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SHELF SPACE ALLOCATION

Problem Description

Retail stores have a limited amount of space
and many products to display. The amount
of shelf space allocated to an item affects
its frequency of replenishment, incidence of
stockouts, and demand rate. Therefore, find-
ing the optimal amount of shelf space to
allocate to each item becomes a key factor for
success. Effective shelf space allocation leads
to higher profits by increasing sales and cus-
tomer satisfaction, creating better product
visibility and brand exposure, and reducing
inventory-related costs and stockouts [1–3].
Indeed, effective shelf space allocation has
become harder and more critical in recent
years because of increases in product vari-
ety and competition. For instance, on aver-
age, the number of consumer-packaged stock
keeping units (SKUs) in the marketplace
increased by 16% per year between 1985 and
1992, whereas shelf space expanded by only
1.5% per year during the same period [4].
A modern conventional supermarket offer-
ing major food departments, nonfood grocery,
and limited general merchandize products
has 20,000 to 30,000 sq. ft of floor space and
it carries 20,000 to 40,000 SKUs [[1], p. 40].

Shelf space allocation is the process of
apportioning the amount of space to each
product in order to maximize the total store
profit or another well-defined objective func-
tion subject to limited store space and other
financial and operational constraints. Shelf
space is usually measured in linear terms
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such as the number of facings and the length
of each facing. The depth of a shelf and the
dimensions of an item are also used in order
to compute the shelf capacity allocated to
each item.

Researchers from marketing, operations
management, and other related fields have
been developing tools and techniques for
more effective shelf space allocation [5]. From
a marketing perspective, the visual appeal of
the display, the amount of product variety,
and the location of each item in the store are
important in order to maximize total sales.
In particular, researchers define a metric
called the shelf space elasticity of demand as
the ratio of relative change in unit sales to
relative change in shelf space. They measure
shelf space elasticity for various types of
products to evaluate the effect of display on
sales. The key factors from an operations
perspective are demand estimation, shelf
replenishment frequency, inventory holding
cost, the cost of stockouts, replenishment-
related labor time and cost, and the impact
of case pack sizes on inventory management
policies. The operations perspective is more
relevant for supermarkets, convenience
stores, drug stores, and discount retailers
because operational efficiency can lead
to lower costs, which, in turn, increases
competitiveness. The marketing issues are
dominant for other types of retailers such
as apparel stores in which the visual appeal
of the display has a substantial demand-
stimulating effect. Conflicting interests of
the marketing and operations strategies also
pose challenging questions.

In this article, we describe the measure-
ment of shelf space elasticity of demand,
the mathematical models and heuristic
approaches to allocate shelf space, and
commercial packages used in the industry.

Measurement of Shelf Space Elasticity

The amount of shelf space allocated to a
product influences its unit sales. In one of
the earliest studies on shelf space allocation,
Cairns [[6], p. 43] states that ‘‘the more space
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allocated to an item, the more likely it is to be
seen by a shopper and, hence, the more likely
it is to be purchased.’’ However, the shelf
space elasticity of demand can vary across
products. Brown and Tucker [7] identify the
following three classes of products with vary-
ing shelf space elasticity of demand:

1. Unresponsive products, for which
changes in shelf space allocation have
no impact on sales rate (e.g., salt
and spices). These products are also
generally price inelastic.

2. General use products, for which
increasing shelf space leads to increase
in sales but at a diminishing rate (e.g.,
breakfast foods and canned fruit and
vegetables).

3. Occasional purchase products, for
which shelf space has a step-function
or threshold effect on sales. Sales
increase slowly with shelf space at
first, until a large display causes a
steep increase in sales to a point of
diminishing returns. These include
impulse buys (e.g., candy).

Following Brown and Tucker [7], researchers
have sought to measure shelf space elasticity
for various types of products. Both retailers
and manufacturers are interested in this
measurement, but for different reasons.
Retailers care about total profits across all
products. They benefit because they can
allocate different amounts of shelf space to
different products depending on their space
elasticities and gross margins. Manufac-
turers care about the profit from their own
products. They benefit because they can
build shelf space allocation into their mer-
chandizing discussions with retailers. For
example, it has been found that private-label
or store-brand products have higher shelf
space elasticity than competing national
brand products [8]. Thus, an easy way for a
retailer to shift sales from national to store
brands is to give more space to store brands
on its shelf display.

Among early works in this area, Kotzan
and Evanson [9] have conducted an
experiment at a drug store chain to evaluate
the impact of changes in shelf space on

unit sales. Their experiment was conducted
on four products that met certain criteria
related to demand uncertainty and availabil-
ity of inventory. These products were tested
in three stores for three weeks, where the
number of facings allocated to each product
was changed each week from 1, 2, or 3
facings. The authors discovered that three
of the four products, a family-size Crest
toothpaste, Hook’s Red Mouth Wash, and
Johnson and Johnson Assorted Band Aids,
had statistically significant positive shelf
space elasticities. For example, the sales of
Crest toothpaste with 1, 2, and 3 facings were
219, 291, and 294 tubes, respectively. The
results for the fourth product (Preparation H
Suppositories) were inconclusive.

Kotzan and Evanson did not investigate
why shelf space elasticity varied across
these products. However, the academic
literature suggests many reasons for such
variation. For instance, Curhan [8] relates
shelf space elasticity to product charac-
teristics. He hypothesizes that items with
smaller package sizes, lower prices, smaller
market shares, private-label brands, and
higher sales rates (i.e., fast moving items)
would have higher shelf space elasticities.
He also hypothesizes that greater product
variety, more availability of substitutes, and
lower repurchase frequency would lead to
higher shelf space elasticities. He tests these
hypotheses by conducting an experiment for
grocery products in supermarket stores. In
this experiment, shelf space is changed for
500 items and their unit sales are observed
for 5 weeks before the change and 12 weeks
after the change. Shelf space elasticity is
measured as the ratio of percent change in
unit sales to the percent change in shelf
space. Curhan [8] obtains very low R2 values.
He concludes that the product characteristics
do not satisfactorily explain the observed
variation in shelf space elasticities because
the impact of shelf space on unit sales is
very small relative to the effects of other
environmental variables, leading to a failure
of the model. Nonetheless, the average space
elasticity across all items in his dataset
is 0.212, showing a positive effect of shelf
space on sales. In another study, Frank
and Massy [10] show that environmental
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variables such as store size, number of shelf
rows, and shelf levels have a substantial
impact on sales. Cox [11] also conducts an
in-store experiment and provides evidence
that staple product brands (e.g., salt brands)
and impulse product brands that have low
consumer acceptance are unresponsive to
changes in shelf space. On the contrary,
sales of an impulse product brand that has
high consumer acceptance (e.g., Coffeemate)
increase in shelf space.

