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1 Context

The intermittent tumbling and hopping of sediment particles along a streambed in response to
fluid forces and particle–bed interactions — bed load transport — naturally occurs under rarefied
(non-continuum) conditions (Furbish et al., 2012a; Roseberry et al., 2012; Fathel et al., 2015).
Here, the ensemble distribution fvx(vx) of streamwise particle velocities vx (Fathel et al., 2015) is a
key element of descriptions of bed load transport. This includes, for example, the definitions of the
activity forms of the particle flux and the Exner equation (Furbish et al., 2012a), and explanations
of particle phase trajectories in the velocity–acceleration phase space (Furbish et al., 2012b) during
equilibrium transport.1 Based on high-speed imaging of particle motions, various forms of the
velocity distribution fvx(vx) have been reported for different sediment and flow conditions; among
these are exponential, Gaussian and gamma-like distributions (see Pierce et al., 2022). Clarifying
the statistical mechanical basis of the form of the velocity distribution fvx(vx) and its parametric
values is a key challenge in sediment transport research.

One particularly interesting approach to this problem involves appealing to a Langevin-like
equation to describe the distribution fvx(vx) of velocities vx. The Langevin equation stands as a
key landmark of early 20th century statistical mechanics. It is a stochastic differential equation
used to describe how a system — its state — responds to combined deterministic and fluctuating
forces, where the characteristic response time of the deterministic part is much larger than the
time scale of the fluctuations. Although originally used to describe the velocity state of a Brownian
particle subjected to viscous forces and the fluctuating forces of collisions with surrounding particles
(Langevin, 1908), the resulting formalism and style of analysis is much broader and thus applicable
to a wide range of problems.

In this essay we start with a brief primer on Brownian particle motion and the Langevin
equation, highlighting the ergodic behavior of the particle in relation to thermal equilibrium. We
then illustrate an application of a Langevin-like equation to describe the velocity distribution of bed
load particles involving continuous particle motions. This highlights the essential role of particle–
bed collisions in modulating particle velocities (Furbish et al., 2012b; Pierce, 2021; Williams, 2024).
We then briefly turn to the problem of discontinuous, non-ergodic particle motions. In this case,
owing to effects of turbulence and nonlinear particle–fluid coupling in concert with discontinuous

1See explanation in the essay: Statistical equilibrium transport of bed load sediment: The role of particle velocity,
acceleration and jerk
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motions, it might be possible to obtain a description of the distribution of particle velocities based
on a Fokker–Planck equation, but not a Langevin-like equation.

2 Brownian motion and the Langevin equation

Focusing on the one-dimensional motion of a Brownian particle with mass m, let x(t) denote its
position and let vx(t) denote its velocity. The Langevin equation is a statement of Newton’s second
law,

m
dvx(t)

dt
= −γvx(t) + η(t) . (1)

Here, the term −γvx(t) is a viscous drag force given by Stokes’s law where γ = 6πµR with dynamic
viscosity µ and particle radius R. The quantity η(t) denotes a randomly fluctuating force due to
collisions with surrounding fluid particles. It is Gaussian with the expected value E(η) = 〈η(t)〉 = 0
and covariance 〈η(t)η(t′)〉 = Bδ(t− t′) with strength B. We can immediately identify an e-folding
time, or correlation time, as te = m/γ, which represents viscous relaxation to the mean state.

As written, (1) is problematic, as it involves a mixture of deterministic and stochastic parts.
The fluctuating force η(t), as a white noise, is uncorrelated from one instant to the next, so it is
not clear that the velocity vx(t) is differentiable. In fact, (1) is purely symbolic, what van Kampen
(1981) refers to as a “pre-equation” that cannot be manipulated until a convention for doing this is
specified. To illustrate this point we multiply (1) by the integrating factor et/te , define z = vxe

t/te

so that dz = et/tedvx + et/teγvxdt = et/teη(t)dt, then integrate and use the definition of z to obtain

vx(t) = vx(0)e−t/te +

∫ t

0
e−(t−s)/teη(s)ds , (2)

with initial velocity vx(0). This seems reasonable, but the meaning of the integral is unclear
given that the noise η(t) is essentially discontinuous. We therefore back up and rewrite (1) with
η(t)dt = dW (t), where W (t) denotes a Wiener process.2 Namely,

dvx(t) = − γ
m
vx(t)dt+

1

m
dW (t) . (3)

