
Six DOF Motion Estimation for Teleoperated Flexible Endoscopes

Using Optical Flow: A Comparative Study

Charreau S. Bell, Gustavo A. Puerto, Gian-Luca Mariottini, and Pietro Valdastri

Abstract— Colorectal cancer is one of the leading causes of
cancer-related deaths worldwide, although it can be effectively
treated if detected early. Teleoperated flexible endoscopes are
an emerging technology to promote participation in these
preventive screenings. Real-time pose estimation is therefore
essential to enable feedback to the robotic endoscope’s control
system. Vision-based endoscope localization approaches are a
promising avenue, since they do not require extra sensors on
board the endoscopes. In this work, we compare several state-
of-the-art algorithms for computing the image motion (optical
flow), which is then used with a supervised learning strategy
to provide an accurate estimate of the 6 degree of freedom
endoscope motion. The method is validated using a robotically
actuated endoscope in a human colon simulator, and represents
a preliminary effort towards testing with clinical video data.

I. INTRODUCTION

Colorectal cancer is the fourth leading cause of cancer

mortality in the world, with more than 63% of these deaths

occurring in developed nations [1], [2]. Unlike many other

types of cancer, colorectal cancer can almost always be

prevented by regular screenings for patients over 50 or with

a family history of colon cancer. By detection at an early

stage, the prognosis for survival is 90%, whereas if detected

too late, it decreases to 5% [3].

The traditional method for colorectal cancer screening is

through colonoscopy, a procedure in which a 1.5m flexible

endoscope is inserted into the colon for the detection and

removal of lesions and polyps. Colonoscopy is an outpatient

procedure, is performed under sedation, and only takes

about 30 minutes. Despite these favorable conditions and the

clear advantages of compliance with the recommendation for

cancer screening, nearly one-third of the population at risk

avoid the procedure [4].

In an effort to encourage patient participation and increase

the polyp detection rate, fully- and semi-automatic robotic

endoscopes are emerging in the field [3], [5]–[8]. This

approach focuses the doctor’s attention on polyp detection,

and reduces the physically demanding maneuvering of the

endoscope, which requires years of training for proficiency.

The compliancy of colon tissue and its variability among

patients presents a challenge for creating an accurate model
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of the colon for open-loop control for robotic endoscopes. In-

stead, closed-loop control, which is effective for disturbance

rejection and error minimization, can decrease the difference

between the target actuation pose versus the actual reached

pose of the endoscopic camera head.

Real-time pose detection is therefore essential to enabling

feedback to the robotic endoscope’s control system. Mag-

netic tracking is a reliable method for localization; however,

this can possibly increase the endoscope size or occupy

the tool channel. Furthermore, the accuracy and reliability

of a magnetic tracker can be potentially compromised by

interfering magnetic fields from the permanent magnets

of emerging teleoperable platforms that are being pursued

commercially and by research labs worldwide [9]–[12].

Image processing provides a valid alternative avenue for

localization. One popular method in medicine is through

global localization by means of image registration; however,

because of the large deformations of the soft colon body

during a colonoscopy, global localization is ineffective in

practice. Optical flow techniques avoid this limitation, as they

provide information about the frame-to-frame changes to

compute the motion of the endoscope tip. Such a localization

scheme that neither increases the size of the endoscope nor

interferes with the robotic platform, but produces reliable and

accurate pose estimates, is a favorable method for providing

pose feedback for teleoperated flexible endoscopes.

A. Related Work

Usage of the endoscopic camera stream has mainly fo-

cused on locating gastrointestinal structural landmarks or le-

sions. These large-scale features include the lumen [13], [14]

and haustral folds [15]–[17]. The usage of machine learning

and artificial intelligence methods for navigation within the

colon has also been limited to detecting gastrointestinal

structural landmarks via pattern recognition classifiers [18],

and rule-based systems using fuzzy logic [15].

Motion estimation and navigation based on image motion

analysis for navigation have been successfully used for other

applications, including mobile robot and vehicle navigation.

