Reusability in the New Space Revolution

Produced by Zachary Friedman

Table of Contents

Background

A brief history of the RLV market

Customer Base

How customers are enabling the NewSpace revolution

Company Profiles

Key players of the industry and strategic objectives

Synthesis

Key takeaways and implications

01 Background

A brief history of the RLV market

Interviews Held

Scope of Analysis

Market Viability

- The goal of this presentation is to analyze reusability in the role of market viability
- Engineering elements will not be covered as in-depth

Industry Focus

- Companies profiled are NewSpace, referring to emerging entrepreneurial space endeavors
- Focus on orbital regime (rather than suborbital or deep space)

Payload Focus

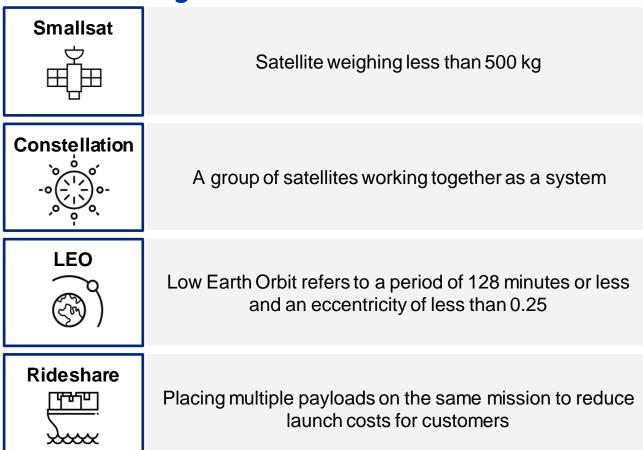
- Focus only on nonhuman payloads (e.g., no SNC Dream Chaser)
- Payloads mainly focused on smallsats

Launch Vehicle Definitions

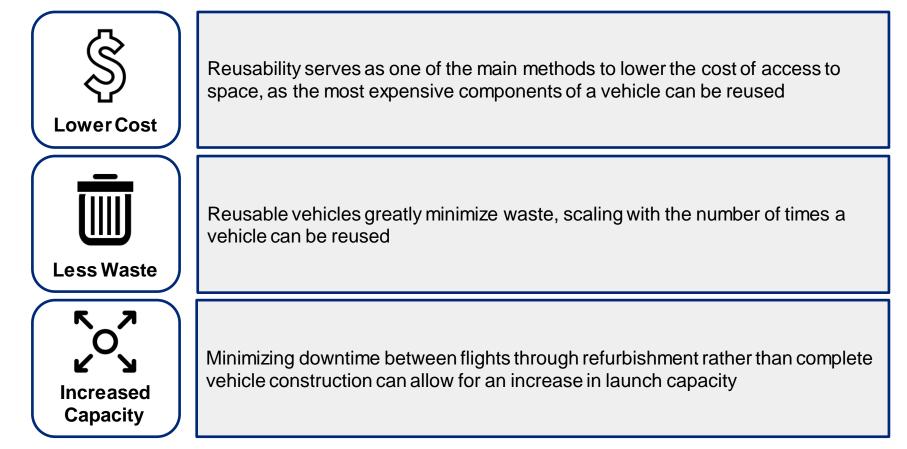
- Small Lift Vehicle -
- Up to 2,000 kg to
 LEO

ZOJHOMCM

• e.g., Electron, Alpha, LauncherOne


- Medium Lift Vehicle
- Up to 20,000 kg to LEO
- e.g., Falcon 9, Soyuz, Atlas

- Heavy Lift Vehicle —
- 20,000 50,000+ kg to LEO
- e.g., Delta IV Heavy, Starship, New Glenn



Payload Definitions

The core focus of developing reusable launch vehicles is to lower the financial barriers and environmental impacts of in-space activity

The Space Shuttle was the first successful RLV, but failed to deliver on cost promises. After decades without a promising replacement, a number of new firms are developing reusable vehicles

1981: Space Shuttle

- First successful RLV
- Desired cost \$1,340/kg*
- Actual of \$55K/kg
- LM VentureStar program cancelled in 2001

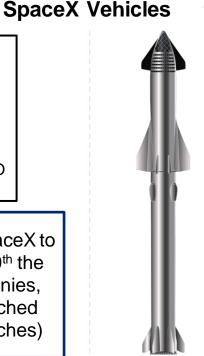
2015: Falcon 9

- First orbital class reusable rocket
- Most launches of all U.S. rockets in operation
- Brings launch costs down to \$2,500/kg

2020s: NewSpace

- Reusability in SLV's and MLV's
- Fully reusable vehicle development
- \$10-20/kg with Starship**

SPACEX


The SpaceX Falcon 9 has driven down costs with a reusable first stage, and the Starship promises to further revolutionize the industry

