
COMPILING, BUILDING, AND
INSTALLING PROGRAMS ON

THE CLUSTER

BUILDING COMPUTER PROGRAMS

•  The	process	of	conver-ng	a	human-readable	file	to	a	machine-readable	file.	

#include <stdio.h>

int main()
{
 prin9(“Hello World!\n”);
 return 0;
}

0101010100001010101001
0101110101010010100000
0101110101001011000111
0110101010101010101010
1010001010101010111111
0010111101110000111010
1010100111101010111101
0101010000110101010101

C	program	(simple	text	file	wri9en	
in	C	programming	language)	

Binary	executable	file	(a	set	of	CPU	
instruc-ons	encoded	in	0’s	and	1’s)	

Sophis-cated	programs	(e.g.	a	compiler)	are	
used	to	perform	this	mul--step	conversion.		

Hello	World!	

THE BUILD PROCESS

Not	all	languages	are	compiled	
languages!	The	process	to	the	

leI	applies	to	programs	
wri9en	in	C,	C++,	and	Fortran.	

Linker	

Assembler	

Compiler	

Preprocessor	

Expanded	source	code	

Source	code		
(e.g.	C	program)	

Assembly	code	

Object	code	

Binary	executable	

External		
libraries	

Human-readable	
Higher-level	
language	

Lower-level	
language	

Machine-readable	(i.e.	
can	be	executed	by	CPU)	

PREPROCESSOR

•  Expands	or	removes	special	lines	of	code	prior	to	compila-on.	

.

.
#include <stdio.h>
.
.

.

.
#define PI 3.1415
.
.

.

.
#ifndef FOO_H
#define FOO_H
#include “myHeader.h”
void myFunc(int);
#endif
.
.

Include	statements:	 Define	statements:	 Header	guards:	

•  Copies	contents	of	stdio.h	
into	file.		

•  Replaces	all	instances	of	PI	
within	file	with	3.1415.	

•  Prevents	expanding	mul-ple	
copies	of	the	same	header	file	
by	defining	a	unique	“macro”	
for	each	header	file.	

In	C,	preprocessor	direc-ves	
begin	with	the	#	symbol	and	are	

NOT	considered	C	code.	

COMPILER

•  Converts	expanded	source	code	to	assembly	code.	

#include <stdio.h>

int main()
{
 prin9(“Hello World!\n”);
 return 0;
}

.

.
main:
 .cfi_startproc
 pushq %rbp
 .cfi_def_cfa_offset 16
 movq %rsp %rbp
.
.

•  Assembly-level	instruc-ons	are	specific	to	a	processor’s	Instruc-on	Set	Architecture	(ISA).	

•  Example	ISAs	are	x86,	x86_64,	and	ARM.	Most	machines	in	HPC	today	support	x86_64.	

Portability	is	an	issue	with	
compiled	languages	since	
assembly	language	contains	

instruc-ons	that	are	specific	to	
a	CPU’s	architecture.	

ASSEMBLER AND LINKER

•  Assembler:	converts	assembly	code	to	object	code.	

•  Linker:	s-ches	together	all	object	files	(including	any	external	libraries)	into	the	final	binary	executable	file.	

•  Object	code	is	in	a	binary	format	but	cannot	be	executed	by	a	computer’s	OS.	
•  External	libraries	are	oIen	distributed	as	shared	object	files	that	are	object	code.	

•  Hides	specific	implementa-on	since	these	files	are	not	human	readable.	
•  No	need	to	be	recompiled	for	each	applica-on	that	uses	the	library.	
•  Stored	efficiently	in	binary	format.	

•  Many	applica-ons	oIen	contain	mul-ple	source	files,	each	
of	which	need	to	be	included	in	the	final	executable	binary.	

•  The	job	of	the	linker	is	to	combine	all	these	object	files	
together	into	a	final	executable	binary	(a.k.a.	“executable”	
or	“binary”)	that	can	be	run.	

Executable	

Object	
File	1	

Object	
File	2	

Ext	Lib	
A	

USING COMPILERS ON THE CLUSTER (1/3)

IMPORTANT	NOTE:	In	prac-ce,	the	steps	performed	by	the	preprocessor,	compiler,	assembler,	and	linker	are	
generally	obscured	from	the	user	into	a	single	step	using	(in	Linux)	a	single	command.	In	the	next	several	slides,	we	
will	refer	to	this	single	command	as	a	compiler,	but	note	that	we’re	actually	talking	about	a	tool	that	is	a	
preprocessor	+	compiler	+	assembler	+	linker.	

