
Online Appendix - Does Inventory Productivity Predict Future

Stock Returns? A Retailing Industry Perspective

In part A of this appendix, we test the robustness of our results on the distinctiveness of

inventory productivity metrics (presented in §4 of the paper) using alternative definitions of accrual

and operating leverage. In part B, we provide a detailed description of the matched portfolio

analysis presented in §5 part (ii) of the paper. In part C, we present supplementary tables of

results referenced in the main text.

A. Additional Robustness Checks

In this section, we first introduce alternative formulas for accruals and operating leverage. Then

we discuss the results of Fama-MacBeth regressions we run using these alternative formulas.

Accrual. Dechow et al. (2011) provide an excellent summary of research on various definitions

of accruals. Sloan’s (1996) definition focuses on current operating assets and liabilities (operating

accrual), and is computed using items from the balance sheet of a firm. According to this definition,

accrual for firm i in year t is defined as

Acc
[1]
it =

NCOAit −NCOAi,t−1

TAi,t−1
, (1)

where NCOAit denotes net current operating assets and is computed as NCOAit = (CAit −

Cashit)− (CLit−STDit− ITPit), CA denotes current assets, CL denotes current liabilities, STD

denotes short term debt, ITP denotes income taxes payable, and TA denotes total assets. A second

definition is given by Hribar and Collins (2002), who also focus on operating accrual, but compute

it using income-statement items. This definition is used in the main text of our paper. Hribar and

Collins (2002) define accruals as the difference between earnings and operating cash flows, scaled

by total assets. That is,

Acc
[2]
it =

IBEIit − (OCFit − EIDOit)

TAi,t−1
, (2)

where IBEI, OCF , EIDO, and TA denote the income before extraordinary items, operating cash

flows, extraordinary items and discontinued operations, and total assets, respectively. The values

of accrual computed from the first two definitions are approximately equal to each other except

in special situations such as mergers and divestments; see Hribar and Collins (2002) for discussion

and analysis. A third definition, given by Richardson et al. (2005), focuses on total accruals, and
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measures them as the sum of changes in current net operating assets, non-current net operating

assets, and net financial assets. After some algebraic manipulation shown in Dechow et al. (2011),

this definition results in the formula,

Acc
[3]
it =

(OEit −OEi,t−1)− (Cashit − Cashi,t−1)

TAi,t−1
, (3)

where OE denotes total owners’ equity. Total accrual can also be computed from either the balance

sheet or the income statement. The above formula gives the balance sheet-based computation.

Since operating assets are the closest to inventory, the first two formulas are closer to our study.

Operating Leverage. In the main text of the paper, we define operating leverage as

OL
[1]
it =

NFAit

TAi,t−1
, (4)

where NFA denotes net fixed assets. One alternative measure of operating leverage is to replace

net fixed assets by gross fixed assets plus capitalized leases in the formula presented in §4. Thus,

operating leverage can be defined as

OL
[2]
it =

GFAit + CapLit

TAi,t−1
, (5)

where GFA and CapL denote gross fixed assets and capitalized leases, respectively. As a second

alternative, we measure operating leverage from the income statement as the ratio of Selling,

General, and Administrative (SGA) expenses to the sum of SGA expenses and Cost of Goods Sold

(COGS). That is,

OL
[3]
it =

SGAit

SGAit + COGSit
. (6)

Previous research has shown that COGS is correlated with change in sales. Thus, COGS is some-

times used as a proxy for total variable costs and SGA expenses as a proxy for fixed costs. A

potential concern with this metric is that both COGS and SGA can contain fixed as well as vari-

able expenses. For example, SGA expenses are also generally correlated with both Sales and COGS.

Table A5 reports the average inventory productivity coefficients of Fama-MacBeth regressions

using alternative accrual and operating leverage formulas. Our analyses show that alternative

accrual and operating leverage formulas yield consistent results. In particular, the coefficients of

inventory productivity metrics are statistically indistinguishable irrespective of which definition of

accrual and operating leverage we employ.
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B. Detailed Description of the Matched Portfolio Analysis

Our analysis is based on the procedure described on pages 584-585 of Clarke et al. (2004) [Section

IV.A of their paper]. Hereafter, we refer to Clarke et al. (2004) as CDK.

We describe the procedure for the 1-year average buy-and-hold abnormal return of the IT

portfolio consisting of the top 40% of the retailers (portfolios 4 and 5), hereafter referred to as ‘our

IT portfolio’ or ‘IT portfolio’. Then we depict the empirical test distribution and discuss longer

horizon buy-and-hold abnormal returns for IT , AIT , ∆IT , and ∆AIT portfolios to explain how

we obtain the return values presented in §5(ii) in our paper.