Falcon 9

- First flight 2010
- 70 m height
- 3.7 m fairing diameter
- 22,800 kg to LEO
- \$2.5-3k cost/kg to LEO

Falcon 9 has enabled SpaceX to provide contracts at 1/10th the cost/kg of legacy companies, making it the most launched vehicle in 2021 (31 launches)

<u>Starship</u>

- First orbital flight
 2022
- 120 m height
- 9 m fairing diameter
- 100 tons to LEO
- \$10-20/kg to LEO*

The fully reusable Starship will carry crew and cargo to orbit, the Moon, and Mars at record high payload capacity and record low costs

BLUE ORIGIN

Blue Origin places a heavy emphasis on reusability, although their orbital vehicles are less flight-proven than SpaceX's

Blue Origin Vehicles

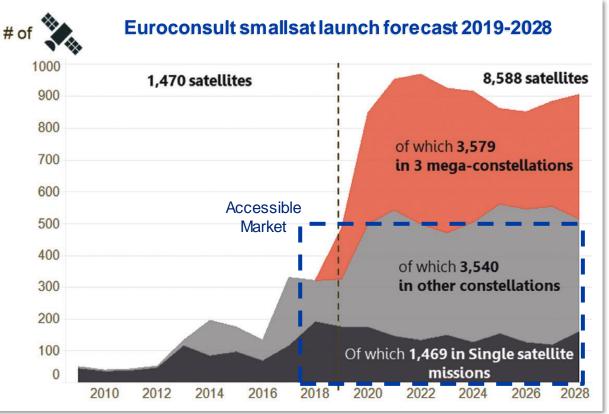
 Manned suborbital flights in 2021

New Shepard

- Single stage
- 25 m height
- 2.8 m³ capsule for 6 passengers

New Shepard offers suborbital space flights on a reusable platform and serves as a testbed for Blue Origin technologies

<u>New Glenn</u>


- First orbital flight 2022 (est.)
- 96 m height
- 7 m fairing diameter
- 45,000 kg to LEO
- Unknown cost/kg

New Glenn is designed to transport payloads to orbit and deep space, with a 25x reusable first stage

O2 Customer Base

How customers are enabling the NewSpace revolution

The smallsat market has exploded in recent years, leading to new business opportunities in the launch market

Market Changes

- Technological advancements have led to a decrease in satellite size, increasing smallsat launch demand
- Starlink, Kuiper, and OneWeb account for a large percentage of satellites but have dedicated launch providers
- Older data underestimates size of Starlink

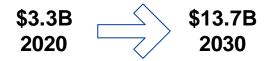
The majority of megaconstellations have dedicated launch providers, leaving little room for new market entrants

Constellation Size Launch Provider

Starlink30kSpaceX as sole
launch provider

648

Kuiper 3,236


OneWeb

• Arianespace

- ULA
 Plue Oric
- Blue Origin
- $\frac{2}{3}$ Roscosmos
- ¹/₃ SpaceX

Despite a seemingly large smallsat market, the total share available to small launch providers in the US is much smaller

Smallsat Market Size

Of all smallsats built in the next decade will be in constellations

Of smallsat launch demand will be American

The total available U.S. smallsat launch market is likely too small to support the increased competition among small launch vehicles

Estimated available single smallsat mission market size in the US 2030

Total market size provided by Valuates Reports, 2022

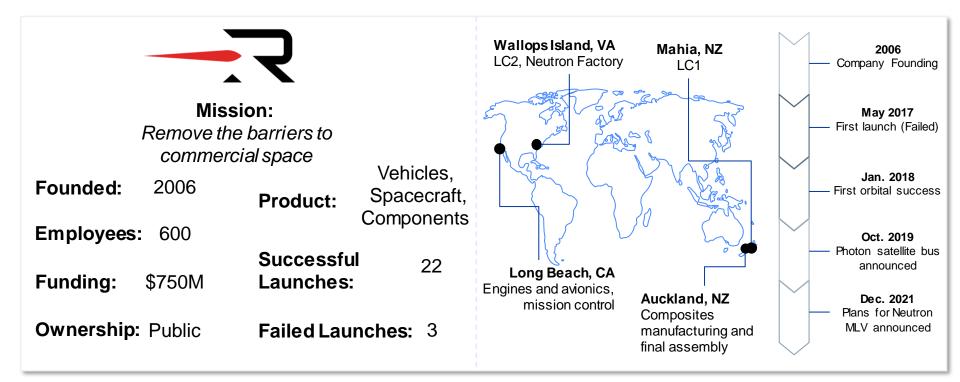
With an increasing number of small vehicles on the market, companies must establish unique value propositions to remain competitive