Common techniques include optical flow, and modeling of

the camera [19], although scale cannot be recovered by these

methods alone. Within gastrointestinal endoscopy, navigation

has been achieved by adjusting the current heading towards

the lumen center in each control loop by employing the

spherical camera model [6]. Focus of expansion and optical

flow approaches have also been successfully employed on

virtual colonoscopy and other real endoscopic image sets [7],

[20], [21]. However, algorithm performance on computer-
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generated datasets can differ significantly from a colon

simulator or human colon [6], and none of these approaches

are able to provide quantitative information about the full 6

degree of freedom (DOF) change of pose of the endoscope

tip. Additionally, many of these methods assume that a focus-

of-expansion can be detected in the image, which might not

happen in the frequent case of rotational motions of the

endoscope.

B. Original Contribution and Organization

The original contribution of this paper is to compare

the effects of several state-of-the-art optical flow estimation

algorithms on their capability to best describe the movement

between images of the colon typically observed during a

colonoscopy. The efficacy of these optical flow measure-

ments resulting from each of these methods is measured by

the accuracy of a supervised learning localization strategy

that maps these image variations to 6 DOF changes in pose

of the endoscope.

Applying artificial neural networks (ANN) to derive the

change in pose of robotic endoscopes has been proposed

[22]. In this study, different sources of illumination (white

light and narrow band) and image partitioning (grid-based

and lumen-centered) were compared to investigate the com-

bination providing the strongest features to drive the ANN.

A standard Lucas-Kanade (LK) method was adopted to

compute the sparse optical flow. In this paper, we build upon

this previous work by providing an extensive comparison

of several of the most important optical flow computation

methods.

The paper is organized as follows: Sect. II presents an

overview of the optical flow methods adopted in our work,

together with a description of their major advantages and

disadvantages. Sect. III describes the supervised-learning

localization strategy, while Sect. IV presents both the experi-

mental setup and the results of the comparison between each

optical flow method. Finally, Sect. V highlights the major

conclusions and describes future work.

II. OVERVIEW OF OPTICAL FLOW COMPUTATION

In this section, we present an overall description of the

state-of-the-art algorithms we adopted for the computation

of the image motion (optical flow) across consecutive frames

of an endoscopic video. Since a comparison between all the

optical flow algorithms designed over the past decades is

unfeasible in this conference paper, we decided to focus on

a subset of representative methods. In particular, we selected

those methods that are most popular and with important

peculiar features, such as invariance to illumination or rapid

camera motion. The mathematical and implementation de-

tails for each method are outside the scope of this work and

can be obtained from the references provided below.

A. Lucas-Kanade (LK) based optical flow

We adopted the Lucas-Kanade method [23] for computing

the optical flow between two frames of an endoscopic video.

LK estimates the image motion of image templates across

(a) It−∆t (b) It

(c) LK (d) SURF

(e) SIFT (f) dHMA

Fig. 1. Representative Optical Flows: (a)-(b) Frames It−∆t and It; (c)
Lucas-Kanade (LK); (d) Scale-invariant (SURF); (e) Scale-invariant (SIFT);
(f) Dense Hierarchical Multi-Affine (dHMA).

two consecutive frames, It−∆t and It (cf., Fig. 1(a)-1(b)),

of an endoscopic video. As commonly done in the literature,

we centered each template at a Shi-Tomasi feature [24]. We

adopted a pyramidal multi-resolution implementation of the

LK method [25] that provides a more reliable estimation

when compared to traditional LK implementations.

Figure 1(c) illustrates an example of the optical flow

vectors (blue) computed by LK. Each flow vector is centered

at a Shi-Tomasi corner. Because of the presence of many

textureless areas and image blurs, the resulting LK-based

optical flow is usually very sparse, since only few Shi-

Tomasi features are detected in these areas. There are two

key assumptions in the LK method: the first one assumes

brightness constancy over time of the two frames, and

the second assumes small motion of each template across

consecutive frames, allowing filtering of noisy flow vectors

with very large magnitude (outliers).

B. Scale-Invariant optical flow

In order to robustly estimate the optical flow in the case

of large endoscope motion and changes in illumination, we

adopted two scale-invariant features: SIFT (Scale-Invariant

Feature Transform) [26] and SURF (Speeded-Up Robust

Features). These features are extracted and matched in two

consecutive frames to find the optical flow. We decided to

focus on these two algorithms because of their proved high-
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repeatability (SIFT), speed (SURF), and because of their

good matching and accuracy rates (SURF and SIFT) in many

challenging conditions.