Various conclusions are drawn in the
literature from this early research. One
is that shelf space elasticity is difficult to
measure because a retail store is a dynamic
environment and it is almost impossible to
control factors such as retail prices, adver-
tising, and addition and deletion of products,
which have direct effects on sales [12,13].
Another is that shelf space elasticity is not
large enough in magnitude to be manageri-
ally relevant. Instead, shelf space allocation
should emphasize operational considerations
such as the labor cost of restocking shelves
and avoidance of stockouts. On the positive
side, it is well recognized that shelf space
elasticity varies across products, and is more
important for private-label products and
impulse-purchase items.

Research has also addressed how shelf
space elasticity can be used by a retailer
to increase sales and profits. For instance,
Anderson [14] models the relationship
between a product’s market share and its
share of shelf space using a logistic regres-
sion in order to find the profit-maximizing
shelf space allocation. Dreze et al. [15]
conduct experiments comparing two types of
shelf management at a supermarket chain.
In the first of these experiments, they change
the shelf space allocation for each product to
be proportional to the historical sales rate of
the product in similar stores. Thus, in this
method, they customize shelf space alloca-
tion in each store according to its historical
sales. They note that this contrasts with
the existing practice, which allocates shelf
space in all stores of the chain identically
regardless of differences in their sales mix.
In these authors’ second experiment, they
reorganize the planogram for the store to
facilitate cross-category merchandizing by

placing complementary product categories
closer to each other. The experiment shows
a 4% increase in sales and profits due to cus-
tomized shelf space and 5–6% increase due
to planogram reorganization. They use the
results of their experiment in an optimization
model and estimate that there is a potential
for 15% increase in sales by optimizing the
shelf space allocation to each item using the
estimated parameters. They conjecture that
the increase in sales is driven by customers
increasing their share of purchases at the
subject supermarket store when they are
presented with a better shelf space allocation.

Thus, we see that experiments have been
widely used to study shelf space allocation.
Next, we turn our attention to using the
results of such experiments in optimization
models.

Optimization Models

We explain the optimization of shelf space
using a model given by Corstjens and Doyle
[13]. This model has been widely used and
improved upon since 1981. We summarize
some of the later developments after present-
ing the model.

Consider a retailer with total available
shelf space S∗. The retailer seeks to allocate
this space among K products in order to max-
imize its total profit. Let si be the shelf space
allocated to product i, βi be the direct elas-
ticity of sales of product i with respect to its
shelf space si, and δij be the cross-space elas-
ticity of the sales of product i with respect
to the shelf space sj allocated to product j. δij
can be positive or negative, and need not be
equal to δji. Then, the total sales for product
i are written as

qi = αis
βi
i

∏
j=1,...,K, j�=i

s
δij
j . (1)

The gross margin from product i is written
as wiqi, where wi is the percent gross mar-
gin, and the variable store expense for prod-
uct i given the sales quantity is written as
Ci = γiq

τi
i , where τi is the operating cost elas-

ticity associated with the sales of product i.
The retailer seeks to maximize its total profit,
which is equal to the difference between the
total gross margin and the total variable store
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expense. This problem is formulated as the
following constrained nonlinear program:

max
K∑

i=1

wi

⎡
⎣αis

βi
i

∏
j=1,...,K, j�=i

s
δij
j

⎤
⎦

−
K∑

i=1

γi

⎡
⎣αis

βiτi
i

∏
j=1,...,K, j�=i

s
δijτi
j

⎤
⎦ (2)

subject to

K∑
i=1

si ≤ S∗, (3)

αis
βi
i

∏
j=1,...,K, j�=i

s
δij
j ≤ Q∗ i = 1, . . . , K, (4)

sL
i ≤ si ≤ sU

i i = 1, . . . , K, (5)

si ≥ 0 i = 1, . . . , K. (6)

Here, the first constraint represents the
upper limit on available shelf space in the
retail store. The second constraint represents
an upper limit on the amount of sales that
can be achieved for each product in the store.
The third constraint restricts the amount of
shelf space that can be allocated to each item
to lie between two control limits.

This problem is extremely difficult to
solve because the objective function and one
of the constraints are nonlinear. Corstjens
and Doyle [13] use a geometric programming
method to solve this problem. They illustrate
their model using data from a retail chain
selling various types of candy, ice cream,
and greeting cards. First they obtain data on
sales and facings for each product across 140
stores. They fit equation (1) to each product
category to estimate the direct and cross-
shelf space elasticities. They also obtain
cost data from the management to estimate
gross margin and variable store expenses.
They then optimize shelf space using these
estimated parameters. The results lead to
substantial changes in shelf space allocation
from the existing allocations. For example,
the results show that the optimal allocations
for large and small stores differ from each
other due to variation in sales mix. Thus, the
model incorporates direct and cross-space
elasticities, profit margins, and operating

costs to improve shelf space allocation.
Corstjens and Doyle [16] later introduced
a dynamic version of this model. It is a
multiperiod model that takes into account
anticipated changes in customer preferences
and sales growth and decline of products.
This model presents a long-term strategic
view that encourages retailers to sacrifice
short-term profits in order to maximize
profits in the long run by taking shelf space
away from declining products and allocating
it to products with high growth potential.
The optimization model of Corstjens and
Doyle [13] has been further improved upon in
subsequent research using many techniques,
such as marginal analysis [17], dynamic
programming [18], generalized Lagrange
multiplier methods [19], and multistage
optimization [20].

Most of the mathematical shelf space allo-
cation models are nonlinear, mixed-integer
problems that are computationally expensive
for moderate-sized cases; even linear ver-
sions of this problem are NP-hard [2]. These
difficulties have generated interest in heuris-
tic solution approaches for these problems.
For example, Urban [21] proposes a greedy
heuristic to solve a nonlinear mixed-integer
shelf space allocation problem. His algorithm
starts with an initial solution including all
items in the assortment plan. It then itera-
tively removes one item at a time from the
assortment based on the greatest improve-
ment in net profit estimated using a gener-
alized reduced gradient. The algorithm stops
when net profits cannot be improved any fur-
ther by removing another item. Other tech-
niques such as genetic algorithms [21–23],
knapsack heuristics [24], local search meth-
ods [2], goal programming [25], simulated
annealing [26], and greedy heuristics [27]
are also used to solve shelf space allocation
problems. In short, methods that are used to
solve nonlinear programs can be tailored to
solve shelf space allocation problems.