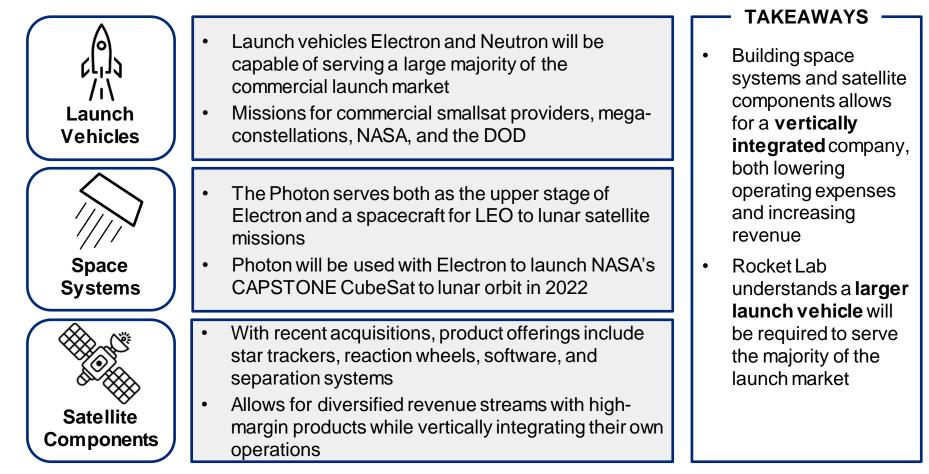
Cost	Dedicated Launch
Providing the lowest cost per kg to smaller missions	Providing dedicated launches to small payloads
Launch Location	Launch Timeline

03 Company Profiles

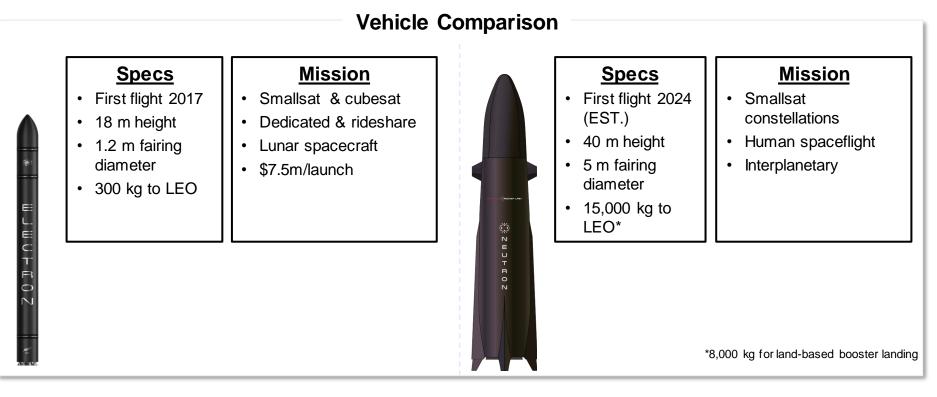
Promising new players in the launch industry

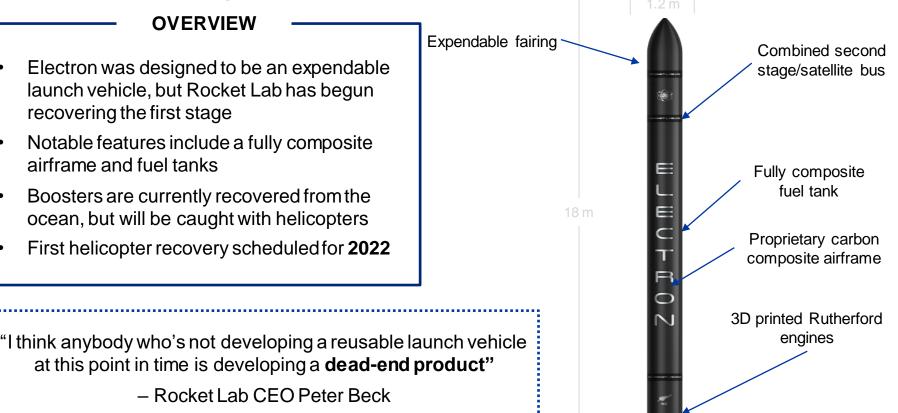
Company Profiles




Rocket Lab

Rocket Lab is a leading small launch provider with a high market presence and increased interest in reusability

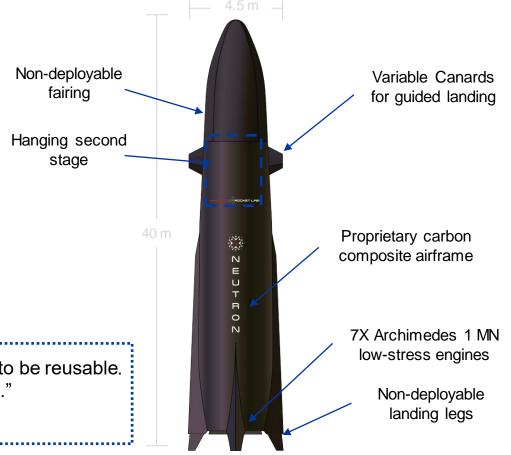

Rocket Lab's offerings span both launch and space systems


Rocket Lab has lowered costs through additive manufacturing, automation, and vertical integration, with plans for complete reusability

