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1 Rarefied sediment transport

For context and clarity this section provides a qualitative overview of rarefied transport conditions.
Consequences of the small numbers of particles involved in rarefied transport are then described in
the next section, specifically in relation to the sediment particle flux.

Sediment transport in many natural and experimental settings involves rarefied conditions in
which moving particles are at low concentrations. Rarefied conditions occur with transport of
soil particles by rain splash (Furbish et al., 2007, 2009, 2017b; Dunne et al., 2010), the skittering
of rockfall material over scree slopes (Gerber and Scheidegger, 1974; Kirkby and Statham, 1975;
Statham, 1976; Dorren, 2003; Tesson et al., 2020; Furbish et al., 2021a; Williams and Furbish,
2021) and the raveling of particles on hillslopes following disturbances or release from temporary
storage behind obstacles such as vegetation (Roering and Gerber, 2005; Lamb et al., 2011, 2013;
DiBiase and Lamb, 2013; DiBiase et al., 2017; Doane, 2018; Doane et al., 2018, 2019; Roth et
al., 2020). Rarefied conditions occur with transport of bed load particles, notably at moderate to
small transport stages (Ancey et al., 2008; Ancey, 2010; Furbish et al., 2012b; Roseberry et al.,
2012; Fathel et al., 2015; Ashley et al., 2021; Chartrand et al., 2022; Pierce et al. 2022; Ancey and
Recking, 2023), and with ordinary dilute transport of sand by wind (Ungar and Haff, 1987).

In the situations summarized above the interactions between particles and the surface over
which they move are far more important in determining the dynamical behavior of the particles
than are their interactions with other moving particles (Furbish et al., 2021a; Furbish and Doane,
2021; Allemand et al., 2023), akin to granular shear flows at high Knudsen number (Risso and
Cordero, 2002; Kumaran, 2005, 2006). And, when particle motions are coupled with surrounding
fluid motions, particle-surface interactions combined with alternating states of motion and rest
hold a central role in particle transport (Einstein, 1937, 1950; Nikora et al., 2002; Furbish et al.,
2012a; Roseberry et al., 2012; Fathel et al., 2015; Ballio et al., 2018; Pierce and Hassan, 2020a;
Pierce, 2021; Pierce et al., 2022; Wyssmann et al., 2023; Li et al., 2023). Rarefied particle motions
are therefore distinct from granular flows, suspensions and ordinary granular gases; and when fluid-
shear driven, infrequent dissipative collisions between moving particles cannot support the particles
against gravity as envisioned with intense sheet flows involving a granular kinetic behavior (Jenkins
and Hanes, 1998; Pasini and Jenkins, 2005; Berzi and Fraccarollo, 2016).



In addition, when viewed with respect to their small number concentrations, the motions and
transport of a well-defined group of sediment tracer particles amidst a sea of unmarked particles
involve rarefied conditions. This includes natural tracer particles in soils, for example, particles
identified by their cosmogenic nuclide concentrations or luminescence ages or intensities (Furbish
et al., 2018a, 2018b; Gray et al., 2020), and the movement of artificial or tagged tracer particles in
natural rivers (e.g. Ferguson and Wathen, 1998) and experimental rivers (e.g. Hill et al, 2010).

Here is a point of reference. For sediment particles with diameter D we can define a dimen-
sionless particle activity as v = (7,)D?, where (v,) is the average number of moving particles
per unit area of a streambed or the land surface. A value 7} ~ 1 coincides with a close-packed
monolayer or a layer of thickness D within a granular flow. With rain splash transport during a
heavy rainstorm the activity 7 ~ 1072 and is much smaller for ordinary storm intensities. With
transport of sand and gravel as bed load within flume experiments and in natural rivers, typically
the activity 7} ~ 1074-10~! for varying flow conditions and is much smaller for tracer particles. In
soils there might ideally be only 10-100 natural tracer particles within a cubic cm. These numbers
are far smaller than those required for continuum conditions, and particle dynamics bear little
resemblance to continuum behavior (Appendix).