Another important consideration in shelf
space allocation is its effect on inventory
costs. Two items differing in shelf facings
and/or service level requirements will have
different inventory costs. For instance, an
item with less shelf space will have more fre-
quent stockouts and replenishments, which
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will lead to higher stockout and labor costs,
ceteris paribus. The shelf space allocation
models that we have discussed thus far
assume that the shelves are always fully
stocked. Thus, they do not address the role
of inventory costs on shelf space allocation.
Freund and Matsuo [28] study this aspect
by modeling inventory replenishment as a
periodic order-up-to policy and explicitly
defining holding costs, review costs, and
stockout risk. They show that the importance
of considering inventory costs increases as
the desired service level increases. Further-
more, they conclude that higher service level
requirements force the retailer to have a
smaller assortment because the net profit
suffers due to high operating costs when
there is a wide product variety.

In many retail stores, inventory is
split into ‘‘display inventory’’ and ‘‘back-
room inventory.’’ Urban [21] distinguishes
between the backroom and displayed inven-
tories by tracking them separately. In his
model, demand is a function of displayed
inventory, whereas the backroom inventory
allows the retailer to achieve economies
of scale by ordering more than the shelf
capacity and storing the excess units in
the backroom. Thus, a backroom allows
the retailer to stock more SKUs. Maiti and
Maiti [23] adopt a similar framework. They
provide a contractive mapping genetic algo-
rithm to simultaneously solve the inventory
management and shelf space allocation
problems. See Urban [29] for an overview of
the interdependencies between the inventory
and shelf space allocation decisions.

Hwang et al. [22] analyze a model in
which the demand rate is a function of the
display location and quantity displayed.
Their model determines shelf space alloca-
tion, order quantities, and the location where
each brand should be displayed. Recent
research by Kök and Fisher [30] has focused
on integrating not only shelf space allocation
and inventory decisions but also product
assortment decisions in a single model. They
determine what products should be selected
to be put in the assortment and how much
shelf space should be allocated to each item
given inventory costs, product substitution,
and shelf space constraints. They implement

their results at a supermarket chain. It
is noteworthy that earlier researchers
have also sought to integrate shelf space
allocation and assortment decisions into one
model. For example, Anderson and Amato
[31] determine product assortment and
shelf space allocation decisions jointly, but
without considering inventory costs.

Commercial Software

Early commercial software such as PRO-
GALI, OBM, CIFRINO, SLIM, COSMOS,
and HOPE are based on simple rules of
thumb such as allocating more space to
products with the highest average sales or
profit margins. None of these tools explicitly
considers elasticities [16–18]. The next-
generation commercial solutions are hybrid
knowledge-based systems that can integrate
human expertise and algorithmic techniques.
One of the earliest hybrid knowledge-based
decision support systems (DSS) used for shelf
space allocation is Resource-opt [32]. It takes
past sales, market research information,
and managerial intuition as user input and
extends Corstjens and Doyle [13] to provide
store managers with a user-friendly DSS. It
has been utilized to redesign a hypermarket
in France, and perform shelf space allocation
for three departments of a Scandinavian
store as well as an oil company’s 2000 store
franchise in Europe.

Presently it is common practice to use soft-
ware assistance to generate visual diagrams
(planograms) that show where every prod-
uct in a retail store should be placed. For
instance, PC-based systems such as Appollo
(IRI) and Spaceman (Nielsen) are widely used
at a strategic level. However, their opera-
tional level use is still very restricted due to
their limited decision support functionality
[20]. Generic optimization software packages
such as LINGO (LINDO Systems) can be used
at a tactical and/or operational level once the
shelf space allocation problem is modeled as
a nonlinear program [33].

Discrepancies occurring due to the use
of planograms pose another problem as
store managers have a tendency to deviate
from recommended allocations. Most large
retailer chains design planograms at the
corporate level and give local store managers
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some degree of freedom to modify the
recommended design. Incentives for store
managers are frequently tied to stockouts on
the shelf and discipline in adhering to the
shelf space allocation decided by the corpo-
rate office. However, managers also need to
consider other issues such as the sales effect
of fully stocked shelves and holding labor and
replenishment costs (most of which are not
captured by high level planograms). Further-
more, they need to react to local campaigns
run by competitors. van Woensel et al. [34]
analyze the possible causes for discrepancies
between the recommended planograms and
actual allocations and discuss the negative
impact of these deviations on marketing
efforts and operational efficiency.

Moreover, since shelf space is a scarce
resource, it is natural for competing suppli-
ers to try to influence the retailers’ alloca-
tion decisions via negotiations and contract
terms in order to obtain more shelf space.
Martin-Herran et al. [35] model the interac-
tion between two suppliers and a retailer as
a Stackelberg game where two suppliers are
leading and competing for the follower’s (i.e.,
the retailer’s) shelf space. They focus on the
effect of the suppliers’ advertisement strate-
gies and show that the Stackelberg open-loop
equilibrium is time-consistent.

In conclusion, researchers have been
addressing various aspects of the shelf
space allocation problem for more than 40
years. However, other issues remain to be
addressed, such as the impact on shelf space
management of the introduction of new tools
and techniques for inventory management
(e.g., RFID tags, contracting, and vendor
managed inventory systems), poor processes
for replenishment from backroom to shelf,
inventory data inaccuracy, and misplaced
SKUs [36,37].

MODELS WITH INVENTORY DEPENDENT
DEMAND

Problem Description

In classical inventory models, we min-
imize inventory-related costs under the
assumption that the demand is exogenous.
However, in retailing, where the inventory

is visible to the end consumer, the rate of
demand is often increasing in the amount
of inventory stocked. As mentioned in
the previous section, displayed stocks can
stimulate demand [13]. Similarly, Wolfe and
Little [38] provide evidence that the sales
of style merchandise goods such as women’s
dresses are proportional to the amount of
inventory displayed. In fact, the concept of
psychic stock, defined as retail display inven-
tory for stimulating demand, is motivated
by the prevalence of this effect [39]. The
demand-stimulating effect of inventories has
motivated research to determine optimal
inventory levels by solving the trade-off
arising from the benefits and costs of holding
more inventories. Early studies in the litera-
ture focus on developing inventory models for
items with inventory-level-dependent rates.
Recent literature has started to address
strategic and tactical issues.

Economic Order Quantity Type Models and
their Extensions

Economic order quantity (EOQ) type models
are used to determine the optimal inven-
tory policy when the demand is deterministic
and influenced by inventory. We follow the
research paper by Balakrishnan et al. [40]
to introduce such models. Let the demand
rate vary continuously as a function of the
current inventory. If I denotes current inven-
tory, then the demand rate is written as a
nondecreasing concave function of I, denoted
as λ(I). For example, λ(I) = α(I + φ)β , where
α > 0 is a scaling constant, 0 < β ≤ 1 is called
the inventory elasticity of demand, and φ is
a nonnegative base demand factor.