Additive Manufacturing	Rocket Lab uses metal 3D printing to produce its Rutherford engine and automated fiber placement for carbon composites
Automation	Carbon composite manufacturing is completed with a robot that can produce an airframe every 12 hours
Vertical Integration	Limited access to components for production forced vertical integration, leading to in-house capabilities and multiple large acquisitions
Reusability	The Electron SLV is moving towards reusability, and the planned Neutron MLV promises to be one of the most reusable vehicles ever

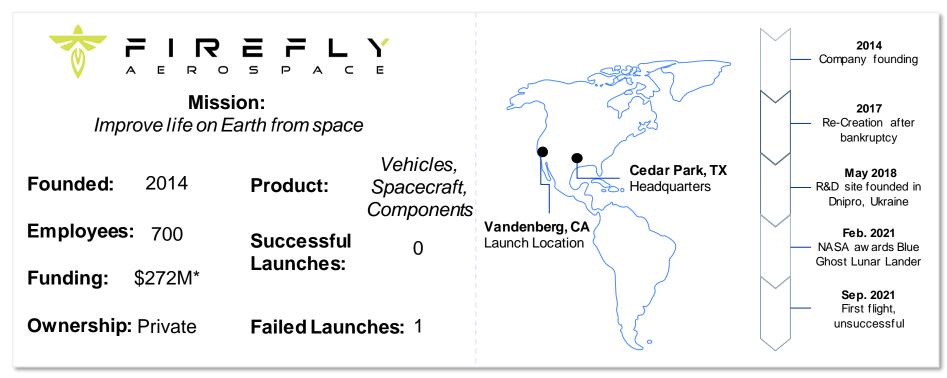
Rocket Lab has successfully launched its Electron SLV 22 times and announced details of the Neutron MLV in December 2021

Electron was not originally designed to be reusable, but air-based recovery plans are in progress

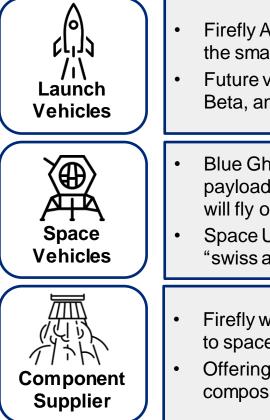

Every portion of Neutron is designed with reusability in mind

OVERVIEW

- Neutron's core focus is reusability, meant to **compete with Falcon 9** at a lower price
- Notable features include tapered airframe to limit shock heating, a hanging second stage, and a **nondeployable fairing**
- Neutron can place 8,000 kg into LEO if landing at the launch site, or 15,000 kg if expended
- First launch planned for 2024


"We've really optimized the vehicle from day one to be reusable. Every decision is based around that."

- Peter Beck

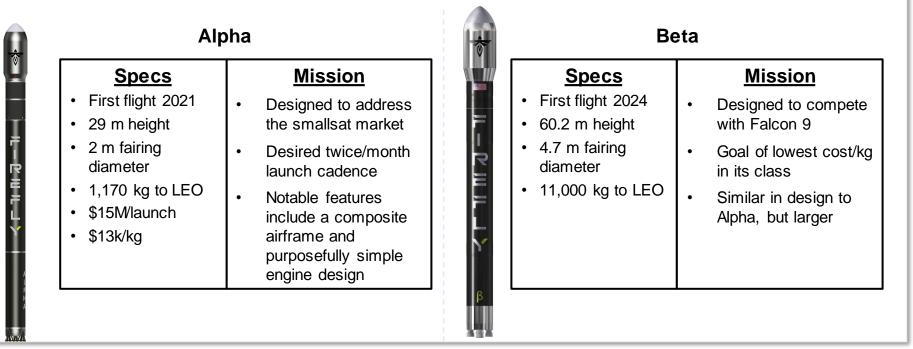


Firefly Aerospace

Firefly is a private aerospace firm developing a family of launch vehicles and in-space platforms to allow for affordable small launch

In addition to multiple launch vehicles, Firefly is focused on developing lunar landers and space utility vehicles.