Nonetheless, descriptions of sediment transport, including rarefied conditions, conventionally
adopt a continuum-like framework (e.g. Bagnold, 1966; Paola and Voller, 2005; also see Coleman
and Nikora, 2009). Yet rarefied conditions are entirely at odds with continuum formulations of
transport (Furbish et al., 2012a, 2012¢; 2017a, 2017b, 2021a; Fathel et al., 2015; Ancey, 2020a,
2020b; Furbish and Doane, 2021; Williams and Furbish, 2021; Pierce, 2021; Hassan et al., 2022).
As Furbish and Doane (2021, p. 633) note:

The continuum hypothesis... stands as a triumph of the physical sciences... [allowing]
us to envision many solid and fluid materials at our ordinary macroscopic scale of
observation as being continuous things whose properties and behavior can be described
using that part of the calculus given to continuously differentiable functions — even
though when we focus our attention on the scale of the elements of a “continuous”
material, that is, at the particle scale, we discover that it is decidedly discontinuous.
That said, this lovely continuum siren is to be avoided as a de facto starting point in
descriptions of sediment motions and transport.

Furbish and Doane (2021) use the example of rarefied particle motions on hillslopes to outline
philosophical and technical aspects of pursuing a statistical mechanics description of rarefied trans-
port without assuming a continuum behavior at the outset. This is within the context of a broader
effort. For example, Furbish and Doane (2021) offer a sample of 81 papers representing recent
work on probabilistic elements of sediment motions and transport in five topical areas: bed load
particle motions and transport; bed load tracer particle motions, including effects of particle-bed
exchanges; nonlocal sediment transport on hillslopes; particle motions in soils, including tracer
particles; and rain splash transport. Among these, Schumer et al. (2009) provide a valuable primer
on using advection—dispersion equations to describe tracer particle transport and Ancey (2020a,
2020b) provides a timely review of the state of research efforts focused on bed load transport. Im-
portantly, the probabilistic nature of this body of work, harking back to that of Einstein (1937), is
not conditioned by a continuum framework, and it in part reflects insights gained from increasing
access to advanced computations and high-speed measurement techniques, notably imaging. Much
of this work is focused on the kinematics of particle motions and transport, but with increasing
efforts to explicitly incorporate mechanics. For example, this includes efforts to couple bed load



particle motions with fluid motions using a Langevin-like equation (Ancey and Heyman, 2014; Fan
et al., 2014; Pierce, 2021; Pierce et al., 2022; Furbish and Williams, 2025) and consideration of
the energetics of particle motions on hillslopes (Furbish et al., 2021a, 2021b, 2021¢c; Williams and
Furbish, 2021).

Here we step back to the kinematics of particle motions. We focus on attributes of the sediment
particle flux, noting that this quantity is ideal for illustrating pronounced consequences of the
small numbers of particles involved in rarefied transport. We use the examples of rain splash and
bed load transport because the geometry of particle trajectoriess are in each case reasonably well-
constrained, yet distinctive, as revealed by high-speed imaging, and because the mechanisms of
particle excitation offer a key contrast for points we want to make.

2 Rain splash and bed load transport

Consider the transport of sediment by rain splash on the land surface or as bed load on a streambed,
and let ¢, (x) [L? T~!] denote the one-dimensional particle volumetric flux at the coordinate position
x. Then, in the case of rain splash we might propose that

Qx($) :f(R, SI,S,.--), (1)

where R denotes rainfall properties (e.g. rainfall intensity, drop sizes), S, denotes the local land-
surface slope parallel to x and S represents a set of soil properties (e.g. particle sizes, moisture
content). In the case of bed load we might typically assume a semiempirical relation,

qz(z) = f(m, S, ...), (2)

where 71, denotes the macroscopically defined stress imposed by the fluid on the streambed and
now S represents factors describing the sediment (e.g. particle sizes) and streambed conditions.
The ellipses in (1) and (2) acknowledge possible effects of unspecified factors.

The flux g, (z) in (1) or (2) conventionally is treated as a deterministic quantity that is contin-
uously differentiable with respect to space and time. Indeed, upon letting n(z,t) denote the local
elevation of the land surface or streambed with volumetric particle concentration ¢y, then when we
write the divergence of the flux to give the Exner equation,

on(z,t) _ 0q
ot Oz’

Cp (3)
we are undebatably adopting a deterministic continuum-like framework in which the flux ¢, (z) is
treated as a local instantaneous quantity specified by the form and ingredients of (1) or (2). This of
course means we are assuming the derivatives 9f (R, Sy, ...)/0z and Of (1, ...)/Ox are well defined,
specifically the implied derivatives of one or more controlling factors in the functions. For rarefied
conditions, however, this framework is entirely misleading, as follows.