The mechanics of the model are as follows.
Let Î denote the inventory at the beginning
of a replenishment cycle and T denote the
length of the replenishment cycle. Inventory
depletes at the rate of demand during the
cycle. The inventory level at any time t during
the cycle is obtained by integrating the inven-
tory balance equation, dI(t)/dt = −λ(I(t)). For
example, if λ(I) = αIβ , then the inventory at

time t is equal to I(t) =
(
Î1−β − αt

)1/(1−β)
. Let

D(Î, T) denote the total demand during the
replenishment cycle. It is equal to the differ-
ence between Î and I(T). The length of the
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replenishment cycle must be smaller than the
time taken to deplete all the inventory. Let
Trunout(Î) denote the time at which inven-
tory will run out if not replenished.

The firm seeks to determine the order-up-
to level Î and the replenishment interval T in
order to maximize its average profit per unit
time. Let h denote the inventory holding cost
rate, S the ordering cost, and r the per unit
profit contribution. The profit per unit time
is given by

π (Î, T) = 1
T

{
rD(Î, T) − S

}
− hI(Î, T), (7)

where I(Î, T) is the average inventory per unit
time and can be written as

I(Î, T) = 1
T

∫ T

0
I(t)dt = Î − 1

T

∫ T

0
D(Î, t)dt.

The firm’s demand-stimulating inventory
problem, thus, involves maximizing (7) sub-
ject to the constraint that T ≤ Trunout(Î).
This problem differs from the EOQ problem
because it entails profit maximization rather
than cost minimization and it allows replen-
ishment to take place when the inventory
is not fully depleted. Indeed, Balakrishnan
et al. [40] distinguish two types of products
depending on the optimal policy: early-
replenishment products are those for which
T < Trunout(Î) and runout-replenishment
products are those for which the constraint
is binding.

We illustrate the optimal solution
obtained by Balakrishnan et al. [40] for a
specific demand function which they call
the reference demand model. In this model,
the inventory elasticity of demand is equal
to 0.5 and the demand rate is specified as
λ(I) = α

√
I + φ. This yields the cumulative

demand function D(Î, t) = αt
√

Î + φ − (αt/2)2

and Trunout(Î) = (2/α)(
√

Î + φ − √
φ). Sub-

stituting these expressions into the profit
function and solving for the optimal Î and T,
we find that the early-replenishment strat-
egy gives the optimal solution if the ordering
cost S is below a certain threshold and the
runout-replenishment strategy is optimal
otherwise. The optimal replenishment cycle

and order-up-to level for early-replenishment
products are obtained as

T∗ = 2
(

3S
α2h

)1/3

and

Î∗ = α2

4

(
r
h

+
(

3S
α2h

)1/3
)2

− φ.

The optimal order-up-to level for runout-
replenishment products is obtained similarly.

Many insights can be obtained from this
solution. As in the classical EOQ model, in
this model T∗ depends on the ratio S/h. More-
over, T∗ does not depend on r. Thus, as in the
EOQ model, the length of the replenishment
cycle is determined by the trade-off between
the ordering cost and the holding cost. The
optimal order-up-to level, however, depends
on r/h. Hence, it is determined by the trade-
off between the contribution and the holding
cost. When the contribution increases, the
replenishment cycle remains unchanged, but
the firm carries more inventory and places
its orders at higher reorder points. Balakr-
ishnan et al. [40] also construct a heuristic
and refer to it as the adaptive EOQ policy. In
this heuristic, the firm uses the EOQ formula
to determine the order quantity in each cycle,
but recalibrates the demand rate parameter
λ using the observed average demand rate
in the previous cycle. This heuristic differs
from the optimal policy because it does not
allow orders to take place before the inven-
tory runs out. However, it enables the firm
to learn about the dependence of demand on
inventory from historical data. Balakrishnan
et al. [40] show that this heuristic converges
to an equilibrium order quantity. However,
it performs poorly because (i) it waits for the
inventory to run out before placing a reorder
and (ii) in each cycle, it orders too little and
too frequently. For example, their analysis
shows that, if λ(I) = αI0.5 and the product
is an early-replenishment product, then the
profit from the adaptive EOQ policy is always
less than 40% of the optimal profit.

The demand function λ(I) = αIβ is appeal-
ing because it is similar to functions used
to model the dependence of demand on shelf
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space [13]. This functional form makes the
parameter estimation relatively easy because
we can do a logarithmic transformation and
fit a linear regression model to estimate
α and β. It is possible to use many simi-
lar functional forms in a model to capture
the demand-stimulating effect of inventory.
Gupta and Vrat [41] assume that the demand
rate depends only on the initial inventory,
and remains constant at this rate. Baker and
Urban [42] and Urban [43] allow demand to
vary continuously with inventory and show
that it may not be optimal to wait to place
an order until the inventory level reaches
zero. Urban [44] gives a recent survey of the
literature on this topic.

Modeling the inventory dependent
demand for perishable items require an
additional structure since demand for a
perishable item decreases not only with
inventory but also due to loss of product
freshness and/or an approaching expiration
date. Such models have been studied in
the literature [45–48]. For example, Balkhi
and Benkherouf [48] model demand as
λ(I, t) = IβG(t), where I is the current inven-
tory, t denotes time, and G(t) is an increasing
function of time, and the inventory is allowed
to deteriorate continuously over time at
a fixed rate θ . Instead of deterioration of
inventory, another feature to consider in
certain situations is that the value of the
unsold inventory may decrease over time
[49]. This happens for seasonal or fashion
products.

Strategic and Tactical Implications

Strategic consumers indirectly observe
retailers’ inventory policies over time. If a
consumer’s observations lead her to believe
that she has a low probability of finding
a desired product at a given retailer, she
might choose to shop at a competitor instead.
For instance, Anderson et al. [50] present
empirical evidence showing that consumers
who experience a stockout are less likely to
place an order; these consumers also order
fewer items, and spend less. These authors
also show that the retailer might be able
mitigate the cost of a stockout if an item
is out of stock due to high popularity as
consumers are more willing to backorder

scarce items. On the contrary, consumers
may be willing to pay a premium price for
consistently high service rates. For instance,
Dana [51] describes a small experiment on
video stores and argues that Blockbuster’s
advertised claims of high availability allow
the retailer to charge higher prices. These
empirical results show that the retailer’s
stocking decisions and ability to manage
stockouts shape its reputation which affects
its future demand and pricing power.