The main advantage of these scale-invariant features, when

compared to other feature extraction and matching methods,

is that a descriptor is computed from the image portion

around each keypoint (i.e., an image patch, edge, or corner).

The importance of descriptors is that they contain a statistical

representation of the image gradients around each local

image portion. As such, the descriptor is what makes SIFT

and SURF invariant to changes in scale and rotation, and

robust to changes in illumination and viewpoint [27].

Figure 1(e) illustrates the optical flow obtained with SIFT

descriptors between two sequential frames. SIFT (as well

as SURF) can extract optical flow vectors in (small) areas

with uniform texture. However, it is possible to still see the

presence of a few wrong flow vectors (outliers) caused by

the erroneously-matched descriptors.

In our implementation, we tested several keypoint detec-

tors, being FAST keypoint [28] the one that offered better

results in this scenario.

C. Dense Hierarchical Multi-Affine (dHMA) optical flow

We adopted two dense optical-flow methods that were

proved to have a reduced outlier ratio when compared to

SIFT and SURF, especially when applied to endoscopic

images. In particular, we adopted HMA [29], [30] and

dHMA [31]; the latter can (densely) estimate the optical flow

vectors over the entire image, and thus cover large textureless

areas. Differently from other dense optical-flow methods that

take tens of seconds, HMA and dHMA almost runs in real

time (∼ 80ms for HMA, and ∼ 1sec. for dHMA) in our

MATLAB implementation.

Both HMA and dHMA match sparse feature descriptors1

while eliminating the majority of outliers by means of a

robust hierarchical estimation of multi-affine transforma-

tions. dHMA has an additional step in which the resulting

inliers are given in input to a Gaussian-Process regression

stage [32] that estimates a dense mapping function. This

function (or the multi-affine maps from HMA) model the

non-rigid motion of a given set of image points over the

entire image (ideally, for every pixel).

Figure 1(f) shows the optical flow vectors calculated by

dHMA for a pre-defined grid of image points. Since these

points do not necessarily coincide with image features (e.g.,

corners), the resulting optical flow can be computed over

large textureless areas, and with few outliers. Compared to

the aforementioned optical-flow estimation methods, HMA

and dHMA have great accuracy, can eliminate outliers, are

automatic, and require very minimal number of tuning pa-

rameters from the user. Our previous results [31] experiments

showed that dHMA can achieve a slight better accuracy than

HMA.

1In our implementation, HMA and dHMA uses SIFT descriptors.

(a) (b)

Fig. 2. Spatial partitioning rules for creating the optical flow descriptors
from an optical flow field. (a) Grid-based partitioning. (b) Lumen-centered
partitioning.

III. FLOW DESCRIPTORS AND LOCALIZATION STRATEGY

The proposed method estimates the 6 DOF change in pose

of the endoscope camera tip using only optical flow data

computed as described in Sect. II. The scene viewed by the

camera is assumed to be static between two frames; this is

a valid assumption since large-scale motion in the colon is

limited to haustral contractions (i.e., motion which moves

the contents of the colon forward). These movements occur

relatively rarely (once every 30 minutes) [33]. Regardless,

specialized control loops using histogram analysis and other

heuristics can be implemented to mitigate the effects of

sporadic deviations from these assumption.

The optical flow vector field extracted at each time instant

over the entire image is combined into a single representative

vector, referred to as the optical flow descriptor. We examine

two distinct ways of combining the entire flow field at each

frame into a single descriptor: a grid-based or a lumen-

centered partition. These optical flow descriptors, together

with a known metric change in pose of the endoscope, com-

pose the training set for a supervised learning method, specif-

ically, an artificial neural network (ANN). Once trained, the

ANN provides an associative model of the system for real-

time pose feedback; given only the relative motion in the

image, the ANN is able to estimate the change in pose of

the endoscope tip.

A. Feature Descriptor Generation

Figure 3 outlines the process for computing the change in

pose from the endoscopic camera sequence. At times t−∆t

and t, images are captured from the camera.2 These two

images are then used to compute the optical flow according

to the methods presented in Section II.