This formally is a stochastic differential equation, often referred to as an Itô process.
With dx(t) = vx(t)dt, integrating each term in (3) gives

vx(t)− vx(0) = − γ
m

[x(t)− x(0)] +
1

m
[W (t)−W (0)] . (4)

Focusing on the last term, here we are only assuming that W (t) is continuous at time t. Imagine
dividing W into n small increments, W (t1) −W (0),W (t2) −W (t1), ...,W (tn) −W (tn−1). These
increments are longer than the particle collision time, but shorter than the viscous relaxation time.
If these increments are independent and Gaussian, then the sum of n increments is Gaussian. With
ηdt = dW we may therefore write (2) as

vx(t) = vx(0)e−t/te +

∫ t

0
e−(t−s)/tedW , (5)

2Prof. Bernhard Mehlig of the Statistical Physics of Complex Systems group at the University of Gothenburg,
Sweden (http://gu-statphys.org/) provides a straightforward demonstration of the result that η(t)dt = dW .

2



where the integral is now interpreted as a weighted sum of Gaussian increments to time t.
Let us now take an average over an ensemble of nominally identical systems, that is, the set of

all possible realizations. This gives

〈vx(t)〉 =
〈
vx(0)e−t/te

〉
+

〈∫ t

0
e−(t−s)/tedW

〉
= 〈vx(0)〉e−t/te +

∫ t

0
e−γ(t−s)/te〈dW 〉

= 〈vx(0)〉e−t/te , (6)

where 〈vx(0)〉 is an average over the distribution of initial states, and we are using the fact that
〈dW 〉 = 0. The last line in (6) shows that the average particle velocity approaches zero at long
times t. Now consider the second moment of just the deterministic part of (5). This gives

〈v2x(t)〉 = 〈v2x(0)〉e−2t/te , (7)

which similarly shows that the average squared velocity approaches zero at long times t. However,
thermal equilibrium precludes this outcome. The equipartition theorem for translational kinetic

energy says that if v =
√
v2x + v2y + v2z denotes the particle speed, then the total energy is partitioned

equally among the three components. That is,
〈
(1/2)mv2

〉
= (3/2)kBT giving

〈
v2x
〉

= kBT/m,
where kB is the Boltzmann constant and T is temperature. Thus, the randomly fluctuating forces
embodied in the stochastic part of (1) are essential for thermal equilibrium. This points to the
fluctuation–dissipation theorem (Callen and Welton, 1951). Viscous drag dissipates thermal kinetic
energy. But this in turn involves a conversion of thermal energy to kinetic energy of the Brownian
particle.

We can write the Itô process (3) in terms of a Fokker–Planck equation describing the time
evolution of the distribution fvx(vx) of velocities vx. It is then possible to show that the competition
between viscous damping and thermal excitation leads to a stationary Gaussian distribution fvx(vx)
with expected value E(vx) = µvx = 0 and variance Var(vx) = σ2vx = kBT/m. In turn, because the
particle position dx(t) = vx(t)dt, it is possible to show that the distribution fx(x, t) of particle
positions x is Gaussian with expected value E(x) = µx = 0 and variance Var(x) = σ2x = 2κt with
particle diffusivity κ = kBT/γ = kBT/6πµR.

Turning to applications at the sediment particle scale, the approach is conceptually identical
in describing the forces acting on a particle. This includes specifying deterministic forces that
are fixed or change slowly relative to the time scale of fluctuating forces. In the absence of fluid
forces, the fluctuating forces involve particle–surface collisions (e.g. Furbish et al., 2021; Williams
and Furbish, 2021), and in the case of bed load particles the fluctuating forces involve effects of
turbulence combined with particle–surface interactions. For example, Fan et al. (2014) formulate
a simplistic Langevin-like equation for bed load particle velocities having the form,

m
dvx(t)

dt
= Fx + η(t) . (8)

