
INTRODUCTION TO UNIX
ADVANCED COMPUTING CENTER FOR RESEARCH AND EDUCATION

HTTP://WWW.ACCRE.VANDERBILT.EDU

http://www.accre.vanderbilt.edu

WHAT IS UNIX?

Ken Thompson
(seated) and

Dennis Ritchie,
the creators of

UNIX

An operating system (un)like Windows; created in
late 1960’s at AT&T Bell Labs

1

Designed to be a programmer’s operating system2

Turned out to be a portable, multi-user, multi-
tasking operating system - a first!

3

There are many different versions of Unix:4

Apple’s OS X / macOS (and iOS!) is a user-friendly
desktop

4a

Linux is a clone of Unix which offers extremely
good performance and is free

4b

Therefore, Linux is the de facto standard for High
Performance Computing (HPC) clusters

4c

ALL VERSIONS OF UNIX PROVIDE SOME SORT OF GUI, BUT…

Users interact with the cluster via a shell1

Yes, the command line! It’s more lightweight,
efficient, better suited for remote access, etc.

2

There are many different shells:3

tcsh and zsh are examples of other shells some
people prefer 3b

bash - most common; the default in OS X, Ubuntu
Linux, and ACCRE

3a

THE FORMAT OF UNIX COMMANDS

The format of Unix commands is:
command [options] [arguments]

1
ls is a command2

-l is an option to the ls command3
example1 is an argument to the ls command4

THE MOST IMPORTANT COMMAND OF ALL

The man command displays manual pages; example
at left is output of man ls

1

command —help displays similar information5

Displays a synopsis of how to use the command and
a description of each option / argument

2

Long options are preceded by two dashes3

You cannot assume that an option does the same
thing with different commands

4

Example: -v means “verbose” with many commands,
but it means “doesn’t match” with grep

4a

COMMAND HISTORY AND EDITING

The shell maintains a history of the commands you
have previously executed (1,000 on ACCRE)1

Up and down arrow keys scroll thru your history; left
and right arrow keys move thru a command2

Edits can be made by inserting or deleting text;
pressing enter executes the command

3

Press the up
arrow key once

Use the left arrow key to move from here to here
Press the delete key to erase the “s” and type an “x”

Press the return / enter key to execute the command (you don’t have to scroll to the end of the command line)

HIERARCHICAL FILESYSTEM

/

scratch varbin etc usrhome tmp

bin local

opt

kendennis kendennis

The path separator is a forward slash1

File names are case sensitive3

There is no “C:” or “F:” drive - it’s all one big
filesystem anchored at the root directory (“/“)

2

File extensions, if they exist, have no meaning to
the operating system

4

ls

MyJob.out

cp

ABSOLUTE VERSUS RELATIVE PATHS

/

scratchhome

kenken

bin doc src

grant proposal.txt

Project1

SlurmJob.out

find_higgs_boson.c

submit.slurm

analyze_results.py

Assuming my current directory is /home/ken/src1

The absolute path to grantproposal.txt is:
/home/ken/doc/grantproposal.txt

2

The relative path to grantproposal.txt is:
../doc/grantproposal.txt

3

The absolute path to SlurmJob.out is:
/scratch/ken/Project1/SlurmJob.out

4

The relative path to SlurmJob.out is:
../../../scratch/ken/Project1/SlurmJob.out

5

You should use whichever one is shorter … or
easier for you to remember!

6

You are here

COMMANDS FOR WORKING WITH DIRECTORIES

pwd prints your present working directory1

ls lists directories and files2

cd changes directories3

mkdir makes a directory4

rmdir removes a (empty) directory5

rm -r recursively deletes a directory tree5a

Be very careful using it!!!5b

COMMANDS FOR WORKING WITH FILES

cat, more, or less display the contents of a file1

cp copies files2

mv moves (renames) files3

rm removes files4

The -i option makes cp, mv, and rm
“interactive”

5

AUTOCOMPLETING FILENAMES WITH THE TAB KEY

You only have to type enough of a filename to
ensure uniqueness and then you can <TAB>1

Press TAB here

Press TAB twice here

Press TAB here

If you haven’t typed enough to uniquely identify
the file, press <TAB> twice for a list2

Type enough additional to uniquely identify the
file and then press <TAB> to complete!3