The entire optical flow is then used to create a single

optical flow descriptor. Two different image partitioning

methods were adopted and compared: a standard grid-based

partitioning (cf., Fig. 2(a)), and lumen-centered partitioning

(cf., Fig. 2(b)).

The grid-based partitioning method divides the image into

a 5x5 grid (i.e., 25 sections) of equal rectangular areas.

The ng optical flow vectors inside each region g of the

2A mask was applied in order to only include the effective pixels in the
image in the algorithm, and disregard any text present in the image.
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Fig. 3. Flow diagram for the proposed method for comparing methods of optical flow (Lucas-Kanade vs. Scale Invariant vs. Dense Hierarchical Multi-
Affine) and partitioning (grid-based vs. lumen-centered) and their use with artificial neural networks for pose estimation.

whole grid-based partitioning GG are used to calculate two

elements of the flow descriptor as follows:

rg =

∑ng

i=1

√

dx2
i + dy2i

ng

, θg =

∑ng

i=1
atan2(dyi, dxi)

ng

where rg is the average over all the lengths of optical flow

between corresponding features in region g, and θg is the

average orientation of the flow-field vectors in region g.

The lumen-centered partitioning method utilizes similar

descriptors defining 5 regions divided based on the structure

of the colon. The first region is computed based on the

lumen; the image is histogram equalized and thresholded to

extract the darkest portion of the image, corresponding to the

lumen. To delimit the other four regions of the colon, the

image is segmented vertically and horizontally based on the

centroid of the lumen to divide the image into 4 quadrants.

The four remaining regions are defined as the portions of

these quadrants not including the area defined as the lumen.

Note that before computing the average, a median operator

was initially applied to reject possible outliers flow fields

(i.e., vectors with an erroneous orientation with respect to

the majority). In order to form the feature descriptor vector

for the entire image, the two elements (rg, θg) for each

of the grid spaces are concatenated into one single feature

descriptor of size 50 (i.e., 2 elements for each grid region).

B. Neural Network Training and Usage

The obtained optical flow descriptors are then used as

the inputs to multi-layer feedforward ANN, which is able

to learn complex nonlinear input/output mappings [34].

Levenberg-Marquardt backpropagation [35], [36] was used

to adjust the weights of the neural networks (i.e., train the

ANN). The topology of each of the neural networks was

chosen to be 2n+1 hidden layer architecture [37], where n

indicates the dimension of the inputs to the neural network

(i.e., the number of nodes in the feature vector). This

corresponds to neural network architectures 50×101×6 for

grid-based partitioning, and 10×21×6 for lumen-centered

partitioning.

The ANNs were trained by first dividing the training set

into 3 subsequent sets: a training set (85% of the training

data), a validation set (10% of the training data), and a

testing set (5% of the data). During training, each example

in the training set is forward propagated through the neural

network, producing an estimate of the change in endoscope

pose. Using the ground truth target data, the mean square

error is generated, which is then used to adjust the weights

of the ANN. Early stopping was used in order to avoid

overtraining the neural networks.

Once a trained neural network is produced, testing of

the performance of the neural network proceeds similarly.

Each optical flow descriptor in the testing set is forward

propagated through the neural network, which then produces

an estimate of the relative motion (i.e., the output of the

neural network is the change in pose) of the endoscope.

IV. EXPERIMENTAL RESULTS

In order to test the validity of the approach, a controlled

setup was used in order to evaluate the performance of

the algorithm in an artificial scenario (a straight endoscope

motion in the colon) and by attaching the endoscope to

a robot’s end effector to precisely record its motion. This

was done in order to mimic the most common and likely

movement of a teleoperated robotic endoscope.

The performance of the neural networks was then eval-

uated based on the means, standard deviations, and the

evaluation of the overall trajectory of the integrated estimates

against the ground truth obtained by the robot’s encoders.

A. Validation Benchtop for 1 DOF

The purpose of this experiment was to test the proposed

approach in one DOF and to determine the most effec-

tive combination of features/optical flow algorithms with

the highest accuracy in estimating the change in pose of

the endoscope tip from camera motion. The experimental

setup utilizes a Karl Storz endoscope (13803PKS; Germany)

rigidly attached to an industrial robotic arm (±20µm re-

peatability, RV-6SDL; Mitsubishi Corporation; Japan). The

experimental platform is shown in Figure IV.