Here, Fx is conceived as a fixed average force due to fluid drag and particle–bed friction, assumed
to be Coulomb-like, and fluctuations in these forces are combined into η(t), a Gaussian white noise.
In turn, Pierce et al. (2022) consider the situation where particles alternate between states of
motion and rest. The particle velocity is described in terms of a stochastic process according to
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dx(t)/dt = vx(t)σ(t) with dichotomous noise that randomly switches between the rest state (σ = 0)
and the active state (σ = 1). During the active state the velocity is described by a Langevin-like
equation,

m
dvx(t)

dt
= [Fx(vx) + η(t)]σ(t) , (9)

where Fx(vx) is a deterministic force whose structure varies with the assumptions regarding the
factors producing it, and η(t) is a Gaussian white noise. The authors examine the outcome of
assuming that Fx = γ[V −vx(t)] for fixed velocity V , neglecting characteristic transient accelerations
of particles from and to states of rest (Roseberry et al., 2012). By neglecting rest times (σ = 1),
the formulation reduces to that of Ancey and Heyman (2014) for moving particles.

In the next section we consider continuous particle motions in a laminar flow to highlight the
essential role of particle–bed collisions in modulating particle velocities. Because the formulation
of Fan et al. (2014) involves particle–bed interactions, we return to this work in Section 4 to make
a point about discontinuous (non-ergodic) particle motions in turbulent flow.

3 Particle velocities with continuous motions

Consider a bed load particle whose motion continues indefinitely, and which is subject to sta-
tistically time-homogeneous forces — like a Brownian particle. This situation, involving ergodic
conditions, can be approximated experimentally (Williams, 2024). Namely, consider a bed load
particle with mass m and diameter D moving over a surface within an approximately laminar
shear flow with dynamic viscosity µ. The tumbling motion of the particle continues indefinitely
and involves frequent collisions with the bed. Focusing just on motion parallel to the downstream
x coordinate, an appropriate Langevin-like equation starts with

m
dvx(t)

dt
= FD + Fc + η(t) , (10)

where vx(t) denotes the particle velocity, FD denotes a drag force on the particle, Fc denotes a
collisional friction force and η(t) denotes a Gaussian white noise with zero mean.3

Assuming a Stokesian regime we set

FD =
m

te
[V − vx(t)] , (11)

where te = m/〈k1〉µD denotes the e-folding response time of the particle and V denotes a charac-
teristic flow velocity at a position that is on the order of one particle diameter from the bed. For
a sphere within an unbounded domain the coefficient k1 = 3π according to Stokes’s law. For a
sphere moving over a relatively smooth surface, k1 may be considered a fixed value, although not
equal to 3π. For a tumbling angular particle, k1 fluctuates as the detailed velocity boundary layer
surrounding the particle varies, so this coefficient must be treated as a random variable. Fluctua-
tions in drag also occur with small vertical movements within the boundary layer. Note that we are
assuming k1 and vx are uncorrelated. Here it is important to note that by using the average 〈k1〉

3Written as an Itô process, (10) becomes

dvx =
1

m
(FD + Fc)dt+

1

m
dW .
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within the response time te in (11) we are assuming the fluctuations in this quantity are shorter
than the response time of the particle to variations in the velocity vx. This places effects of the
fluctuations within the noise η(t).

Collisional friction is appropriately treated energetically. Following the work of Furbish et al.
(2021) and Williams and Furbish (2021), let E = (m/2)v2x denote the particle kinetic energy mea-
sured parallel to x. During collisions part of this energy is transferred to other modes: transverse
and vertical components of translational kinetic energy, three components of rotational kinetic en-
ergy, vibrational kinetic energy, and the irreversible production of heat with particle and surface
deformation.4 Each of these represents a loss of E. We then assume that the change in streamwise
kinetic energy during a collision is −(1− ε2)E. Here, ε is akin to a coefficient of restitution, and it
must be viewed as a random variable (Gunkelmann et al., 2014; Serero et al., 2015; Williams and
Furbish, 2021). In turn, the expected apparent change in streamwise particle momentum during a

collision is −
√

2m(1 − 〈ε〉)
〈√

E
〉

, where we are assuming that ε and E are independent. The ex-

pected apparent change in streamwise momentum per unit distance is −k2
√

2m(1−〈ε〉)
〈√

E
〉
/D∗,

where D∗ is the average distance between collisions (see below) and k2 is a dimensionless coefficient
on the order of unity. In turn, the expected rate of change in momentum is

Fc = −
k2
√

2m(1− 〈ε〉)
〈√

E
〉

D∗
vx , (12)

Note that the quantity k2
√

2m(1−〈ε〉)
〈√

E
〉
/D∗ may be considered a zeroth-order friction factor.