Step 1: Creation of 210 possible matching portfolios. At the end of July each year from

1985 through 2009, we sort all NYSE common stocks based on their market capitalizations to de-

termine decile breakpoints. (Decile one (ten) consists of stocks with the smallest (largest) market

capitalization.) We further divide the first decile into quintiles. After determining portfolio break-

points, we sort all NYSE, AMEX, and NASDAQ common stocks into 14 size portfolios based on

their market capitalizations at the end of July.

Within each of the 14 size portfolios, we sort all firms into quintiles based on their market-

to-book ratios (M/B) at the end of July. We require firms with positive book value of equity at

the time of portfolio formation. (In order to compute the book value of equity at the end of July

in year t, we use accounting information for fiscal years ending from February 1 of year t − 1 to

January 31 of year t. This approach makes the construction of matching portfolios consistent with

our portfolio formation methodology.) The sequential sort gives us 70 size×M/B portfolios.

Within each size×M/B portfolio, we further sort firms into terciles based their past one-year

stock returns. (Following the momentum literature, we skip the most recent month while computing

past one-year stock returns.) This procedure finally gives us 14× 5× 3 = 210 reference portfolios.

On average, we have 22 firms in each reference portfolio. (CDK (footnote 14 on page 584) report

20 firms in each reference portfolio.)

Step 2: Matching. For each retailer i in year t, we first look up this retailer’s reference portfolio

rank qit, which is a 3-dimensional vector where the first, the second, and the third elements denote

the retailer’s size, market-to-book, and momentum ranks, respectively. Then we match this retailer

with all NYSE, AMEX, and NASDAQ firms with the same reference portfolio rank. Let Mit denote

the set of all NYSE, AMEX, and NASDAQ firms with the reference portfolio rank qit in year t.
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Step 3: Computation of buy-and-hold return. For retailer i in year t, we first calculate the

1-year buy-and-hold return as the total stock return for this retailer from the beginning of August

in year t to the end of July in year t + 1. For a retailer delisted before the end of July in year

t+1 (i.e., within one year after portfolio formation), the buy-and-hold return stops on the retailers

delisting date. CDK use the same procedure.

For retailer i, the buy-and-hold returns for each matching firm (i.e., each firm in Mit) are

calculated in the same manner. If a matching firm j ∈ Mit is delisted before the end of July in

year t + 1 (or retailer i’s delisting date, whichever is earlier), we splice the CRSP value-weighted

return into the calculation from the day after the delisting date. This procedure is also described

in CDK.

Let Rit denote retailer i’s 1-year buy-and-hold return in year t. Then retailer i’s 1-year buy-

and-hold abnormal return (BHAR) in year t is defined as

R̄it = Rit −
1

|Mit|
∑
j∈Mit

Rjt,

where |Mit| denotes the number of matching firms for retailer i in year t.

Let Pt denote the set of retailers in our IT portfolio in year t. This portfolio’s 1-year BHAR in

year t equals
1

|Pt|
∑
i∈Pt

R̄it,

where |Pt| is the number of retailers in our portfolio in year t. Note that BHAR is equal weighted,

exactly as described in CDK. Finally, taking an average across all portfolio formation years (i.e.,

1985,...,2009) gives the average 1-year BHAR of our retail portfolio.

As we report in the paper, the average 1-year BHAR for the IT portfolio is 5.0%.

Step 4: Computation of bootstrapped standard errors for statistical inference. For

each retailer i in our portfolio in year t, we randomly select (with replacement) a firm from the

set Mit (i.e., the set of firms with the same size×market-to-book×momentum portfolio rank at the

time of the portfolio formation). This gives us a pseudo-portfolio consisting of one matching firm

for every firm in our IT portfolio. By construction, this pseudo-portfolio has the same number

of firms as well as the same size, M/B, and momentum characteristics as our IT portfolio. We

compute the 1-year BHAR of this pseudo-portfolio using the approach described above in step 3

for each year in 1985-2009. Then we average those numbers to obtain the average 1-year BHAR of

this pseudo-portfolio.
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We repeat this routine 1,000 times so that we have 1,000 average 1-year buy-and-hold abnormal

returns. We test the null hypothesis that the average 1-year BHAR of our retail portfolio is

significantly less than the average 1-year BHAR across the 1000 pseudo-portfolios. The p-value

from the empirical distribution equals the number of pseudo-portfolios with the mean abnormal

return greater than or equal to the mean abnormal return of our retail portfolio divided by 1,000.

Figure A1 presents the empirical distribution of the 1-year buy-and-hold abnormal returns of

1,000 matching portfolios. We find that only 6 of the 1,000 portfolios have higher returns than

our IT portfolio’s return of 5.0%. Thus, the p-value of the average one-year BHAR for the IT

portfolio is < .01 (0.006 to be exact). These numbers are obtained after winsorizing the buy-

and-hold abnormal returns at the 1% and 99% to remove the influence of outliers. (We perform

winsorization to be consistent with CDK, but our results and their statistical significance hold

without winsorization as well.)