- Firefly Alpha will deliver 1 metric ton to LEO, serving the smallsat market
- Future vehicles will include Falcon 9 competitor Beta, and a reusable spaceplane known as Gamma
- Blue Ghost Lunar Lander won a \$93M to take 10 payloads to the Moon for NASA Artemis program. It will fly on a SpaceX Falcon 9
- Space Utility Vehicle (SUV) being developed as the "swiss army knife of spacecraft"
- Firefly will become a Tier 1 supplier of components to space launch companies
- Offerings will include the Reaver rocket engine and composite structures

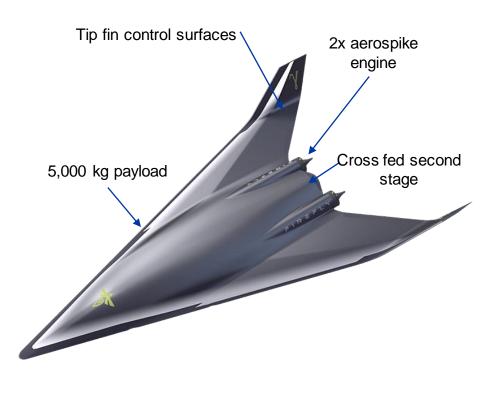

Key Quotes

 "We are not a rocket company. Its 1/3rd of our space transportation architecture."

٠

- "The rocket gives the keys to space. But the big revenue is doing **things in space**. Blue ghost gives \$150m revenue, compared to our launch vehicle's \$15m."
 - CEO Tom Markusic

Firefly Alpha has one failed launch as of 2021, and Beta will be Firefly's MLV; neither vehicle is planned to be reusable at this time


VEHICLE OVERVIEW

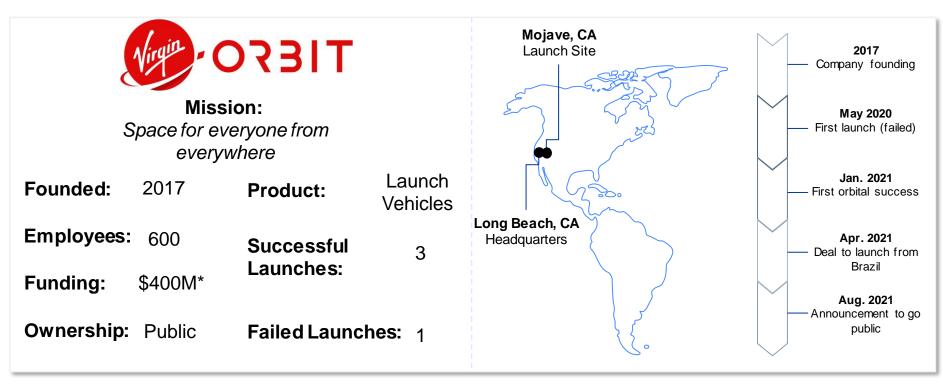
Gamma is Firefly's future vision for a reusable spaceplane, with testing planned for the late 2020's

OVERVIEW

- Gamma is a concept for a reusable spaceplane designed to place satellite constellations into orbit
- Gamma will be 75% reusable by cost
- Notable features include aerospike engines and potential for hypersonic Earth transport
- A formal design is planned for 2025

Gamma is Firefly's one glimpse at reusability, but remains as little more than a concept

Firefly is focused on high-margin operations using lightweight material, vertically integrated missions, and offshoring development

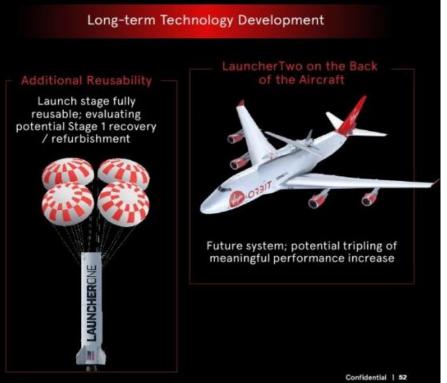

Automation	Similar to Rocket Lab, composite manufacturing is completed with automated fiber placement, bringing manufacturing time down to 14 days and producing the worlds largest all-carbon fiber rocket
Offshoring	With acquisition by Ukranian entrepreneur Max Polyakov in 2017, Firefly draws from Soviet-era technology and has a 200 person R&D facility in Dnipro, Ukraine
Complete Missions	Offering launch vehicles, space utility vehicles, and lunar landers will make Firefly an end-to-end space service provider

Rather than decrease costs through reusability, Firefly aims to increase revenues through a variety of in-space platforms

Virgin Orbit

Virgin Orbit is a smallsat launch provider using an air-based launch system to open space to markets lacking traditional launch infrastructure

*Estimated after SPAC merger


Virgin's two-part launch system involves a two-stage liquid fueled rocket that drops from the wing of a Boeing 747

LAUNCH SYSTEM

<u>Specs</u>	Mission
 First flight 2020 21 m height 1.5 m fairing diameter 500 kg to LEO \$12Wlaunch \$30k/kg 	 Bringing launch services to areas without traditional launch infrastructure Main launch focus on smallsat market Provide dedicated launch services to desired inclinations at a premium
LauncherOne	<u>Cosmic Girl</u>
LAUNCHERONE	