Dana and Petruzzi [52] present a model
in which consumers form beliefs about the
service level offered by a retailer. They then
decide whether to visit the retailer based
on these beliefs. This model describes a
single period, which can be interpreted as
a steady-state representation of a repeated
game between the consumers and the
retailer. Their analysis shows that, when the
retailer recognizes the effect of its service
level on demand, it stocks higher inventory
levels. As a consequence, the retailer attracts
more customers and earns a higher expected
profit. Similarly, many models have been
developed in the recent research describing
consumers who behave strategically by
deciding when to visit a given retailer. Their
strategic behavior can be affected by product
availability, expectation of markdowns, and
so on. We do not describe these models in
this article, since they form a large body of
literature by themselves.

Overlooking the demand-stimulating
effect of inventory also creates incentive mis-
alignment issues in retail operations, as most
of the automated inventory replenishment
systems try to minimize inventory-related
costs whereas store managers are assessed
on revenues. van Donselaar et al. [53]
empirically show that retail stores managers
have a tendency to deviate from order
advices generated by an automated inven-
tory replenishment system. Their analysis
illustrates that the store managers improve
the automated replenishment system’s
performance by systematically modifying
the order advices because they are able to
capture the demand-stimulating effect of
inventories which is ignored by the system.
Similarly, Kesavan et al. [54] estimate the
effect of gross margin and inventory on
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each other and empirically show that more
accurate firm level sales forecasts can be
achieved by incorporating its relationship
with inventory and gross margin.

In conclusion, capturing the demand-
stimulating effect of inventory is necessary
for effective inventory management. How-
ever, it is not sufficient to achieve firm
level success. Identifying the relationship
between demand and inventory should be
seen as a part of a broader action plan called
demand-based (supply chain) management
[55]. This approach seeks to maximize
the total value (i.e., profits and/or other
well-defined objectives of the entire supply
chain) by addressing the interdependencies
between inventory, demand, pricing, and
marketing. Overlooking this approach and
tackling the demand inventory relationship
independently of pricing and marketing
leads to suboptimal solutions. Put differ-
ently, pricing, promotional marketing, and/or
other demand manipulation tools should be
used to mitigate the negative consequences
of the relationship between demand and
inventory.

MODELS OF RETAIL COMPETITION

The actions of one retailer directly affect not
only its own demand but also the demand
faced by its competitors. Promotions, price
discounts, and increases in service level can
increase its demand due to customers switch-
ing their purchases from competitors to its
stores. On the contrary, core service failures
(e.g., stockouts, billing mistakes, and ser-
vice catastrophes), service encounter failures
(e.g., impolite and unknowledgeable employ-
ees), and pricing failures (e.g., high prices and
deceptive pricing strategies) can lead to cus-
tomer losses [56]. These changes in demand
can be temporary or permanent. Therefore,
a retailer should determine its operational
policies taking into account their competitive
implications.

Retail competition can be modeled in many
ways of varying complexity depending on the
extent of competitive interaction among firms
in the marketplace. For example, we may
consider

1. single-period models, in which con-
sumers switch from one retailer to
another in the immediate period upon
experiencing a stockout;

2. multiperiod models, in which con-
sumers switch from one retailer to
another in a future period upon
experiencing a stockout;

3. models of full or partial information,
in which consumers have some prior
knowledge of inventories at competing
retailers and choose whether to visit a
retailer upon evaluating their chances
of finding a product in stock;

4. learning models, in which consumers
do not have knowledge of product avail-
ability but learn about their probability
of finding a product in stock based on
their own historical experience with a
retailer, and then modify their future
shopping behavior accordingly;

5. multidimensional models, in which con-
sumers select the retailer to visit based
on many service dimensions, such as
price, promotions, and service level.

At the simplest level (in (1) above),
consider a model studied by Lippman and
McCardle [57]. In this model, there are two
retailers competing with each other in a
single period. The price and cost parameters
are given and are equal across retailers. The
retailers compete only on the basis of their
inventory levels yi. The total demand is a
random variable denoted as D. It is allocated
between the retailers via some splitting
rule; let Di denote the initial allocation of
demand to firm i. If the demand allocated
to firm j is greater than its inventory,
that is, if Dj > yj, then a fraction ai of the
excess demand is reallocated to firm i. Thus,
the effective demand at firm i, including
its initial demand and reallocation, is
given by Ri = Di + ai max{0, Dj − yj}, where
0 ≤ ai ≤ 1. Each retailer seeks to determine
the inventory level that maximizes its
expected profit. Note that each retailer’s
choice of inventory affects the demand faced
by its competitor because of substitution or
reallocation of excess demand.

Lippman and McCardle [57] describe
many ways by which the initial demand for
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each retailer may be obtained. For example,
a deterministic splitting is one in which total
demand is allocated between the retailers
in a fixed proportion. A random splitting
can be obtained in many ways: if each
customer flips a coin to choose a retailer,
then it is called an incremental random
splitting of demand; if the first customer
flips a coin to choose a retailer and each
subsequent customer follows the previous
customer, then it leads to a simple random
splitting or herd behavior, that is, all of
the demand is allocated to one or the other
retailer with probability 0.5; finally, the
initial demand at the two retailers may
be given by independent random variables.
Lippman and McCardle [57] present a
beautiful example of a tourist bus visiting
a chateau to illustrate the demand models.
They show that there exists a pure strategy
Nash equilibrium in inventory levels in this
competitive game. The equilibrium need not
be unique. Moreover, competition can be
detrimental to the firms because it can drive
down the industry profit to zero and drive
up the total inventory level in the industry
to be higher than the monopolist’s optimal
inventory, that is, the optimal inventory
quantity if there were a single firm serving
the entire demand.

Whereas single-period models allow us to
study how competition affects the demand
faced by a retailer in the current time period,
multiperiod models (in (2) above) are useful
to study the effect on demand in subsequent
time periods. A multiperiod model of com-
petition can allow us to measure the future
goodwill cost of losing a customer if the ser-
vice level in the current period is reduced.
Following Hall and Porteus [58], suppose that
there are two firms competing in a market-
place over a finite time horizon of T periods.
Let Dit be the demand and yit be the inventory
level for firm i in period t. The unsatisfied
demand is then given by max{0, Dit − yit},
and represents the number of customers who
experience a stockout. Suppose that a fraction
γi of these customers switch to the competitor
in the next time period. Thus, if a firm were to
increase its inventory, it would lose fewer cus-
tomers to its competitor. The objective of the
firm in the model is to determine its inventory

levels in order to maximize the total expected
profits over the time horizon. With some
additional simplifying assumptions, Hall and
Porteus [58] show that this problem yields a
unique subgame perfect Nash equilibrium.
Their solution gives an imputed lost good-
will cost for each firm, which is a function of
the present value of an additional customer
in the next time period and the probability
of losing that customer due to a stockout.
The retailer with less sensitive customers,
that is, a smaller value of γi, faces a lower
imputed goodwill cost. Such a retailer will
provide a lower service level but still enjoy
less defections and a larger market share.