It has the same dimensions as m/te in (11), giving the appearance that friction is Newtonian (i.e.
Stokes-like).

Here it is important to note that we are treating the friction factor in (12) as a fixed expected
value rather than an instantaneous value, assuming the collision time is much shorter than the
response time of the particle to the fluid drag. This anticipates that steady conditions in the mean
exist, and as with the drag force FD it places fluctuations in the collisional force about the expected
value within the noise η(t) in (10). In actuality the separation of time scales is not as clear as in the
classical use of the Langevin equation to describe Brownian motion. Indeed, this is an example of
where we hope the fluctuating forces are sufficiently uncorrelated that a white noise approximation
is reasonable (see Section 5).

The bed is either smooth, or it consists of quasi-randomly spaced roughness elements with
diameter d. We treat these as end-member cases. If the bed is rough and the movement of the
particle requires navigating around and over the roughness elements, we assume that D∗ ∼ d.
This represents a bottom-up control on collisional friction. Note that this can be modified to
acknowledge effects of the relative roughness d/D, although we do not elaborate this point in this
essay. If the bed is smooth and the tumbling motion of the particle involves collisions due to its
angularity, then we assume that D∗ ∼ D. This represents a top-down control on collisional friction
(Williams, 2024). If such motions consist of short saltations then this relation can be altered to
D∗ ∼ (〈vx〉/vs)D, where vs denotes the Stokesian settling speed. In the experiments described
below the ratio 〈vx〉/vs is likely unity or less.

4Let us note the interesting work of Fernández et al. (2024) showing that during collisions angular particles can
transfer rotational kinetic energy into translational kinetic energy giving the appearance of a coefficient of restitution
larger than one.
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We now write the Langevin-like equation as

dvx(t)

dt
=

1

te
(V − vx)−

√
2

m

k2(1− 〈ε〉)
〈√

E
〉

D∗
vx +

1

m
η(t) . (13)

Taking the ensemble average then yields

1

te
(V − 〈vx〉)−

√
2

m

k2(1− 〈ε〉)
〈√

E
〉

D∗
〈vx〉 = 0 . (14)

Solving for the average 〈vx〉,
〈vx〉 =

V

1 + te
√

2
m

k2(1−〈ε〉)〈
√
E〉

D∗

. (15)

Notice that if friction is “turned off” by setting 〈ε〉 = 1 the expected value 〈vx〉 = V . Moreover,
because motion is unidirectional we may use the definition of the kinetic energy E = (m/2)v2x and
solve the quadratic to give

〈vx〉 =
−D∗ +

√
D∗[4teV k2(1− 〈ε〉) +D∗]

2tek2(1− 〈ε〉)
. (16)

Owing to collisional friction the expected velocity 〈vx〉 is less than the characteristic fluid velocity
V . Whereas (16) gives 〈vx〉 → V in the limit of 〈ε〉 → 1 as expected, in the limit of 〈ε〉 → 0,

〈vx〉 →
−D∗ +

√
D∗[4teV k2 +D∗]

2tek2
. (17)

This represents the expected velocity for the situation in which each collision brings the particle to
rest.