•  GCC:	GNU	Compiler	Collec<on	
•  Free	and	open	source	
•  Most	widely	used	set	of	compilers	in	Linux	
•  C	compiler:	gcc												
•  C++	compiler:	g++										
•  Fortran	compiler:	gfortran		

•  Intel	Compiler	Suite	
•  Licensed	and	closed	source,	but	ACCRE	

purchases	a	license	
•  OIen	produces	faster	binaries	than	GCC	
•  Occasionally	more	difficult	to	build	code	

due	to	lack	of	community	tes-ng	
•  C	compiler:	icc												
•  C++	compiler:	icpc										
•  Fortran	compiler:	ifort		

USING COMPILERS ON THE CLUSTER (2/3)

gcc	hello.c	

•  Builds	C	program	with	the	GCC	C	compiler.	
•  Produces	a	binary	called	a.out	that	can	be	run	by	typing	./a.out	

gcc	–o	hello	hello.c	

•  Produces	a	binary	called	hello	that	can	be	run	by	typing	./hello	

Error	messages	result	when	the	build	
process	fails.	The	compiler	should	provide	

details	about	why	the	build	failed.	

Warning	messages	occur	when	a	
program’s	syntax	is	not	100%	clear	to	the	
compiler,	but	it	makes	an	assump-on	

and	con-nues	the	build	process.	

USING COMPILERS ON THE CLUSTER (3/3)

gcc	–o	hello	-Wall	hello.c	

•  	-Wall	will	show	all	warning	messages	

gcc	–o	hello	-g	hello.c	

•  	-g	will	build	the	binary	with	debug	symbols	

gcc	–E	hello.c	

•  Show	expanded	source	code	

gcc	–S	hello.c	

•  Create	assembly	file	called	hello.s	

gcc	–c	hello.c	

•  Create	object	file	called	hello.o	

gcc	–o	hello	–O3	hello.c	

•  	-O3	will	build	the	binary	with	level	3	op-miza-ons	
•  Levels	0	to	3	(most	aggressive)	available	
•  Can	lead	to	faster	execu-on	-mes	
•  Default	is	–O0	in	GCC	and	–O2	in	Intel	suite	

Vectorized	loop	execu-on	is	enabled	
with	–O3	for	GCC	and	–O2	for	Intel.	

icc	–o	hello	–xHost	hello.c		
•  Use	Intel’s	C	compiler	to	aggressively	op-mize	for	the	specific	CPU	

microarchitecture	

Using	the	–xHost	op-on	leads	to	poor	
binary	portability.	Only	use	this	op-on	if	
you	are	sure	the	binary	will	always	be	
executed	on	a	specific	processor	type.	

EXTERNAL LIBRARIES (1/2)

•  Sta<cally	Linked	Library:	naming	conven-on:	liblibraryname.a	(e.g.	libcurl.a	is	a	sta-c	curl	library)	

•  Dynamically	Linked	Library:	naming	conven-on:	liblibraryname.so	(e.g.	libcurl.so	is	a	dynamic	curl	library)	

•  Linker	copies	all	library	rou-nes	into	the	final	executable.	
•  Requires	more	memory	and	disk	space	than	dynamic	linking.	
•  More	portable	because	the	library	does	not	need	to	be	available	at	run-me.	

•  Only	the	name	of	the	library	copied	into	the	final	executable,	not	any	actual	code.	
•  At	run-me,	the	executable	searches	the	LD_LIBRARY_PATH	and	standard	path	for	the	library.	
•  Requires	less	memory	and	disk	space;	mul-ple	binaries	can	share	the	same	dynamically	linked	library	at	once.	
•  By	default,	a	linker	looks	for	a	dynamic	library	rather	than	a	sta-c	one.	

•  Do	NOT	need	to	specify	the	loca<on	of	a	library	at	build	<me	if	it’s	in	a	standard	loca<on	(/lib64,	/usr/lib64,	/
lib,	/usr/lib).	For	example,	libc.so	lives	in	/lib64.		

EXTERNAL LIBRARIES (2/2)

•  Linking	to	libraries	in	non-standard	loca<ons	requires	the	following	informa<on	at	build-<me:	

•  Name	of	library	(specified	with	–llibraryname	flag)	
•  Loca-on	of	library	(specified	with	–L/path/to/non/standard/loca-on/lib)	
•  Loca-on	of	header	files	(specified	with	–I/path/to/non/standard/loca-on/include)	

gcc	–L/usr/local/gsl/latest/x86_64/gcc46/nonet/lib	–I/usr/local/gsl/latest/x86_64/
gcc46/nonet/include	–lgsl	–lgslcblas	bessel.c	–Wall	–O3	–o	calc_bessel	

•  In	this	example,	two	libraries	(gsl	and	gslcblas)	are	linked	to	the	final	executable.	
•  Alterna-vely,	use	LIBRARY_PATH	and	C_INCLUDE_PATH	to	specify	loca-ons	of	libraries	and	headers.		