A different way to model competition due
to inventory is to define fill rate or service
level as a dimension of quality. Fill rate is
defined as the fraction of demand satisfied
by a retailer from stock. It is equal to the
ratio of expected sales to mean demand; if
y is the amount of inventory stocked by a
retailer and D is the random demand faced
by it with mean E[D] = μ, then fill rate is
equal to E[min{D, y}]/μ. The numerator in
this expression is the expected sales of the
firm, which is given by the minimum of
demand and inventory. When the fill rate
is high, fewer customers experience stockout,
and therefore fewer customers are likely to
be dissatisfied with the retailer. Therefore,
the demand faced by a retailer becomes a
function of its fill rate as well as the fill rates
of its competitors. This concept is usually
expressed in models of type (3)–(5) listed
above by defining the market share of a
retailer as

fi∑
j fj

,

where fi is the service level offered by the
subject retailer. In models of full information,
customers know the inventory level stocked
by each retailer and choose which firm to
visit by weighing their probability of finding
the product in stock [51]. In models of par-
tial information, customers do not know the
inventory levels of the retailers, and use other
cues such as price to form expectations about
the fill rates provided by retailers [51,59].
Learning models are multiperiod models in
which customers learn about the fill rates
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from their past shopping experience at each
firm [60,61].

Consumers’ reaction to price and service
quality variations might be asymmetric. That
is, consumers might weigh negative expe-
riences (losses) more than equivalent posi-
tive experiences (gains). For instance, Hardie
et al. [62] argue that loss aversion and the
position of brands relative to multiattribute
reference points (e.g., price and quality) influ-
ence the brand choice. They empirically sup-
port this claim by estimating and comparing
gain and loss coefficients for price, qual-
ity, loyalty, and the presence of advertising
for orange juice sales using scanner data.
These analyses can be utilized to model the
effect of asymmetric consumer behavior on
the new product introduction and price pro-
motions. Similar asymmetry also arises in
services based on satisfying and unsatisfy-
ing service experiences. For instance, con-
sumers react more strongly to a stockout
of a necessity items such as bread because
they always expect to see such items in
stock (negative bias). On the other hand, they
might have positive bias for prestige products
such as designer suits because they expect to
search for these items. Gaur and Park [61]
show that the effect of competition on total
inventory levels and total industry profits
depends on the type of bias exhibited by con-
sumers. Moreover, when retailers have differ-
ent costs, the difference in market shares of
the retailers also depends on the type of bias.
The lower cost retailer enjoys greater market
share and profit differential when consumers
have a negative bias, whereas a positive bias
tends to attenuate the effect of competition
for the higher cost retailer.

Competition does not necessarily occur
in a single dimension. For instance, two
retailers selling an identical product might
compete on selling price and service. Service
can be measured with a single proxy such as
the fill rate [63] or it can be a performance
measure which aggregates many aspects of
the shopping experience such as promotions,
advertising, and customer relations into a
single decision variable [64]. In both cases,
the product can be treated as a bundle of
two attributes, price and service. Tsay and
Agrawal [64] consider a single period setting

in which two competing retailers obtain a
product from a common manufacturer, and
discover that there are cases under which
both retailers prefer an increase in competi-
tive intensity because adding a small amount
competition in one dimension mitigates the
competitive intensity in the other. Bernstein
and Federgruen [63] characterize an infinite-
horizon, stochastic general equilibrium
model for competing firms under different
competition scenarios and demand processes.

Competition can affect firms in many
other ways. A retailer might be willing to
offer a monetary incentive to a customer in
order to convince her to backorder instead of
switching to another retailer [65]. The option
to backorder reduces competition because
unsatisfied demand is not necessarily lost.
Another aspect of retail competition is the
speed of delivery. If firms compete on the
delivery time, then holding inventories is
utilized as a tactic to reduce the customer
waiting time and increase sales at the
expense of high inventory holding costs. In
fact, firms are more likely to switch from
a make-to-order policy to a make-to-stock
policy when the number of competitors
increases. This type of competition increases
consumer welfare and reduces retailers’
profits [66]. Factors such as the firm and con-
sumer characteristics, service quality, and
searching costs also affect retail competition.
For instance, McGahan and Ghemawat [67]
study the relationship between firm sizes
and competition to retain customers in a two
stage game. In the first stage, firms try to
build up loyalty among existing customers.
In the second stage, they compete on price.
Their analysis shows that large firms are
likely to exhibit greater customer retention
rates than their small rivals in equilibrium.
Lastly, if customer search costs are low in
an oligopolistic price competition setting,
profit-maximizing firms may choose to have
occasional stockouts to reduce competition.
Reduced competition allows the firms to
charge higher prices which might offset the
effect of lost sales due to stockouts [68].

In conclusion, retailer competition has
various aspects including, but not limited to,
quantity, price, and service quality. Taking
competition into account helps retailers
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create more accurate models that can cap-
ture market dynamics and consumer choice,
which will lead to more effective pricing and
stocking decisions.

SUBSTITUTION AND TRANSSHIPMENT
MODELS

Adoption of modern information technology
tools such as ERP (enterprise resource
planning) systems and web-based inventory
tracking applications has led to remarkable
improvements in retail supply chain trans-
parency. Nowadays, it is possible to obtain
real-time information regarding on-hand
and in-transit inventory quantities for each
location in a retailer’s supply chain. In some
systems, it is even possible to track lost
sales due to shortages so that more accurate
demand forecasts can be made. Reduced
information and transportation costs and
shorter transportation lead times have
enabled companies to move items not only
from an upper installation (e.g., a warehouse)
to a lower installation (e.g., a store) but also
between any two lateral points in the system
(e.g., from one store to another) [69].

These technologic advancements have
allowed companies to utilize two risk pooling
techniques more effectively: product sub-
stitution and transshipment. Substitution
redistributes demand from a stocked-out
product to another product with excess
inventory. Lateral transshipment redis-
tributes inventory from stores with excess
on-hand inventory to stores facing short-
ages or low inventory levels [70]. These
techniques are complementary because
substitution can be utilized when the con-
sumer is willing to purchase a similar item
instead of waiting for her favorite item to
be restocked, whereas lateral transshipment
is more appropriate when the consumer is
willing to delay her purchase. For instance,
a consumer might be willing to purchase
a 13.5-oz shampoo of the same brand
when she could not find the 25.4-oz size.
However, she might be willing to wait for
designer shoes if her size is temporarily
out of stock. The mathematical models to
compute solutions that provide substitution

and transshipment capabilities are similar.
Below, we first summarize the effect of
substitution on inventory management.
Then, we describe transshipment policies.
The topic of assortment planning is similar
to substitution models and is discussed in
a separate section. Typically, substitution
models have a fixed number of available
products, whereas the number of products
to stock is a decision variable in assortment
planning models.