TIERO

Virgin Orbit has given some hints at reusability for its vehicles, but is more likely to double down on their distinct competitive advantages

Virgin Orbit has presented possibilities for reusability in its investor presentation but is unlikely to pursue a reusable vehicle in the near-term

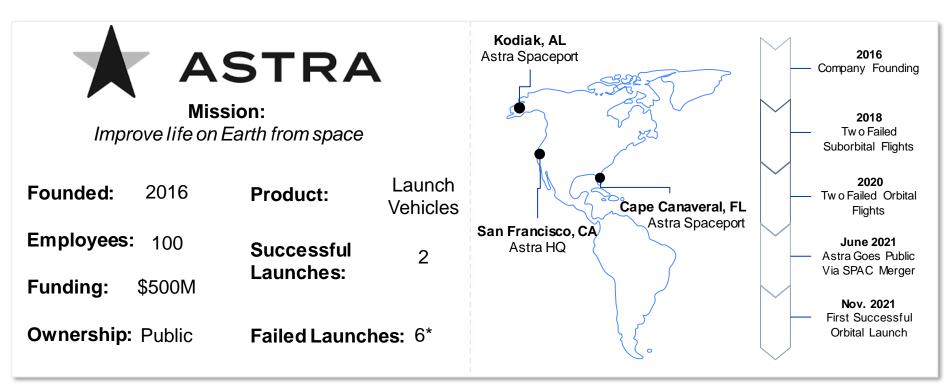
Credit: Virgin Orbit Investor Presentation

Virgin's launch system provides unique access to international clients, but comes with limitations to future scaling opportunities

<u>Pros</u>

- Access to allied nations (e.g., Brazil, UK, Poland)
- More orbital inclinations
- Potential for simplified land-based vehicle recovery
- More vacuum-optimized nozzle
- Readily available pilots and parts for carrier vehicle

<u>Cons</u>


- Large fixed costs for operating 747
- Major limiting factor on launch vehicle size
- Increasing carrier vehicle size will
 destroy main value proposition
- Smallsats alone may not be sufficient to support long-term profitability and growth

Virgin Orbit's success largely relies on the hypothesis that there is a large enough global smallsat market to support operations, and that customers will pay a premium for a more dedicated service

Astra is an emerging small launch provider with the main goal of reaching space as economically as possible

*Two failed suborbital launches and four failed orbital launches

Astra has taken an approach of minimizing launch costs, possibly at the expense of reliability

Cheap and lightweight	Astra abandoned carbon fiber fairings early on in favor of aluminum tubing to drop costs from \$250k to \$33k			
Transportable	Both the vehicle and strongback are meant to be transported in standard shipping containers for a cheap, simple procedure			
Low Overhead	Astra needs just ten people in mission control and six for vehicle setup			
Avoiding Reusability	As the smallest of the smallsat launch vehicles, reusability does not make financial sense for Astra, so costs are cut elsewhere			

Unlike its competitors, Astra has no plans for a reusable vehicle, but instead focuses on minimizing fixed and variable costs

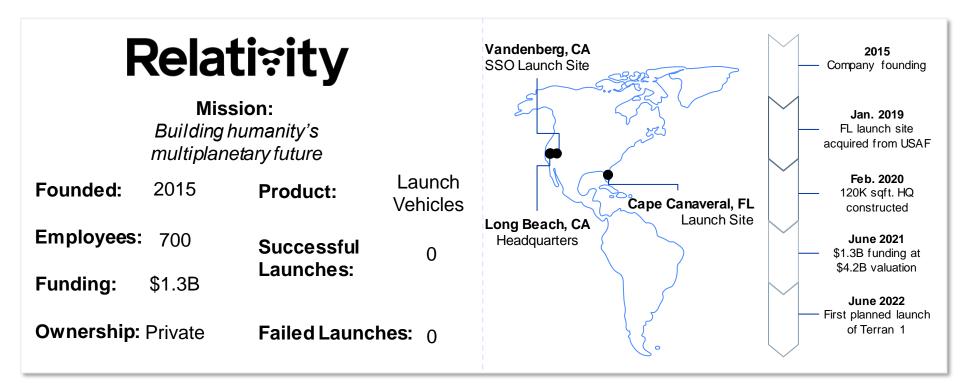
ROCKET3

- Astra is focused on limiting costs per launch as much as possible, rather than investing in novel technologies
- Vehicle features include complete aluminum fairings and body and 3D printed engines
- No plans for reusability in any portion of the launch vehicle

"We can now take the entire spaceport... pack it into four shipping containers, unpack it, and launch the rocket with five people"