Consider Figure 1, which shows high-fidelity numerical simulations of individual realizations
of the particle number flux §,,(At) [L~! T~!] associated with rain splash on a horizontal surface
(Sz = 0) during steady rainfall. Each realization is calculated as the net number N (At) of particles
crossing a position z per length Ay normal to z, per averaging interval At, namely, G,,(At) =
N(At)/AyAt. Moreover, each realization arises from precisely the same controlling factors: the
rainfall intensity, surface slope, particle size and so on. Indeed, these are examples of an infinite set
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Figure 1: Plot of 10 realizations of the number flux §n,(At) showing (black line) expected flux
(gnz) = 0 together with (blue lines) £1 and (red lines) +2 standard deviations in the values of
realizations §n,(At) about the expected value. Values of the particle volumetric flux ¢,(At) are
obtained by multiplying by the particle volume V},, namely, ¢,(At) = Vdne(At). Similar results are
obtained when the expected flux (g, is finite with nonzero surface slope S;. Numerical simulations
are based on the theory and experiments of Furbish et al. (2007).

of possible realizations for the same controlling factors. Hence, the figure also shows the £1 and
+2 standard deviations in the values of possible realizations ¢, (At) as their magnitudes generally

decrease with increasing averaging interval At.
Consider Figure 2, which shows measured realizations of the particle number flux ¢,,(At) for
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Figure 2: Plot of 14 realizations of the number flux §,,(At) with (black line) expected flux (gn.)
for D = 11.3-16 mm particles. Values of the particle volumetric flux §,(At) are obtained by
multiplying by the particle volume V},, namely, §,(At) = Vygnz(At). The expected value (gng) is
estimated as the time average of the full time series. Similar results occur for other sizes in the
gravel mixture. Data come from experiments reported by Chartrand (2017).



the volumetric modal size of a gravel mixture transported as bed load during steady conditions.
As with the rain splash example, each realization is calculated as §n,(At) = N(At)/AyAt. Each
realization arises from the same controlling factors: the flume discharge, water-surface slope, the
mixture of particle sizes on the streambed and so on. Thus, as with rain splash, these are examples
of an infinite set of possible realizations for the same controlling factors.

Notice the particle numbers, per averaging width, in the ordinates of Figure 1 and Figure 2.
One might imagine, for example, that 107-10% particles entrained by raindrops within a square
meter during one minute of a heavy rainstorm (e.g. Furbish et al., 2017b) represents a large
number, and that with averaging the law of large numbers yields rapid convergence of the particle
flux to its ensemble expected value. Similarly, one might imagine that 10*-10° gravel particles of
various sizes crossing the end of a half-meter wide flume during one hour at a moderate transport
stage (Chartrand, 2017) represents a large number. But in fact these are tiny numbers of particles
compared to the numbers involved in continuum transport conditions. Individual realizations of
the flux and its divergence therefore can involve large fluctuations about ensemble expected values.
The law of large numbers is at work, but not on the space and time scales that we associate with
continuum behavior.

It thus should be apparent from these examples that the flux is not an instantaneous quantity; it
is a time-averaged quantity that can involve large fluctuations depending on the averaging interval
At. Equally important, the flux is not a deterministic quantity that is continuously differentiable
with respect to space and time; it is a random variable described by a probability distribution
fi. (G425 At) with expected value (g,), where angle brackets denote an ensemble average. To empha-
size this point we write

4z (z; Ay, At) = (gz) + €(Ay, At), (4)

where the circumflex highlights that this is a deviation about the expected value (g,) with uncer-
tainty €. The appearance of Ay and At in this expression reminds us that the value §, and the
associated uncertainty € depend on the spatial resolution Ay and the averaging interval At.

Here is a key point. Uncertainty is not synonymous with error. That is, one must not interpret
e in (4) as representing an error in the estimate of the expected value (g,). To paraphrase Ancey
(2020a) with a slight respin, whereas a deterministic perspective typically views the “noise” repre-
sented by ¢ as the outcome of stochastic (unexplained) influences and thus error, the probabilistic
perspective outlined here views this noise as being an inherent feature of the transport process.
In a real setting, only one of an infinite set of possible realizations occurs. Yet with a specific set
of values of the controlling factors, any one of the infinite set could occur, each entirely consis-
tent with the physics involved. Uncertainty then simply refers to a description of the likelihood
of possible values ¢, relative to the expected value (g;), as illustrated in Figures 1 and 2. And,
based on a suitable form of the Exner equation, it is straightforward to show how realizations of
the land-surface elevation and the streambed elevation similarly fluctuate about expected changes
in elevation.

Here is a second key point. Inasmuch as the objective is to associate an observed (measured)
value of the flux with specific (nominally known) controlling factors that predict the expected
value (g;), then we may view ¢, as an estimate of the expected value (g,) conditioned on the
length Ay and averaging interval At. This is in effect an experimental perspective, and is at
the heart of interpreting experimental measurements to go with formulations of the functional
relations embodied in (1) and (2). The length Ay and the averaging interval At therefore loom
large in describing the uncertainty involved in such efforts.