Substitution

The implications of substitution on retail
profits and inventory levels are important to
study because consumers are often willing
to purchase substitute items when they face
stockouts. According to a survey conducted
by Food Marketing Institute, more than 80%
of the survey participants would be willing
to buy a substitute item if their favorite
item were not available [71]. Although
demand substitution mitigates the effect of
lost sales by switching demand from one
item to another, it complicates inventory
management because the sales of each item
now depend not only on its own inventory
and demand but also on the inventory
and demand of all other items. Therefore,
inventory policies developed without taking
the substitution effect into account can lead
to large profit losses.

There are two types of substitution
phenomena, retailer driven and consumer
driven. Under the first scenario, the retailer
satisfies the demand for one product using
another, possibly higher quality, product to
mitigate stockouts. For instance, a down-
ward substitution takes place when a high
quality item can be downgraded and used
as a substitute for a low quality item but
not vice versa. Downward substitution can
be understood using the model in Bassok
et al. [71] as follows. Suppose that there
are N products and N demand classes. The
demand from class i can be satisfied using
inventory of any product j such that j ≤ i,
thus representing downward substitution.
The retailer earns revenue pi for meeting
demand of type i, incurs backorder cost
πi for shortages in class i, and incurs a
cost of substitution b if demand for class i
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is satisfied using inventory of some other
product j < i. Product i can be purchased
at cost ci and its excess inventory can be
salvaged at si. The retailer’s profit maxi-
mization problem can be decomposed into
two parts. In the first stage, the retailer
determines the amount of inventory yi of
each product to stock. Then, a random
amount of demand of each class is received.
Given this demand, the retailer determines
how to allocate the available inventory of
various products among the demand classes
in order to maximize its profit. The second
stage problem can be formulated as the
following linear program:

G(y1, . . . , yN , D1, . . . , DN)

= max
ui,vi,wji

N∑
i=1

⎡
⎣piwii +

i−1∑
j=1

(pj − b)wji

+ sivi − πiui

⎤
⎦ ,

subject to

ui +
i∑

j=1

wji = di i = 1, . . . , N

vi +
N∑

j=1

wij = yi i = 1, . . . , N

wij ≥ 0 i, j = 1, . . . , N

ui, vi ≥ 0 i = 1, . . . , N.

The decision variables in this formulation
are wij, which is the amount of product i used
to satisfy demand class j; ui, the amount of
shortage in demand class i; and vi, the excess
inventory of product i. The objective function
consists of the revenue from meeting demand,
the salvage value of excess inventory, and
the cost of shortages. The constraints imple-
ment the balance of flow between supply and
demand within the downward substitution
structure. Given the solution of the second
stage problem for any inventory level and
demand realization, the first stage consists
of determining the inventories to maximize

total expected profit, that is,

max
y1,...,yN

E[G(y1, . . . , yN , D1, . . . , DN)] −
N∑

i=1

ciyi.

Bassok et al. [72] derive a solution for this
problem by showing that the profit function
in the first stage problem is concave and
submodular in inventory levels under mild
assumptions on the price and cost parame-
ters. Besides being suitable for many kinds
of applications, this problem formulation has
also been used to give an upper bound on the
profit function of the substitution problem
under consumer-driven substitution [73].

In consumer-driven substitution, the
excess demand from one product is reallo-
cated to other products according to some
fixed substitution rule. We describe this
model using Netessine and Rudi [74]. Con-
sider the same notation as above. However,
now, demand for class i must be satisfied first
by available inventory of product i. Then,
unsatisfied demand of class i is allocated to
all the other products in a fixed proportion.
Let aij denote the fraction of unsatisfied
demand of class i allocated to product j,
where aij ∈ [0, 1] and

∑N
j=1 aij ≤ 1. Therefore,

the effective demand for product i is equal to

Di +
∑
j�=i

aji(Dj − yj)+,

and the leftover inventory of product i is

⎛
⎝yi − Di −

∑
j�=i

aji(Dj − yj)+

⎞
⎠

+

.

Here, (Dj − yj)+ denotes max{0, Dj − yj}.
Thus, the retailer seeks to maximize its
expected profit, which is a function of the
total sales revenue, the salvage value of
leftover inventory, and the purchasing cost
of the inventory across all products. Note
that the substitution is up to ‘‘first-level,’’
that is, when excess demand of product i is
reallocated to product j, then a stockout of
product j does not lead to further reallocation
of the leftover demand to other products.
Even so, this problem is extremely difficult
to solve. Netessine and Rudi [74] derive
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first-order necessary optimality conditions
for this problem, but show that there may be
multiple local maxima. For simpler two- and
three-product problems, the profit function
is, however, concave [75,76].

Substantial savings in inventory-related
costs can be achieved when items in the prod-
uct portfolio are highly substitutable, that is,
the probability of accepting another item is
relatively high for a customer that cannot find
her favorite item [77]. However, demand sub-
stitution does not necessarily lead to decrease
in the total inventory level. For instance, for
a two-product case, it has been shown that
the total inventory level may increase when
only one item is substitutable [78].

Transshipment

The purpose of transshipment is to redis-
tribute inventory so that the right quantities
are available in the right location [79].
Lateral transshipment can be divided into
emergency lateral transshipment (ELT) and
preventive lateral transshipment (PLT) [80].
ELT mandates emergency transfers from a
retailer with excess stock to a retailer that
has a stockout [81,82]. This policy responds
to stockout incidents after the realization of
demand. On the other hand, under a PLT
policy, items are transferred among locations
in order to balance inventories in anticipa-
tion of stockout [83]. PLT has a nonmyopic
view which tries to reduce the risk of future
stockouts by redistributing the inventory
[70]. In both ELT and PLT policies, the
initial inventory at each location is planned
with the view to allowing transshipment in
the future. In the most primitive case, if the
retailer does not conduct any transshipment,
the inventory decision for each location can
be made independently. Thus, transship-
ment requires the inventories at all locations
to be determined jointly, adding considerable
complexity to the problem. The benefits are
that it provides risk pooling across locations,
and generally reduces the total inventory
requirement.