EDITING FILES

There are 3 editors commonly available:
emacs, nano, and vim

1

emacs is very popular with programmers2

vim has the steepest learning curve, but is the
fastest of the three

3

nano is the easiest to learn and is good for
basic editing - nano .bashrc

4

The bottom two lines of the screen are reserved
for nano

5

The arrow keys let you move around in the file,
as does Control-Y and Control-V6

You can easily insert and delete text7

nano .bashrc

Control-O outputs (saves) a file; Control-X exits
nano8

FILE PERMISSIONS

All files have one owner (user) and one group
associated with them

1

Permissions are read, write, and execute; they
apply to the user, group, and others

3

Only the user may change the user, group, or
permissions

2

User ken has read,
write, and execute
permission

Group members have
read and execute, but
not write permission

Others have no
permission

READ, WRITE, AND EXECUTE

Read Write Execute

Files You can look at the
file contents

You can modify the
file contents

You can run the
program

Directories You can ls the
directory

You can create
new files, rename
existing files, and

delete files

You can cd to the
directory

CHANGING PERMISSIONS

Use the chmod (change mode) command1

Numeric method - read = 4, write = 2, execute = 1;
total up for user, group, and other

3

Alphabetic method - add or take away (r)ead,
(w)rite, e(x)ecute from (u)ser, (g)roup, (o)ther

2

PATTERN MATCHING

Matches zero or more instances of any character*

Matches any one character within the brackets[abc]

Matches all letters, plus most punctuation
characters, because this is an ASCII range[A-z]

Matches one instance of any character?

Matches any one character within the range defined
in the brackets[0-9]

FINDING FILES AND FOLDERS WITH FIND

Find all files starting at the current directory whose
modification time is less than 3 days ago4

Syntax is: find “where to start looking” -“criteria”
“what to look for” -“what to do with it”1

Same as the 1st example, but instead of printing
their filenames, ls them3

Find all files starting at /scratch/ken whose name
ends in “.err” and print them5

Same as the previous example, but instead of ls’ing
them, rm them!6

Find all files starting at the current directory whose
names are example followed by another character2

Two criteria used: 1) file name, 2) file size (all files
larger than 100 characters in this example)7

ALIASES

alias name=“some value”1

alias rm=“rm -i”2

Now when you type rm, the shell will automatically
replace it with rm -i

2

alias ll=“ls -la”4

alias mroe=more5

alias
login=“ssh ken@login.accre.vanderbilt.edu”

6

SHELL VARIABLES

Many variables are set for you; env lists them1

export my_var=some_value - creates a variable3

System variables are in all CAPITAL letters2

When referencing a variable, precede the name with
a $ sign

5

The echo command can be used to display the value
of a variable

4

SHELL INITIALIZATION FILES

Any aliases or variables you define on the
command line are in effect only until you logout

1
To make them permanent, simply add them to
your .bashrc file in your home directory2

COMMAND SUBSTITUTION

Any command enclosed in grave accents is
executed first and its’ output substituted in1

This can be used with other commands or to
assign a value to a variable2

Not single quotes!
$(command) does the same thing as
`command`

1a

INPUT / OUTPUT REDIRECTION

Any shell has 3 filehandles open by default

stdin - standard input, defaults to keyboard, file
descriptor 00

stdout - standard output, defaults to screen, file
descriptor 1

1

stderr - standard error, defaults to screen, file
descriptor 2

2

But don’t forget the Unix philosophy!6

INPUT / OUTPUT REDIRECTION

Input redirection - e-mail yourself a file: mailx
ken.thompson@att.com < example1

1

Output redirection - myprogram > output.log2

Error redirection - myprogram 2> error.log3

Output and error redirection to different files -
myprogram > output.log 2> error.log

4

Output and error redirection to the same file -
myprogram > combined.log 2>&1

5

myprogram > output.log Out
Output
to file

PIPES AND FILTERS

Pipes take the output of one command and make it
the input to another command

1

Analogous to plumbing pipes2

Filters are commands which can accept input from
another command and also produce output

3

Syntax is command | filter_command4

Multiple pipes and filters can be strung together:
cat *.out | grep ERROR | wc -l

5

Out OutIn Incat *.out grep ERROR wc -l Output to shellOut

SOME USEFUL FILTER COMMANDS

wc - word count1

grep - get a regular expression and print it2

sort - very powerful sort utility3

uniq - filter duplicate lines4

cut - cuts specific fields or columns5

sed - stream editor, does search and replace6

QUESTIONS?

Or are you ready to go forth and compute?!?