Figure A1: Empirical distribution of the 1-year buy-and-hold abnormal returns of 1,000 matching
portfolios.
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Notes. The vertical dashed line shows where the average 1-year buy-and-hold abnormal return of
our retail portfolio (5.0%) lies on this empirical distribution. The numbers in parentheses show the
number of pseudo-portfolios in each bar.

Longer time horizons and alternative inventory productivity metrics: We perform simi-

lar analysis for longer time horizons. For a 2-year time horizon, the buy-and-hold return is computed

over two years instead of one year. For example, the buy-and-hold return of a retailer in our port-
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folio on July 31, 2000 will be the total return from August 1, 2000 to July 31, 2002. Note that a

new portfolio will be formed on July 31, 2001, whose buy-and-hold return will be computed from

August 1, 2001 to July 31, 2003.

As we report in the paper, the 2-, 3-, 4-, and 5- year buy-and-hold abnormal returns for the

IT portfolio are 9.2%, 8.5%, 8.1%, and 2.7%, respectively. We run a separate statistical test for

each return window using the bootstrapping approach described above. We repeat our analysis by

forming portfolios on ∆IT , AIT , and ∆AIT as well.

Table A1 reports the buy-and-hold abnormal returns up-to five years after portfolio formation

for portfolios formed on IT , ∆IT , AIT , and ∆AIT . (In the paper, we only report the results for

IT and ∆IT for brevity.) The numbers in brackets are the p-values computed via bootstrapping.

For example, the ∆IT portfolio generates a 2.7% 3-year BHAR. It has a p-value of 0.243, which

means that 243 out of 1,000 pseudo-portfolios outperformed the ∆IT portfolio three years after

portfolio formation.

Table A1: Buy-and-hold average abnormal returns for retail portfolios for different buy-and-hold
periods benchmarked to sequential sort size × market-to-book ratio × momentum matched portfolios.

Years after IT ∆IT AIT ∆AIT
portfolio formation portfolio portfolio portfolio portfolio

1 5.00% 4.10% 4.40% 4.70%
[0.006] [0.008] [0.004] [0.008]

2 9.20% 5.10% 7.70% 2.50%
[0.009] [0.043] [0.001] [0.173]

3 8.50% 2.70% 10.20% 2.80%
[0.007] [0.243] [0.005] [0.224]

4 8.10% 2.50% 9.90% 1.60%
[0.071] [0.313] [0.033] [0.350]

5 2.70% 1.00% 8.30% 1.50%
[0.319] [0.418] [0.095] [0.384]

C. Tables

In this section, we provide the following tables:

A2. Table A2 shows segment-wise monthly excess returns of all portfolios. It also shows the

monthly excess returns obtained if the entire retail industry is treated as a single pool.

A3. Table A3 tabulates monthly abnormal returns benchmarked to different factor models, as

referenced in §3.2.
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A4. In §3.3, we discuss the implications of choosing a December 31 fiscal year-end cutoff date and

a June 30 portfolio formation date (as opposed to a January 31 cutoff date and a July 31

portfolio formation date). Table A4 presents the corresponding estimation results.

A5. Table A5 reports the average inventory productivity coefficients of the Fama-MacBeth regres-

sions using alternative accrual and operating leverage formulas.

Table A2: Segmentwise decomposition of average monthly excess returns (in excess of the risk-free
rate) of portfolios formed on IT .

Column # (1) (2) (3) (4) (5) (6) (7)

IT Rank All Retailers Our Data Set 53 54 56 57 59

1 (Low) 0.29% 0.24% 0.30% 0.11% 0.44% 0.13% 0.19%

2 0.44% 0.15% 0.35% 0.23% 0.46% -1.29% 0.04%

3 1.01% 0.86% 0.58% 1.03% 0.90% 0.20% 1.30%

4 0.82% 1.21% 0.43% 1.00% 1.60% 0.98% 1.99%

5 (High) 1.01% 1.12% 0.60% 0.82% 1.31% 2.36% 1.31%

Zero-cost 0.51% 0.97% 0.26% 0.76% 1.04% 2.10% 1.60%
t-stat 2.04 4.92 0.57 2.66 2.95 2.55 2.75

Notes. Column 1 shows returns of IT portfolios formed by investing in the entire retail industry
after grouping retailers based on two-digit SIC codes. Column 2 replicates our analysis from the
main text of the paper. Columns 3, 4, 5, 6, and 7 report returns of IT portfolios formed by investing
in segments 53, 54, 56, 57, and 59, respectively.
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Table A3: Monthly average abnormal returns benchmarked on various factor models, including
Fama-French long-term and short-term reversal factor, Novy-Marx industry-adjusted profitability
factor (Novy-Marx 2013), Pastor-Stambaugh market liquidity factor (Pastor and Stambaugh 2003),
and Frazinni-Pedersen Betting Against Beta (BAB) factor (Frazzini and Pedersen 2013).