Using control software written in C++, at each time step,

positional commands are sent to the robot using TCP/IP

ethernet protocol, which actuates the robot along the optical

5389



Endoscopic 

Column 

Endoscope 

Robotic Arm 

Image Acquisition 
Endoscope 

Tip 

Colon 

Simulator 

Fig. 4. Experimental setup replication movements of a teleoperated
endoscope in a human colon simulator.

axis of the camera (the optical axis of the camera is aligned

with the x-axis of the robot). The endoscope moves along

a trajectory in the plastic human colon simulator (shown in

Figure IV) in increments of ∼ ±0.3mm from 0.3mm to 4mm

for 20 iterations each. This resulted in a data set of size

260, corresponding to 549mm of total movement. After a

one second time delay to avoid oscillation in the image due

to the actuation, the resultant frame is captured through a

frame grabber (EasyCAP; USB EasyCap Co., China) via S-

Video from the Karl Storz endoscopic column, alongside the

corresponding position of the robot. This is repeated until

the entire trajectory was completed.

Thanks to the rigid connection to the robot, the instan-

taneous motion can be easily deduced from the robot’s

encoders with high accuracy. This large dataset is then

subsampled into two mutually exclusive groups for the

training and testing data, using two-thirds of the data for

training, and one-third of the data for testing. The dataset

only includes straight sections of the colon. Since the weights

of ANNs are randomly generated, and are not guaranteed to

converge to a global minimum, 100 ANNs were generated

for each optical flow/partitioning method. Using the means

and standard deviations as a basis for evaluation, the best

ANNs were chosen to perform the estimations.

B. Experimental Results and Discussion

Figure 5 shows the pose estimation capabilities for each

of the optical flow methods using grid-based partitioning

and lumen-centered partitioning for 1 DOF robotic actuation

along a straight section of the colon. Figure 5(a) shows the

mean and the standard deviation of the incremental pose

error (i.e., between the output of the ANNs and the ground-

truth endoscope motion) for the grid-based partition. The

two dense optical flow methods performed similarly, with

an average absolute mean of 1.3mm±1.9mm error over the

moving direction (X axis), and outperformed the ANNs

resulting from the sparse optical flow methods. The absolute

mean errors using these methods spanned to 14.6mm using

FAST with SURF descriptors. Note in Figs. 5(a) and 6(a),

that the translation errors along the Y and Z axis are zero,

suggesting the ANNs capability to correctly identify the

moving direction. Moreover, our orientation errors were zero

Methods 

X Y Z 

E
rr

o
r 

(i
n

 m
m

) 

25 

20 

15 

10 

5 

0 

-5 

(a)

Trajectory Step 

P
o

s
it
io

n
 (

in
 m

m
) 

0 

10 

20 

30 

40 

50 

60 

-10 

0 20 40 60 80 

(b)

Fig. 5. Experimental results with grid-based partitioning. (a) Mean and
standard deviation of error. (b) Trajectory of endoscope as compared with
ground truth of robot encoders.

for both grid and lumen based ANNs, for this reason we

decided to do not include the orientation errors in Figs. 5-6,

as well as to limit our analysis to only the X axis.

For each method using the grid-based partition, the in-

tegration of the estimated incremental positions along the

X axis are shown in Fig. 5(b) to form the entire estimated

trajectory along the forward direction of the endoscope

during the trial. The dense optical flow techniques are best

able to produce nearly the same trajectory with a final

difference of 3.61mm over 174mm. FAST-SURF performed

the worst, with a deviation of 19.51mm from the intended

trajectory.

As for the performance of the optical flow methods using

the lumen-centered partition, FAST-SIFT, FAST-SURF, and

dHMA all perform similarly, with approximately 4-5mm

of mean absolute error over the entire test set. However,

unlike the grid-based partitioning, the LK method is able to

achieve the lowest absolute mean error (0.31mm), although
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Fig. 6. Experimental results with lumen-centered partitioning. (a) Mean
and standard deviation of error. (b) Trajectory of endoscope as compared
with ground truth of robot encoders.

it also possesses the highest standard deviation (±4.6mm).