- Astra CEO Chris Kemp

12 m Electric pump-fed, 3D printed engines


Aluminum tubing

fairing

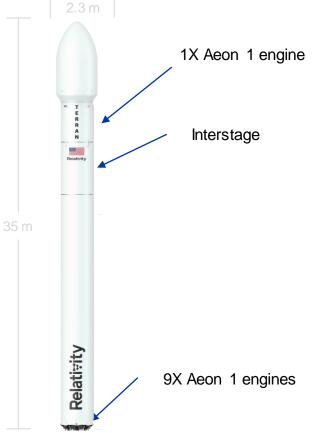
Relativity Space

Relati;ity

Relativity is a rocket manufacturer focused on complete 3D printing of its launch vehicles

Relativity operates like a modern software startup, including venture capital funding and autonomous manufacturing

Venture Capital	Relativity began in VC firm Y Combinator. It has now raised \$1.3B and has no plans on going public			
3D Printing	Relativity developed the worlds largest metal 3D printer (Stargate) to make its vehicles 95% 3D printed by weight			
Software- Driven Ops.	Relativity is heavily focused on automating as much of their manufacturing process as possible to decrease costs			


By treating its operations like a Silicon Valley software company, Relativity has been able to fund its operations while remaining private and develop a launch vehicle that is both low cost and easy to iterate

Terran 1 is Relativity's first launch vehicle, and is the largest vehicle amongst its competitors in the SLV market

Specs —	Terran 1	
 First flight 2022 35 m height 3 m fairing diameter 1250 kg to LEO 	 The largest of the small launch vehicles, design to serve constellation deployment and resupply Terran 1 can go from raw material to finished product in just 60 days 	E T E R R A N Blattrity
• \$12M/launch • \$9.6k/kg	 There are no current plans for Terran 1 to be reusable 	35 m

" [3D printing] is the most disruptive technology in our lifetime for aerospace and potentially for other manufacturing industries"

- Relativity Founder Tim Ellis

Terran R is Relativity's next generation, fully reusable and entirely 3D printed rocket

Specs	Terran R	4.9 m
 First flight 2024 29 m height 2 m fairing diameter 20,000 kg to LEO 	 The first stage, second stage, engines, and fairing will all be reusable Algorithmically determined geometries are 3D printed to limit weight and enhance aerodynamics 	1X Aeon vac. engine Algorithmically generated aerodynamics
	 Terran R's long-term vision is to offer point-to-point space freight missions between Earth, Moon, and Mars 	66 m Grid fins for reentry

7X Aeon R engines

"Even with 3D printing, making it reusable has got to be part of that future"

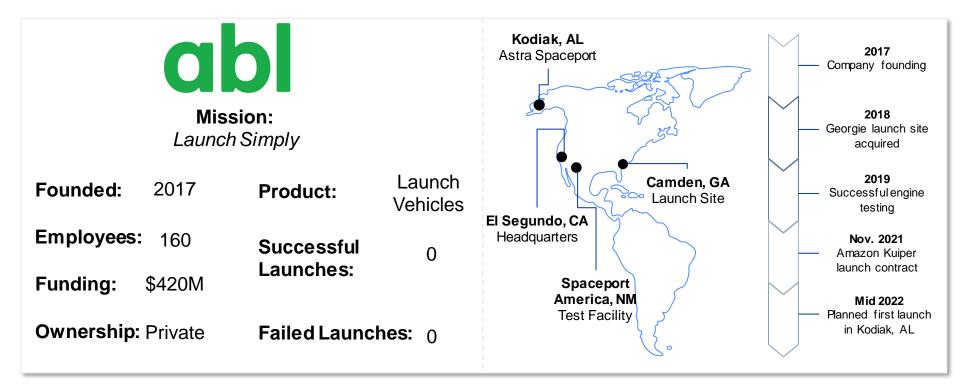
- Relativity Founder Tim Ellis

Rather than invest in near-term reusability, automation and 3D printing have become the primary goals for Relativity

Fewer Parts

Less Labor

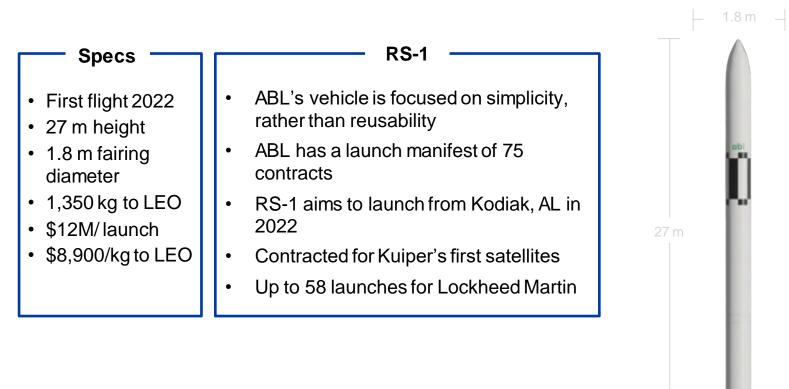
- A standard vehicle has 100,000 parts, and Relativity believes their vehicle can have 100x fewer
- The Aeon 1 engine has less just 100 parts taking 9 days to print