Most of the early literature is concentrated
on ELT policies for repairable items because
they have low demand rates and high back-
order costs and thus could benefit the most

from transshipment. The models used in this
context are one-for-one continuous-review
models similar to the seminal METRIC
model of Sherbrooke [84]. For instance, Lee
[81] studies a one-for-one multiechelon model
for repairable items which allows lateral
transshipments between identical retailers.
He derives approximations for the commonly
used performance measures such as the
backorder levels and the number of lateral
transshipments. These approximations are
used to determine the optimal stocking
levels. He shows that the use of lateral
transshipment leads to large cost savings.
Axsäter [82] extends these analyses under a
scenario which the retailers are not identical.
Archibald et al. [85] utilize Markov decision
processes to study a two-location, multi-
period, multi-item transshipment problem
subject to capacity constraints. They show
that the order-up-to policy is optimal when
the demand for each item arises according
to independent Poisson processes at each
location. Although it is, in theory, possible
to represent an inventory system as a
Markov model and derive the steady-state
probabilities, this approach may not always
be computationally feasible since the state
space grows exponentially with system size.
Dada [86] focuses on developing a fast
procedure to approximate the steady-state
expected performance of a two-echelon sys-
tem with transshipment. His model provides
tight bounds on the system performance.

Due to the complexity of the transship-
ment problem, it is useful to devise simple
heuristics. For instance, when shortage costs
differ among locations, a simple yet effective
technique is to allow unidirectional trans-
shipments, that is, transshipments from loca-
tions with lower shortage cost to locations
with higher shortage cost, but not in the oppo-
site direction [87]. Another heuristic takes
reorder points and batch quantities as given
and tries to fulfill the excess demand at a
retailer by a lateral transshipment from the
retailer with most stock on hand [88]. This
heuristic is useful under complex decision sit-
uations because it does not jointly optimize
inventories across locations.
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ELT policies for a supply chain with
multiple retailers with different cost struc-
tures and demand parameters have also
been studied under a continuous-review
one-for-one inventory policy [89] as well as
for a periodic-review system with a base
stock inventory policy [90].

A PLT policy is modeled by Das [83] for
a two-location stochastic inventory problem
under centralized decision making. He imple-
ments this policy by setting a predetermined
time point within each period at which the
decision maker can move items from the over-
stocked location to the understocked location.
He shows that a base stock policy with a
transfer to the understocked location to bring
its inventory level closest to its base stock
level without decreasing the inventory level
of the overstocked location below its base
stock level is optimal.

Lee et al. [80] study a periodic-review
model and develop a transshipment policy
which can be classified as a combination
of ELT and PLT. Namely, they define
predetermined and fixed upper, lower,
and target service levels which are used
to compute the lateral transshipment
quantities. At the end of each review
period, retailers with inventory levels
exceeding the corresponding upper ser-
vice level send their excess inventories
to retailers with low inventory levels or
stockouts. A retailer with a low inven-
tory level determines the amount of
inventory that it can receive using the
difference between the low and target
service levels. Thus, this policy performs
inventory balancing as well as emergency
transshipments.

Two extreme transshipment policies are to
never transship and always transship when
there is a shortage at one location and stock
is available at another location. It has been
observed that choosing the better of these two
extreme policies leads to a performance which
is almost as good as a complex policy that
takes the future impact of a stock transfer
into account [91].

When a supply chain is centralized, the
objective of transshipment is to optimize the
overall system performance. However, when
locations within a supply chain belong to

different organizations, transfer prices affect
each location’s profitability and willingness
to participate in a transshipment activity.
In general, when each location tries to
maximize its own profits, the resulting Nash
equilibrium will not maximize joint profits.
However, it is possible to set transshipment
prices to create supply chain coordination
such that the decisions made by each
location are consistent with joint-profit
maximization [92]. Furthermore, in decen-
tralized supply chains, it might be necessary
to offer some incentives to supply chain
partners in order to prevent free-riding and
implement effective inventory distribution
and transshipment policies [69]. Dong and
Rudi [93] study a transshipment model in
which an external supplier sells to multiple
retail stores owned and operated by the
same firm. They show that stores’ order
quantities are less sensitive to the wholesale
price under a transshipment policy due
to risk pooling. Hence, the manufacturer
benefits from transshipments at the expense
of the retailers because it can charge a
higher wholesale price. Zhao et al. [94]
consider a decentralized system with a
large number of independent retailers and
prove that a threshold requesting and
rationing policy is optimal. Under this
policy, there exist thresholds Zi ≤ Ki ≤ Si
for each retailer i, denoting the optimal
requesting, rationing, and base stock levels,
respectively, for retailer i. It is optimal to
send a transshipment request to another
retailer only if the inventory level is
below the requesting level Zi, and to fill a
received transshipment request only if the
inventory level is above the rationing level
Ki.

To sum up, lateral transshipment is a way
to perform risk pooling and satisfy demand
especially for low demand, high stockout cost
items. However, one should take the trans-
shipment and replenishment lead times;
related ordering, holding, transportation,
and stockout costs; structure of the supply
chain (e.g., centralized vs decentralized);
alternative risk pooling techniques (e.g.,
substitution); and the underlying demand
distributions into account in order to develop
an effective transshipment policy. Chiou [95]
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presents an extensive survey of the academic
literature in this area.
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88. Axsäter S. New decision rule for lateral trans-
shipments in inventory systems. Manage Sci
2003;49(9):1168–1179.

89. Kukreja A, Schmidt CP, Miller DM. Stock-
ing decisions for low-usage items in multi-
location inventory system. Manage Sci
2001;47(10):1371–1383.

90. Robinson LW. Optimal and approximate
policies in multiperiod, multilocation inven-
tory models with transshipments. Oper Res
1990;38(2):278–295.

91. Minner S, Silver EA. Evaluation of two simple
extreme transshipment strategies. Int J Prod
Econ 2005;93–94:1–11.

92. Rudi N, Kapur S, Pyke D. A two-
location inventory model with transship-
ment and local decision making. Manage Sci
2001;47(12):1668–1680.

93. Dong L, Rudi N. Who benefits from
transshipment? Exogenous vs. endogenous
wholesale prices. Manage Sci 2004;50(5):
645–657.



CATEGORY AND INVENTORY MANAGEMENT 19

94. Zhao H, Deshpande V, Ryan JK. Emer-
gency transshipment in decentralized dealer
networks: when to send and accept
transshipment requests. Naval Res Logist
2006;53:547–567.

95. Chiou CC. Transshipment problems in sup-
ply chain systems: review and extensions. In:
Kordic V, editor. Supply chain, theory and
applications. Vienna: I-Tech Education and
Publishing; 2008.