•  Check	the	LD_LIBRARY_PATH	and	output	of	the	ldd	command	before	running	the	program:	

•  LD_LIBRARY_PATH	shows	list	of	directories	that	linker	searches	for	dynamically	linked	libraries	
•  Run	ldd	./my_prog	to	see	the	dynamically	linked	libraries	needed	by	an	executable	and	the	current	path	

to	each	library	

PORTABILITY

Support	for	specific	vectoriza-on	
extensions	is	also	required	for	

portability.	For	example,	you	cannot	
build	a	program	with	AVX2	on	plaoorm	A	
and	run	it	on	plaoorm	B	if	AVX2	is	not	

supported	by	plaoorm	B!	

Can	I	build	an	executable	on	computer	A	and	run	it	on	computer	B?		

•  CPU	instruc-on	set	architecture	(e.g.	x86_64)	
•  Opera-ng	system	
•  External	libraries	

It	depends!	Are	the	pla/orms	the	same?	

Pla/orm	

•  This	is	why	you	oIen	see	different	installers	for	different	opera-ng	systems	–	the	installer	is	simply	copying	a	
pre-built	binary	to	your	machine!	

•  Different	CPU	architectures	are	present	on	the	cluster,	so	be	sure	to	compile	without	overly	aggressive	
op-miza-ons	or	specify	the	target	CPU	architecture/family	in	your	SLURM	script		
(e.g.	#SBATCH	--constrain=haswell)	

OTHER COMPILER FUN FACTS

•  Many	different	compilers	exist	but	not	all	compilers	are	created	equal!	

•  Performance	of	program	can	be	very	compiler-dependent!	

•  GCC,	Intel,	AbsoI,	Portland	Group	(PGI),	MicrosoI	Visual	Studio	(MSVS),	to	name	a	few.	
•  Some	are	free,	others	are	not!	
•  It	is	not	unusual	(especially	with	large	projects)	for	compiler	A	to	build	a	program	while	compiler	B	fails.	
•  Error	messages	and	levels	of	verbosity	can	also	vary	widely.	

•  This	is	especially	true	in	scien-fic	and	high-performance	compu-ng	involving	a	lot	of	numerical	processing.	
•  Compiler	op-miza-ons	are	especially	tricky,	some-mes	the	compiler	needs	help	from	the	programmer	(e.g.	

re-factoring	code	so	the	compiler	can	make	easier/safer	decisions	about	when	to	op-mize	code).	
•  Some	compilers	(especially	Intel’s)	tend	to	outperform	their	counterparts	because	they	have	more	in-mate/

nuanced	informa-on	about	a	CPU’s	architecture	(which	are	oIen	Intel-based!).	

AUTOMATING THE PROCESS: MAKEFILES (1/3)

•  Default	file	is	called	Makefile	or	makefile.	
•  Allows	build	process	to	be	broken	up	into	discreet	steps,	if	desired.	For	example,	separate	rules	can	be	

defined	for	(i)	compiling+assembling,	(ii)	linking,	(iii)	tes-ng,	and	(iv)	installing	code.		
•  Make	analyzes	the	-mestamps	of	a	target	and	that	target’s	dependencies	to	decide	whether	to	execute	a		

•  The	Make	tool	allows	a	programmer	to	define	the	dependencies	between	sets	of	files	in	
programming	project,	and	sets	of	rules	for	how	to	(most	o_en)	build	the	project.		

 Automating the build process

•  make)u2lity))
–  Provides)a)way)for)separate)compila2on))
–  Describe)the)dependencies)among)the)project)files))
–  Default)file)to)look)for)is)makefile-or)Makefile)

27)

compiler) assembler) linker)

.c

.h

.c

project1.c*

common.h*

project2.c*

.o
project1.o*

.o
project2.o*

executable*
By	defining	dependencies,	you	can	

avoid	unnecessarily	rebuilding	certain	
files.	For	example,	in	the	example	on	
the	right,	project2.c	does	not	need	to	
be	re-compiled	if	changes	have	been	

made	to	project1.c.		

AUTOMATING THE PROCESS: MAKEFILES (2/3)

•  Make	analyzes	the	<mestamp	of	a	target’s	last	modifica<on	and	compares	it	to	that	of	the	target’s	
dependencies	to	decide	whether	to	execute	the	command(s)	defined	for	that	target’s	rule.			

target: dependencies # rule
<tab> command1 # shell command
<tab> command2 # shell command
.
.