Let us now use (13) to write the probability current of the Fokker–Planck equation. If fvx(vx)
denotes the stationary probability distribution of the velocities vx, then

−κx
dfvx(vx)

dvx
+

 1

te
(V − vx)−

√
2

m

k2(1− 〈ε〉)
〈√

E
〉

D∗
vx

 fvx(vx) = 0 . (18)

where κx is an unconstrained diffusion coefficient. This yields a Gaussian distribution,

fvx(vx) =
1√

2πκx/(a+ b)
exp

[
− (vx − µvx)2

2κx/(a+ b)

]
, (19)

with mean µvx = 〈vx〉 given by (16) and variance σ2vx = κx/(a+ b), where

a =
1

te
and b =

√
2

m

k2(1− 〈ε〉)
〈√

E
〉

D∗
. (20)

Thus, the mean velocity is strongly conditioned by particle–bed interactions as the particles are
responding to the flow. The variance depends on fluctuations associated with both particle–fluid
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interactions and particle–bed interactions. In the absence of collisional friction such that 〈ε〉 = 1,
then (19) becomes

fvx(vx) =
1√

2πκxte
exp

[
−(vx − µvx)2

2κxte

]
, (21)

with mean µvx = V and variance κxte. That is, the process is entirely mean-reverting to V . The
variance depends only on fluctuations associated with particle–fluid interactions.

Turning to transverse velocities vy, the Langevin-like equation is

dvy(t)

dt
= − 1

te
vy −

√
2

m

k2(1− 〈ε〉)
〈√

E
〉

D∗
vy +

1

m
η(t) . (22)

which is a classical Ornstein–Uhlenbeck process that is mean-reverting to 〈vy〉 = 0, where drag
and friction contribute equally to the mean reversion. Because motion is bidirectional the expected

energy
〈√

E
〉

is to be considered a finite parametric value. If fvy(vy) denotes the stationary

probability distribution of the velocities vy, then the probability current is

−κy
dfvy(vy)

dvy
−

 1

te
vy +

√
2

m

k2(1− 〈ε〉)
〈√

E
〉

D∗
vy

 fvy(vy) = 0 . (23)

where κy is an unconstrained diffusion coefficient. This yields a Gaussian distribution,

fvy(vy) =
1√

2πκy/(a+ b)
exp

[
−

v2y
2κy/(a+ b)

]
, (24)

with mean µvy = 〈vy〉 = 0 and variance σ2vy = κy/(a+ b). In the absence of friction (24) becomes

fvy(vyx) =
1√

2πκyte
exp

[
−

v2y
2κyte

]
, (25)

with variance κyte.
Let us return to the Langevin-like equation (13) and write it as

dvx(t)

dt
= aV − (a+ b)vx +

1

m
η(t) . (26)

The solution of (00) is

vx(t) = vx(0)e−(a+b)t +
aV

a+ b

[
1− e−(a+b)t

]
+ e−(a+b)t

∫ t

0
e(a+b)sη(s) ds . (27)

Taking the ensemble average over all possible realizations,

〈vx(t)〉 = 〈vx(0)〉e−(a+b)t +
aV

a+ b

[
1− e−(a+b)t

]
, (28)

where 〈vx(0)〉 is the average over all possible initial states. In the limit of t → ∞ the expected
value 〈vx〉 → V/(1 + b/a), as described above. But returning to (27), let us calculate the variance
of just the deterministic part. Namely,

Var[vx(t)] =
〈

[vx(t)− 〈vx〉]2
〉

=

〈(
vx(0)e−(a+b)t +

aV

a+ b

[
1− e−(a+b)t

])2
〉
−
(

V

1 + b/a

)2

. (29)
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Upon expanding the parenthetical term it is straightforward to show that in the limit of t → ∞
the variance Var(vx)→ 0. However, observations tell us this is incorrect.

Recall from Section 2 our similar analysis of the classical Langevin equation applied to Brow-
nian motion, leading to the conclusion that the equipartition theorem for translational kinetic
energy precludes the outcome of zero variance. The noise η(t) is essential to satisfy thermodynamic
equilibrium conditions. With bed load particles we do not have the analogue of an equipartition
theorem. Nonetheless, we do have a principle that precludes the outcome of zero variance in the
presence of particle–bed interactions. Because particle motions are driven externally (unlike gas
particles), then entirely analogous to motions on a Galton board (Williams and Furbish, 2021;
Williams, 2024), particle spreading in both the streamwise and transverse directions (thus involv-
ing fluctuations in velocity) cannot exist without streamwise advective motion as particles navigate
roughness elements on the surface. Similarly, for top-down behavior involving the wobbly trajec-
tories of angular particles as they tumble over a surface, spreading in both the streamwise and
transverse directions cannot occur without advective motion. This directly leads to the appearance
of the quantities a and b in the variances σ2vx and σ2vy , where effects of fluctuations are contained
in the noise η(t).