In formulating descriptions of the particle flux under rarefied conditions there is value in starting
with an unambiguous probabilistic definition of the expected flux (g,). For example, for both
rain splash transport and bed load transport the expected flux under nominally uniform, steady
conditions can be expressed kinematically as

<QQ:> = E<L3:> ) (5)

where E [L T~!] is the particle volumetric entrainment rate and (L,) [L] is the ensemble average
particle displacement parallel to x measured start to stop. Notwithstanding uncertainty in the
specific values of E and (L, ), this is the correct description of the ensemble expected value (g,) so
long as the average (L, ) is finite. The ingredients F and (L,) are well defined with a clear physical
interpretation and probabilistic basis (Einstein, 1950) deriving from a master equation (Furbish et
al., 2012a, 2017a, 2017b; see also Pierce et al., 2022).

In the case of rain splash transport, much effort has been given to quantifying particle en-
trainment by drop impacts and particle displacements (see Furbish et al., 2007). Importantly, the
stochastic structure of the entrainment rate E is known; this quantity is not merely an empirical
rate constant. It specifically represents a compound Poisson process so long as we accept that the
drop impact rate is Poissonian (e.g. Uijlenhoet et al., 1999; Jameson and Kostinski, 2002; Larsen
et al., 2005) and that the number of entrained particles per drop impact is a random variable with
defined mean and variance. These statistical mechanical elements in turn provide a formal basis
for describing the inherent uncertainty represented by realizations ¢, about the expected flux (g,)
(Figure 1).

The problem is harder for bed load transport. Nonetheless, (5) offers physical clarity. Much
effort has been given to quantifying particle displacements leading to the ensemble average dis-
placement (L), although this mostly has been centered on kinematic descriptions that are not yet
fully connected to macroscopic flow conditions. Moreover, the probabilistic conceptualization of
entrainment by Einstein (1950), elaborated by others (e.g. Fernadez Luque and Van Beek, 1976;
Tsujimoto, 1978; Nakagawa and Tsujimoto, 1980; van Rijn, 1984, 1986; Lu and Cheng, 2025),
lends itself for treating the entrainment rate £ as more than a semi-empirical rate constant. What
is needed is a description of the specific stochastic structure of E, as with rain splash, whose me-
chanical basis incorporates effects of moving particles (e.g. Ancey et al., 2008; Ancey and Heyman,
2014; Ma et al., 2014) and any feedbacks with changing streambed conditions (e.g. Singh et al.,
2009; Masteller and Finnegan, 2017; Yager et al., 2018; Pierce and Hassan, 2020b) in relation to
macroscopic flow conditions. Because (5) sets up the problem as a counting process, it provides
a useful starting point. Nonetheless, inasmuch as entrainment depends on effects of moving par-
ticles, then the problem likely requires incorporating elements of the more conventional activity
form of the flux involving the product of the particle activity and the ensemble averaged particle
velocity (e.g. Lajeunesse et al., 2010; Furbish et al., 2012a). Achieving a clear understanding and
description of particle entrainment is at the forefront of problems in sediment transport research.

kksk

Adopting a continuum framework to describe rarefied transport imposes a deterministic style of
thinking consisting of the concepts and language of continuum mechanics. Such descriptions,
however, are entirely misleading. Expected values (e.g. the sediment transport rate) are assumed
to be matched to specified controlling factors, and fluctuations in behavior for fixed controlling
factors are then viewed as “noise” due to unexplained perturbations about the nominally preferred



state. The effort thus translates to the creation of deterministic expectations of behavior that
are inconsonant with the inherent, stochastic variability of complex systems — a hallmark of such
systems.

In contrast, the probabilistic view outlined here fully embraces the mechanics of sediment par-
ticle motions and transport, but is entirely agnostic to the presence or absence of continuum con-
ditions. This view acknowledges, relative to continuum conditions, the small numbers of particles
involved during transport, and the pronounced consequences of these small numbers in concert
with the idiosyncrasies of the geometry of sediment particle motions. Time series of quantities
are treated as realizations of stochastic processes, with a focus on counting processes. Then, for
example, the variability in realizations of the particle transport rate (Figure 1, Figure 2) is viewed
as an inherent feature of the transport process where, for a specific set of controlling factors, any
one of an ensemble of possible realizations could occur, each entirely consistent with the physics in-
volved. Likewise, the variability in granular surfaces produced by transport represents the inherent
richness of possible surface configurations. Expectations of behavior are thus probabilistic, where
variability about an average state is just as important as the average in terms of characterizing
how the process works.