On the other hand, HMA results in a slightly higher mean

error (1.45mm), but the standard deviation is much smaller

(±2.55mm).

Figure 6(b) demonstrates performance of these algorithms

over time when the changes in position are integrated to form

an entire trajectory. As shown, the mean of each algorithm

appears to correspond to an offset from the ground truth

data. For example, HMA, with a small mean and standard

deviation, is able to closely follow the trajectory until time

step 63. FAST-SIFT, FAST-SURF and dHMA exhibit larger

offsets during the trajectory, more evident during changes of

direction (peaks). Noteworthy is the performance of the LK

optical flow, whose sparse nature causes large standard devi-

ation causes unpredictable behavior in the motion estimation,

thus resulting in an unpredictable localization estimate.

Overall, the grid-based partition produces two of the

neural networks with the lowest error and smallest standard

deviation over both partitions; however lumen-centering par-

titioning appears to standardize the scene, which results in

lower error over all of the optical flow methods.

It is important to note that these results are dependent

on the training of the neural networks. Although 100 trials

were used in order to select the best neural network for each

optical flow/partitioning method, a more exhaustive number

of trials or averaging the outputs of all these neural networks

may represent a more reliable solution for comparing these

methods.

V. CONCLUSIONS AND FUTURE WORK

Colorectal cancer affects the lives of millions of people

worldwide; although almost always preventable, patients

avoid recommended colorectal cancer screening due to fear

of discomfort, and the perceived indignity of the procedure.

Teleoperable flexible endoscopes are emerging as a novel

method to abate these hindrances, but require closed-loop

control due to the complexities of the environment of the

colon. Pose detection using only the endoscopic camera

stream represents a favorable solution to this problem, since

it uses only components native to the endoscope, and can be

implemented across all teleoperable endoscopic platforms.

The proposed approach estimates the change in pose of

the endoscope by extracting the optical flow, the motion

between two sequential images. Five methods of calculating

the optical flow were compared: LK, FAST-SIFT, FAST-

SURF optical flow, HMA, and dHMA based on their ubiquity

in usage. Additionally, two partitioning methods - grid-based

and lumen-centered - were then compared to create single

optical flow descriptors for the optical flow in the entire

image. To produce a metric measurement of the change in

pose, an ANN was trained based on these inputs and the

known pose change of the endoscope.

This algorithm was then tested using an endoscope rigidly

attached to a robotic arm to mimic the expected movements

of a teleoperable flexible endoscope. The experiment was

performed on a human colon simulator in order to resemble

the endoscopic environment. Using the grid-based partition-

ing method, the dense optical flow algorithms were the most

accurate (1.3mm±1.9mm error; final difference in trajectory

3.61mm over 174mm).

Regarding the lumen-centered partitioning, the LK optical

flow resulted in the lowest mean error; however, the im-

precision of the algorithm caused large fluctuations in the

overall integrated trajectory. HMA provides the best perfor-

mance with lumen-centered partitioning (1.45mm±2.55mm);

it has the smallest standard deviation, and is able to closely

recreate the trajectory as given by ground truth. Between the

grid-based partitioning and the lumen-centered partitioning,

the grid-based partition produces the two best performing

neural networks as measured by their means and standard

deviations; however, the lumen-centered approach appears to

standardize the image, resulting in an overall lower average

error among all the techniques.

Future work includes investigating other robust, stable

features for detecting optical flow in the colon, investigat-
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ing other descriptor for representing the optical flow, and

finding the optimal method for mapping the optical flow

to the change in pose of the endoscope. Furthermore, more

extensive analysis needs to be done to quantify the sensitivity

of the ANNs to the size of the training set, as well as the

robustness to optical flow ambiguities caused by different

motions with similar optical flow. Additionally, in-vivo trials

will be performed in order to analyze the performance of

the algorithm on human colon tissue. From this, the impact

of haustal contractions and small movements of the colon

can be assessed. The performance of our algorithm indicates

that pose detection via supervised learning of optical flow is

a feasible feedback mechanism for implementing closed-loop

control of teleoperated flexible endoscopes.
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