Consider the experiments of Williams (2024). These involve the movement of both spheres and
natural angular particles over smooth and rough surfaces within an approximately laminar flow.
The experiments are designed to create ergodic conditions in which particles remain in motion
in response to an approximately fixed near-bed flow velocity V . Consistent with the analysis
above, distributions of streamwise velocities vx are approximately Gaussian (Figure 1). Likewise,

Figure 1: Histograms of streamwise velocities vx of coarse sand-sized angular particles moving
continuously with a laminar flow over rough (yellow) and smooth (blue) surfaces, as reported by
Williams (2024). Rough surface is 80-grit sandpaper. Flow Reynolds number Re = 420 and Froude
number Fr = 0.22. Imaging with Chronos 2.1-HD High Speed Camera with a Sigma 24-70 mm
f/2.8 Nikon F zoom lens at 60 fps.

cross-stream velocities vy are Gaussian with zero mean. These histograms qualitatively illustrate
a strong bottom-up influence of bed roughness on the frequency and intensity of collisions, and a
weaker top-down influence (Williams and Furbish, 2021) as angular particles tumble over a smooth
surface. Figure 1 suffices for the purpose of this essay, noting that the experiments involve numerous
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ancillary measurements, data sets and analyses (Williams, 2024).
Whereas these results are satisfying, the formulation is unlikely correct in detail. In particular

the noise η(t) in (13) is not likely white nor Gaussian. Unlike particle–particle collisions during
simple Brownian motion, this noise reflects a mixture of things: fluctuations in the fluid forces on
a particle due to its irregular geometry and tumbling motion, and fluctuations due to particle–bed
collisions. Moreover, the separation of scales between the deterministic (expected) and fluctuating
forces is not as clear as with Brownian motion. In addition, we cannot (yet) constrain the values
of various coefficients in the Langevin-like equation (13).

4 Particle velocities with discontinuous motions

When particles alternate between states of motion and rest — a hallmark of natural bed load
particle motions — statistically time-homogeneous conditions cannot exist. Particles experience
widely varying travel times and associated hop distances, and motions are fundamentally non-
ergodic. As above, we can start with a Langevin-like equation to describe the motion of a particle,
but then we must proceed differently. Whereas we average over an ensemble of particles, we cannot
view this as an average over statistically similar realizations that evolve indefinitely in time.

To be clear, the ensemble average is over all possible velocity states vx. This can be interpreted
two ways. First, because a sediment particle alternates between states of motion and rest, the
average is taken over all velocity states experienced by the particle only during periods of motion.
In this case we must envision that over a long period of time the particle explores all possible
velocity states in the proportions given by the steady distribution fvx(vx). In effect this is a time
average obtained in the limit of t→∞. The more straightforward way of interpreting the ensemble
average is to view it as an average of all possible velocity states vx experienced by an ensemble of
independent but nominally identical particles at any instant, where each particle is in a state of
motion representing all instants over all possible travel times.

Consider the formulation of Fan et al. (2014), which is mechanically incorrect, but contains
important lessons. This formulation aims specifically at an exponential distribution of velocities
(Roseberry et al., 2012; Fathel et al., 2015) and starts with a Langevin-like equation,

m
dvx
dt

= FD − sgn(vx)FC + η(t) , (30)

where FD denotes a fixed (average) fluid drag force, FC denotes a fixed friction force that is taken
to be Coulomb-like wherein the normal force is given by the buoyant weight of the particle, and
η(t) is a Gaussian white noise. Note that the friction force is fashioned after a conceptualization
of transport attributable to the work of Bagnold (1966),5 and that neither the drag force nor the
friction force depends on the velocity state vx. A mean-reverting behavior is therefore precluded.

