project. * Deletes intermediate build files to start the build process from scratch.
L] (o" . 2 . . o" . .
make test make install make install” generally fails with “permission
denied” errors if you do not have administrative
* Generally runs unit tests. « Generally installs the software. privileges or have not configured the build to
install into a local directory.
_ J

AUTOMATING THE PROCESS: CONFIGURE SCRIPTS (1/2)

* A configure script is an executable file responsible for building a Makefile for a project.

* Determining the dependencies on a given system is difficult to predict and subject to constant change -
writing a Makefile by hand for each system (or even a subset of representative systems) would be an

enormous challenge and an administrative hassle.

* Instead, a configure script can be used to scan a system in search of all the needed dependencies (including
versions of software, locations of external libraries), and build a Makefile that is specific to that system.

* Configure scripts are indispensible for large projects especially where the number of dependencies is large

and difficult to manage/track.

e Alternatives to the configure script exist (cmake being the most common).

./configure
make

make test
make install

e Building projects on Linux at times this simple.

* Run only if you have administrative rights on system.

./configure --prefix=/my/local/dir
make

make test

make install

 --prefix option needed if installing in home
directory on the cluster.

oy

AUTOMATING THE PROCESS: CONFIGURE SCRIPTS (2/2) ACC

* Many configure scripts support a number of different options for configuring your build.

./configure --help

 Show command line options.

$./configure —-help
“configure' configures meep 1.2.1 to adapt to many kinds of systems.

sage: ./configure [OPTION]... [VAR=VALUE]...

o assign environment variables (e.g., CC, CFLAGS...), specify them as
AR=VALUE. See below for descriptions of some of the useful variables.

Defaults for the options are specified in brackets.

Configuration:
-h, —-help display this help and exit
—-help=short display options specific to this package
—-help=recursive display the short help of all the included packages
-V, --version display version information and exit

MAKE AND CONFIGURE MACROS

* There are a number of “macros” (think of as variables) that have standard meanings in Make and configure
scripts. These macros can generally be exported as environment variables to customize your build.

CC LDFLAGS
* Ccompiler command (e.g. gcc) * Linker flags (e.g. -L/path/to/lib)

CFLAGS LIBS

* Ccompiler flags (e.g. -Wall -03) « Library names (e.g. -lcurl)
CPP FC

* C preprocessor command (e.g. gcc) * Fortran compiler command (e.g. gfortran)
CXX FFLAGS

e C++ compiler command (e.g. g++) * Fortran compiler flags (e.g. -03)
CXXFLAGS MPICC

* C++ compiler flags (e.g. -Wall -03) e MPI C compiler wrapper command (e.g. mpicc)

COMPILED VS. INTERPRETED LANGUAGES

What about interpreted languages?]

Compiled Language

¢ Faster execution time

e Slower development time
e Less portable

e C, C++, Fortran

Interpreted Language

e Slower execution time

e Faster development time

e More portable

e Python, Matlab, R, Ruby, Julia

The tradeoffs listed to the left
are not universally true but in
general apply.

~

J

(

O

_

Many popular modules/packages (e.g. NumPy,

\

SciPy) loaded from interpreted languages are

compiled shared object files and offer

comparable performance to pure compiled

languages.

4