- Traditional manufacturing requires specialized tooling, limiting the ability for rapid iteration
- Additive manufacturing allows for cheap and fast iteration of parts

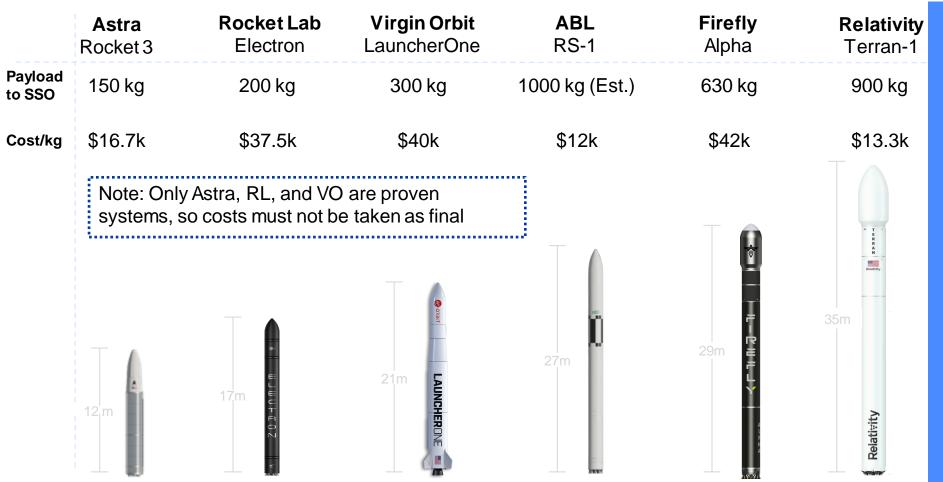
- 3D printing requires fewer machining processes, leading to less need for skilled labor
- Automating manufacturing processes will further decrease labor needs for vehicle manufacturing

ABL Space Systems

abl


ABL Space Systems is focused on building a simple, rapidly deployable launch system with 100% American vehicle construction

ABL is focused on producing the most simple and cost-effective rocket ever


Simple Design	The vehicle is produced with aluminum structures, 3D printed engi and modular avionics		
3D Printing	Similar to competitors, 9 3D printed engines will be used on its first stage and 1 3D printed engine on its second stage		
Transportable	The GS0 launch system will utilize shipping containers for the vehicle, ground support, and even mission control		
Launch from Anywhere(?)	ABL states they can launch anywhere with a 150' x 50' concrete pad, though the logistics of this system remain unproven		

Similar to Astra, ABL is focused on a simple, cost-effective vehicle. Not much is known about the vehicle, but it will not be reusable

04 Key Takeaways

Vehicle Comparison

Key Benchmarks

How reusable, if at all, are the vehicles?

Cost to send payloads into orbit

Payload Cost/kg

Program Maturity

Are the vehicles flight proven?

How reliable is the launch vehicle?

New technology and competitive advantage

Company Comparison

	ROCKETLAB	FIREFLY	ASTRA	TIESO	Relatiÿity	abl
Current Reusability	Partial	No	No	No	No	No
Planned Reusability	Yes	Maybe	No	Maybe	Yes	No
Payload cost/kg (SSO)	\$37.5k	\$42k	\$16.7k	\$40k	\$13.3k	\$12k
Flight Proven?	Yes	No	Yes	Yes	No	No
Reliability	22/25	0/1	2/8	3/4	N/A	N/A
Innovation	Reusability	Complete Missions	Cost	Air Launch	3D Printing	Launch Location

Reusability will be one strategy incorporated by many companies as they look to decreases cost and compete for limited contracts

Key Findings

Anyone can make a launch vehicle

With the NewSpace revolution, dozens of companies are developing launch vehicles. Firms must establish unique value propositions to remain competitive.

Reusability is key

Many firms are actively developing or planning a reusable launch vehicle, and those that are not will need to find other ways to compete economically.

Reusability requires scale

Due to the fixed costs (recovery operations, etc.), reusability only makes financial sense once a vehicle reaches a certain size or utilizes innovative recovery methods.

Small vehicles as a proxy

A common strategy is developing a non-reusable small launch vehicle as a testing ground and proof of concept for a larger, often times reusable vehicle.

QUESTIONS?

Contact

Zachary Friedman

Zachary.e.friedman@Vanderbilt.edu