As in Section 2 we write η(t)dt = dW (t), rearrange (30) and integrate to give

vx(t) = vx(0) +
1

m
[FD − sgn(vx)FC]t+

1

m

∫ t

0
dW . (31)

5As described in Section 3, particle friction is collisional, not Coulomb-like, and the normal force during collisions
is a random variable whose average is not set by the buoyant weight of the particle. Among other problems in
Bagnold’s formulation, using the buoyant weight in a Coulomb-like manner implies that neutrally buoyant particles
are frictionless despite particle–bed and particle–particle collisions, giving the nonphysical result that the drag force
FD = 0 for steady motion. More generally, a Coulomb-like model with dynamic friction coefficient has no relevance
to rarefied bed load particle motions.
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Let us now momentarily imagine that particle motion continues indefinitely, as in the preceding
section, and take the ensemble average over all possible realizations to give

〈vx(t)〉 = 〈vx(0)〉+
1

m
[FD − sgn(vx)FC]t . (32)

This says that the expected particle velocity varies linearly with time if FD− sgn(vx)FC 6= 0. That
is, a system of independent particles (representing the ensemble) is at any instant accelerating. In
this situation a steady-state distribution of particle velocities does not exist.

With equilibrium conditions the particle system experiences zero acceleration. Upon taking
an ensemble average over all possible velocity states vx we therefore must conclude that FD −
sgn(vx)FC = 0. This is consistent with the expectation that the ensemble averaged force on the
particles must be zero for steady transport conditions (Furbish et al., 2012b). But as a consequence
the expected velocity 〈vx〉 cannot be mechanically specified and (30) reduces to

m
dvx
dt

= η(t) . (33)

This says that for steady conditions the particle velocity fluctuates as a white noise about an
unspecified average. The ensemble average of (33) is zero.

Continuing with the formulation of Fan et al. (2014), the Langevin-like equation (30) satisfies
a Fokker–Planck equation. The associated probability current must be zero everywhere over the
state space vx with steady-state conditions, and Fan et al. (2014) write this as

κx
dfvx(vx)

dvx
+ Fxfvx(vx) = 0 (34)

where κx denotes a diffusion coefficient and Fx denotes the (incorrectly) assumed finite force per
unit mass arising from fluid drag and Coulomb-like friction. This gives the desired outcome,
an exponential distribution fvx(vx) of velocities vx. Because Fx is assumed to be finite (rather
than zero), this solution requires a nonphysical step change in the average force Fx at vx = 0 to
accommodate the occurrence of negative particle velocities (e.g. Roseberry et al., 2012), and it
provides no constraint on the global net force. By correctly letting Fx → 0 the solution of (34) is
an unrealistic uniform distribution over all vx.

van Kampen (1981) points out that for some problems it might be preferable to directly for-
mulate a Fokker–Planck equation based on physical arguments instead of starting with a Langevin
equation. For example, following Furbish et al. (2012b) we may start with a Fokker–Planck equa-
tion with zero drift and state-dependent diffusion coefficient κx(vx). In this case the probability
current at steady state is

d

dvx
[κx(vx)fvx(vx)] = 0

dκx(vx)

dvx
fvx(vx) + κx(vx)

dfvx(vx)

dvx
= 0 . (35)

Because this does not involve a drift term, it acknowledges that the ensemble averaged force on the
particles is zero. However, it does not explicitly reveal elements of the fluid and collisional forces
involved, as with a Langevin-like equation. Instead, the state-dependent diffusion coefficient κx(vx)
gives a term involving the derivative dκx(vx)/dvx, which represents a well-known apparent drift
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(van Kampen, 1981). The coefficient κx(vx) represents the rate of change in the particle kinetic
energy, so the apparent drift term in (35) in effect represents a probability flux from velocity states
with large kinetic energy toward states with small kinetic energy (Furbish et al., 2012b). This
coincides with a flux toward small velocity states.

If the stationary distribution fvx(vx) is indeed exponential, then according to (35),

dκx(vx)

dvx
e−vx/µvx − κx(vx)

1

µvx
e−vx/µvx = 0

dκx(vx)

dvx
− 1

µvx
κx(vx) = 0 (36)

which requires that κx(vx) = κx0e
vx/µvx , where κx0 denotes the value at vx = 0. This state-

dependent diffusion coefficient is entirely consistent with the strongly heteroscedastic velocity–
acceleration phase behavior reported by Furbish et al. (2012b) and Wu et al. (2020; Figure 1
therein) associated with an exponential distribution of velocities, where negative accelerations are
dominated by particle–bed collisions.