IT Portfolios

Portfolio Fama-French Novy-Marx Pastor-Stambaugh Frazzini-Pedersen

Rank Reversal-Factor α Profitability-Factor α Liquidity-Factor α BAB-Factor α

1 (Low) -0.33% 0.03% -0.33% -0.41%
-1.29 -0.09 -1.26 -1.59

2 -0.43% -0.17% -0.52% -0.52%
-1.70 -0.53 -2.05 -2.03

3 0.26% 0.51% 0.29% 0.25%
0.92 1.46 1.00 0.86

4 0.64% 0.81% 0.67% 0.60%
2.50 2.59 2.57 2.31

5 (High) 0.67% 0.89% 0.70% 0.69%
2.47 2.73 2.52 2.49

Zero-cost 1.04% 0.92% 1.11% 1.11%
5.26 4.20 5.62 5.59

∆IT Portfolios

Portfolio Fama-French Novy-Marx Pastor-Stambaugh Frazzini-Pedersen

Rank Reversal-Factor α Profitability-Factor α Liquidity-Factor α BAB-Factor α

1 (Low) -0.45% -0.09% -0.45% -0.49%
-1.53 -0.23 -1.52 -1.65

2 0.06% 0.19% 0.05% 0.01%
0.23 0.63 0.21 0.03

3 0.28% 0.44% 0.27% 0.25%
1.17 1.48 1.10 1.03

4 0.71% 0.89% 0.69% 0.69%
2.83 2.91 2.69 2.67

5 (High) 0.50% 0.79% 0.55% 0.49%
1.66 2.19 1.78 1.60

Zero-cost 0.81% 0.79% 0.82% 0.83%
3.82 3.41 3.88 3.90

Notes. The first row for each portfolio reports monthly average abnormal returns; the second row
reports the corresponding t-statistics.
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Table A4: The impact of the portfolio formation date on portfolio returns

July 31 June 30

Portfolio Rank IT ∆IT IT ∆IT

1 (Low) 0.24% 0.16% 0.29% 0.50%

2 0.15% 0.55% 0.54% 0.40%

3 0.86% 0.88% 0.81% 1.08%

4 1.21% 1.26% 0.99% 0.92%

5 (High) 1.12% 0.98% 1.07% 0.81%

Zero-cost 0.97% 0.76% 0.63% 0.41%
t-stat 4.92 3.72 3.06 1.88

Notes. The first two columns represent our original portfolio formation methodology in which we
use accounting information for the fiscal year ending from February 1 of year t − 1 to January 31
of year t to form portfolios on July 31 in year t. The third and the fourth columns represent an
alternative portfolio formation methodology in which we use accounting information for the fiscal
year ending from January 1 of year t− 1 to December 31 of year t− 1 to form portfolios on June
30 in year t.

Table A5: Fama-MacBeth cross-sectional regression results for alternative accrual and operating
leverage formulas.

Alternative Accrual and Operating Leverage Formulas

Productivity Metric (Acc1, OL1) (Acc2, OL1) (Acc3, OL1) (Acc2, OL2) (Acc2, OL3)

IT Rank 0.0021 0.0022 0.0022 0.0022 0.0023
2.71 2.85 2.89 2.82 3.03

IT -0.0002 -0.0001 -0.0001 0.0000 0.0000
-0.50 -0.32 -0.35 0.07 -0.13

AIT Rank 0.0019 0.0019 0.0019 0.0021 0.0021
2.49 2.56 2.60 2.68 2.82

AIT 0.0053 0.0053 0.0053 0.0066 0.0056
2.01 2.06 1.99 2.41 2.15

∆IT Rank 0.0015 0.0015 0.0016 0.0017 0.0015
2.28 2.31 2.35 2.54 2.24

∆IT 0.0253 0.0253 0.0244 0.0257 0.0221
1.95 1.93 1.90 1.97 1.70

∆AIT Rank 0.0012 0.0010 0.0012 0.0011 0.0011
1.73 1.51 1.79 1.65 1.52

∆AIT 0.0181 0.0197 0.0243 0.0285 0.0166
0.77 0.87 1.04 1.27 0.73

Notes. The first (second) row for each inventory productivity variable reports its time-series average
(t-stat) under various accrual and operating leverage definitions. Acc1, Acc2, and Acc3 correspond
to equations 1, 2, and 3 presented in part A, respectively. Similarly, OL1, OL2, and OL3 correspond
to equations 4, 5, and 6 presented in part A, respectively. (Acc2, OL1) column is identical to the
results we present in Table 10 in the main text of the paper.
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