Appendix

To reinforce the point that rarefied sediment transport has little to do with ordinary continuum
behavior, here we briefly compare four features of particle behavior in a continuum fluid with
features of sediment particle motions, as in the standard practice of comparing ordinary gases as a
canonical reference point with granular gases and denser flows (Jaeger et al., 1996; Brilliantov and
Pochel, 2004; Delannay et al., 2017; Furbish et al., 2021a; Berzi, 2024). To be clear, whereas these
differences in particle behavior are well known, we nonetheless suggest that we have not yet paid
sufficient attention to the implications and consequences of these differences. Specifically:

1) Particle numbers: With respect to a granular—fluid interface, a square cm monolayer of
sediment particles with diameter D = 1 mm at close packing contains about 10? particles, and a
square cm monolayer of D = 0.1 mm sediment particles contains about 10* particles. A square cm
“monolayer” of air particles (molecules) at ordinary pressure-temperature conditions contains about
10" particles, even though the mean free path is about 10 times the effective particle diameter.
With respect to particles composing a dense granular material, a cubic cm of sediment particles
with diameter D = 1 mm at close packing contains about 10% particles; and for a soil formed
on granitic bedrock a cubic cm might contain only 10-100 tracer particles marked by °Be atoms
(Furbish et al., 2018b). A cubic cm of air particles contains about 101 particles. As a consequence
of the great difference between particle numbers in fluid and sediment systems embodied in these
simple examples, the law of large numbers yields rapid convergence to ensemble expected values of
attributes of fluid systems (e.g. pressure, velocity) at the continuum scale, but a similar convergence
does not occur for sediment systems (Figures 1 and 2, Section 2). Quantities that are considered
deterministic in continuum fluid systems — notably particle fluxes — are stochastic quantities with
decided uncertainty in sediment systems.

2) Collision frequencies: Frequent elastic particle-particle collisions — about 10?8 per second
in a cubic cm of air at ordinary pressure-temperature conditions — maintain uniform particle
number densities in continuum conditions at a scale larger than the mean free path. This mech-
anism of homogenization does not occur in rarefied sediment systems where effects of dissipative



particle-surface interactions (Schmeeckle et al., 2001) in concert with fluctuating fluid forces dom-
inate particle behavior, giving a decided patchiness in particle movement reminiscent of clustering
in granular gases (e.g. Roseberry et al., 2012; Furbish et al., 2017b), or patterns in movement
associated with systematic spatial variations in particle excitation. Moreover, frequent particle—
particle collisions in gases are the source of thermodynamic quantities such as pressure, temperature
and viscosity (Jeans, 1940; Meyer, 1971) — quantities that we do not ascribe to rarefied sediment
systems such as bed load and rain splash transport.

3) Particle trajectories: Random particle motions in a continuum fluid are statistically isotropic
with speeds (102-10% m s™!) that typically are much larger than local continuum fluid velocities.
Bed load particle trajectories are strongly unidirectional and therefore anisotropic in the horizontal
plane, and the magnitudes of velocity fluctuations (<10~! m s™!) are similar to or smaller than
the mean motion (e.g. Lajeunesse et al., 2010; Roseberry et al., 2012; Seizilles et al. 2014; Liu
et al., 2019; Williams, 2024). Intermittent, rarefied particle motions on hillslopes similarly exhibit
pronounced downslope versus transverse asymmetry (Williams and Furbish, 2021). In relation
to the first item above, this anisotropy combined with small particle speeds and intermittency
of motions, unlike a continuum fluid, strongly influences the counting of particles that cross a
specified coordinate position during two-dimensional transport and therefore the rate at which the
component fluxes converge to their ensemble averages. In contrast, the radial symmetry of particle
trajectories during rain splash transport lends an insensitivity to this counting relative to the mean
motion and the orientation of the coordinate system.

4) Particle excitation: Continuous particle motions in a continuum fluid guarantee that the
particle flux can be resolved at all positions and times as macroscopic flow conditions change due
to, for example, a change in the pressure field. In stark contrast, aside from chronic athermal
granular creep (Deshpande et al., 2021), sediment particles alternate between states of motion and
rest. Like granular gases, sediment particles are excited externally and their activity varies over
space and time. In relation to the first item above, the spatial and temporal resolution and the
associated uncertainty of the particle flux vary as the numbers of moving particles change.
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