Makefile	Template	

•  A	“target”	is	a	label/iden-fier	for	a	rule	
•  OIen	the	target	is	either	the	name	of	a	

file	or	a	conven-onal	rule	(e.g.	“install”)	
•  Dependencies	are	files	that	the	target	

depend	on	
•  Commands	must	be	preceded	by	a	tab	

executable: project1.o proect2.o
gcc –o executable project1.o project2.o

project1.o: project1.c common.h

gcc –c project1.c # generates project1.o

project2.o: roject2.c common.h

gcc –c project2.c # generates project2.o

Example	Makefile	(see	previous	slide)	

•  There	are	oIen	mul-ple	rules	defined	
per	Makefile	

•  By	just	typing	“make”,	the	first	rule	in	the	
file	will	be	executed	

AUTOMATING THE PROCESS: MAKEFILES (3/3)

make	

•  Generally	builds	the	en-re	project.	

make	install	

•  Generally	installs	the	soIware.	

make	test	

•  Generally	runs	unit	tests.	

make	clean	

•  Deletes	intermediate	build	files	to	start	the	build	process	from	scratch.	

“make	install”	generally	fails	with	“permission	
denied”	errors	if	you	do	not	have	administra-ve	
privileges	or	have	not	configured	the	build	to	

install	into	a	local	directory.	

To	learn	more	about	Makefiles,	check	out	
the	following	tutorial:		

h9ps://swcarpentry.github.io/make-novice/	

•  No-ce	that	Make	is	smart	enough	to	not	
rebuild	the	program	if	no	files	have	been	
modified	since	our	last	build.	

•  Make	is	also	smart	enough	to	only	re-
compile	project2.c	when	it	has	been	
changed	but	project1.c	has	not.	

AUTOMATING THE PROCESS: CONFIGURE SCRIPTS (1/2)

•  A	configure	script	is	an	executable	file	responsible	for	building	a	Makefile	for	a	project.	

•  Determining	the	dependencies	on	a	given	system	is	difficult	to	predict	and	subject	to	constant	change	–	
wri-ng	a	Makefile	by	hand	for	each	system	(or	even	a	subset	of	representa-ve	systems)	would	be	an	
enormous	challenge	and	an	administra-ve	hassle.	

•  Instead,	a	configure	script	can	be	used	to	scan	a	system	in	search	of	all	the	needed	dependencies	(including	
versions	of	soIware,	loca-ons	of	external	libraries),	and	build	a	Makefile	that	is	specific	to	that	system.	

•  Configure	scripts	are	indispensible	for	large	projects	especially	where	the	number	of	dependencies	is	large	
and	difficult	to	manage/track.	

•  Alterna-ves	to	the	configure	script	exist	(cmake	being	the	most	common).			

./configure	
make	
make	test	
make	install	

•  Building	projects	on	Linux	at	-mes	this	simple.	
•  Run	only	if	you	have	administra-ve	rights	on	system.	

./configure	-–prefix=/my/local/dir	
make	
make	test	
make	install	

•  	--prefix	op-on	needed	if	installing	in	home	
directory	on	the	cluster.	

AUTOMATING THE PROCESS: CONFIGURE SCRIPTS (2/2)

•  Many	configure	scripts	support	a	number	of	different	op<ons	for	configuring	your	build.	

./configure	--help	

•  Show	command	line	op-ons.	

MAKE AND CONFIGURE MACROS

CC	
•  C	compiler	command	(e.g.	gcc)	

•  There	are	a	number	of	“macros”	(think	of	as	variables)	that	have	standard	meanings	in	Make	and	configure	
scripts.	These	macros	can	generally	be	exported	as	environment	variables	to	customize	your	build.	

CFLAGS	
•  C	compiler	flags	(e.g.	–Wall	–O3)	

CPP	
•  C	preprocessor	command	(e.g.	gcc)	

CXX	
•  C++	compiler	command	(e.g.	g++)	

CXXFLAGS	
•  C++	compiler	flags	(e.g.	–Wall	–O3)	

LDFLAGS	
•  Linker	flags	(e.g.	–L/path/to/lib)	

LIBS	
•  Library	names	(e.g.	–lcurl)	

FC	
•  Fortran	compiler	command	(e.g.	gfortran)	

FFLAGS	
•  Fortran	compiler	flags	(e.g.	–O3)	

MPICC	
•  MPI	C	compiler	wrapper	command	(e.g.	mpicc)	

COMPILED VS. INTERPRETED LANGUAGES

What	about	interpreted	languages?	

Compiled	Language	
• Faster	execu-on	-me	
• Slower	development	-me	
• Less	portable	
• C,	C++,	Fortran	

Interpreted	Language	
• Slower	execu-on	-me	
• Faster	development	-me	
• More	portable	
• Python,	Matlab,	R,	Ruby,	Julia	

The	tradeoffs	listed	to	the	leI	
are	not	universally	true	but	in	

general	apply.	

Many	popular	modules/packages	(e.g.	NumPy,	
SciPy)	loaded	from	interpreted	languages	are	
compiled	shared	object	files	and	offer	
comparable	performance	to	pure	compiled	
languages.		