The Fokker–Planck equation with probability current given by (35) is likely an oversimplification
of the conditions in a turbulent flow that yield an exponential distribution of particle velocities vx,
as observed from high-speed imaging (Roseberry et al., 2012; Fathel et al., 2015). Nonetheless, the
analysis strongly points to the occurrence of state-dependent diffusion in this problem based on the
velocity–acceleration phase behavior (Furbish et al., 2012b). In work to be presented elsewhere,
numerical simulations indicate that the frequency and intensity of particle–bed collisions strongly
modulate particle velocities. In contrast to the Langevin equation (13) as applied to ergodic
conditions in Section 3, the simulations allow for transitions between rest and active states. The
fixed velocity V in (13) instead varies, V → V (t), as a red noise in the simulations to mimic
turbulence fluctuations, and the drag force is nonlinear rather than Stokesian. The simulations
give a systematic variation in the form of the velocity distribution — exponential to gamma-like
to Gaussian — with decreasing collision frequency coinciding with increasing flow strength. The
simulations also correctly mimic the particle velocity–acceleration phase behavior (Furbish et al.,
2012b) and the nonlinear variation in particle hop distances with increasing travel times, as reported
by Wu et al. (2020).

With the idea of state-dependent diffusion in place, let us briefly return to the case of laminar
flow (Section 3), albeit involving discontinuous particle motions. For conditions with relatively
small mean velocity, we assume that to first order the diffusion coefficient varies as κx(vx) = αvx.
The probability current then involves a diffusive term, −d[αvxfvx(vx)]/dvx, and (18) becomes

−αvx
dfvx(vx)

dvx
− αfvx(vx) +

 1

te
(V − vx)−

√
2

m

k2(1− 〈ε〉)
〈√

E
〉

D∗
vx

 fvx(vx) = 0 , (37)

which involves an apparent drift equal to −αfvx(vx). The solution of (37) for vx > 0 is

fvx(vx) =
1

Γ(aV/α)

(
a+ b

α

)
vaV/α−1x e−(a+b)vx/α . (38)

This is a gamma distribution with shape parameter aV/α, scale parameter α/(a + b), and mean
µvx = aV/(a+ b), where a and b are defined by (20). Notice that when aV/α = 1, (38) reduces to
an exponential distribution with mean µvx = α/(a+ b). We presume that a clearer understanding
and formulation of how diffusion varies with the velocity state vx would reveal a smooth transition
between the gamma and Gaussian behaviors, (38) and (19).
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5 Concluding remarks

The Langevin-like equation applied to continuous particle motions (Section 3) provides a clear view
of the essential role of particle–bed collisions in modulating particle velocities, a statistical physics
that is entirely incompatible with Coulomb-like (continuum) conceptualizations of friction during
rarefied bed load transport. In considering discontinuous non-ergodic particle motions, a clearer
understanding is needed regarding how the diffusion coefficient in the Fokker–Planck equation
varies with the velocity state, possibly leading to a systematic transition in the form of the velocity
distribution with increasing flow strength, from exponential to gamma-like to Gaussian.

In contrast to the classic problem of Brownian motion, the separation of scales between the
persistent (deterministic) and the fluctuating forces influencing bed load particle motion is not as
clear. Moreover, we must assume the noise representing the fluctuations is sufficiently uncorrelated
that white noise is a forgiving approximation. In the case of sediment particles subjected to a range
of turbulence frequencies in concert with intermittent particle–surface collisions, fluctuating forces
might be more appropriately treated as a correlated (colored) noise, and are likely state-dependent.
In addition, we do not have the analogue of an equipartition theorem. Nonetheless, we do have a
principle concerning the consequences of particles moving over rough surfaces, which tells us that
differential motions guarantee a finite variance in particle velocities.

Acknowledgment: We thank Colin Stark for providing thoughtful comments on an earlier draft
of this essay.
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