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This  work  presents  a  development  system,  based  on  Field  Programmable  Gate  Array  (FPGA),  that  was
specifically  designed  for  testing  the  entire  electronics  to  be  integrated  in an  endoscopic  capsule,  such  as  a
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camera,  an  image  compression  engine,  a high-speed  telemetric  system,  illumination  and  inertial  sensors.
Thanks  to its  high  flexibility,  several  features  were  tested  and  evaluated,  thus  allowing  to find  the optimal
configuration,  in  terms  of  power  consumption,  performances  and  size,  to be  fit in  a capsule.  As  final  result,
an average  frame  rate  of  19 frame  per  second  (fps)  over  a transmission  channel  of  1.5  Mbit/s  was chosen
as  the  best  choice  for  the  development  of  a miniaturized  endoscopic  capsule  prototype.
ireless Capsule Endoscopy
ensor

. Introduction

Wireless Capsule Endoscopy (WCE) is an emerging technology
hich is producing a big impact on the practice of endoscopy.

 typical endoscopic capsule is equipped with an imaging sen-
or, an illumination system, an image processor, a radio-frequency
ransmitter and a power source which provides energy to the
hole system [1]. WCE  seems to be superior in the diagnosis of

he small bowel pathologies to other painless imaging modalities,
uch as X-ray, computerized tomographic enterography and mag-
etic resonance enteroclysis, because it provides a direct vision of
ome gastrointestinal (GI) tracts otherwise difficult to reach with-
ut surgery [2].  This technology has helped doctors to diagnose
athologies such as obscure GI bleeding, small-bowel tumours,
rohn’s disease, and celiac disease [3]. Moreover, WCE  reduces
he invasiveness and pain of traditional procedures resulting more
cceptable for patients.

Since its commercial distribution in 2002, different capsules are
ow available on the market [4].  Despite of several enhancements
5], main limitations are still related to core parts such as the vision
ystem. The commercially available endoscopic capsule transmits

he images at the resolution of 256-by-256 8-bit pixels with a maxi-

um frame rate of 7 fps. This frame rate is not enough for a real time
ideo streaming, which is highly desirable for a correct diagnosis.
owever, these limitations must be overcome taking into account

∗ Corresponding author.
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the limited power supply and the maximum dimensions (11 mm
in diameter (d) × 31 mm in length (l)) suitable for a swallowable
device.

Our aim is to develop a WCE  device with real time vision, thus
frame rate at least of 15 fps must be guaranteed in order to avoid
flashing images [6].  Moreover, a high image quality in terms of fea-
ture perception, noise and sufficient illumination has to be assured
to achieve a correct diagnosis.

As a preliminary work, we  developed a versatile development
system, based on an FPGA device, for testing different configura-
tions of some sub-modules which are core parts in the capsule,
such as a camera, an illumination system, but also a high data rate
transmitter and a compressor engine which are crucial to reach the
desired frame rate. The main feature of the proposed system is the
high flexibility, which allows to investigate the whole vision sys-
tem chain and to highlight the critical issues. The FPGA core makes
development system easy-fitting to different configurations which
can be tested without any physical hardware change. This system
can be used as a case study for assessing the optimum configuration
in terms of performance, power consumption and overall dimen-
sions, and to solve the critical aspects before to start the design of
the miniaturized version suitable for WCE  applications.

2. Development system architecture
The system is composed by three units: a dedicated vision
board, a main control board and a third board for debug pur-
poses (Figs. 1 and 2). In the following sections these boards will
be described in details.

dx.doi.org/10.1016/j.sna.2011.01.010
http://www.sciencedirect.com/science/journal/09244247
http://www.elsevier.com/locate/sna
mailto:c.cavallotti@sssup.it
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Fig. 1. Development system with optics and illumination system.

.1. Vision board

The core of the vision board is a custom Complementary Metal-
xide Semiconductor (CMOS) image sensor, called Vector2. The
hip was produced in the UMC  0.18�-CIS (CMOS Image Sen-
or) technology and includes a Quarter of VGA (QVGA) 320 × 240
ixel array with a Bayer Color Filter Array (CFA) up, the com-
lete readout channel, a 10-bit Analog-to-Digital converter (ADC),

 series of Digital-to-Analog converters (DAC) for internal refer-
nces and digital blocks for the chip control [7].  An I2C-like input
s used for setting and control while a serial low-voltage differ-
ntial signaling (LVDS) output interface allows to transmit the
ata. A rolling shutter read-out is implemented in order to max-

mize sensitivity of the sensor. Its high sensitivity, low power
onsumption and a simple control of the full chip make it suitable
or WCE  applications. Taking into account the physical dimen-

ion of the Vector2 sensing area (1.408 mm in horizontal (d) ×
.056 mm in vertical (v)) and the depth of focus from 1 mm to 10
m which is driven by the final application, a commercial posi-

ive focal lens (NT45-589, Edmund Optics, New Jersey, USA) was
hosen, with a focal length of 1 mm and a diameter of 1 mm,  thus

Fig. 2. Top-view block diagram of the three boards. The blocks below the
ators A 172 (2011) 301– 307

achieving a field of view of 82◦ (h) × 61◦ (v). A plastic, unreflective
holder was  also designed in order to fix and align the optical mod-
ule in front of the chip. The vision board allows to connect different
types of illumination systems. Four white light-emitting diodes
(LED) were arranged onto a round shape printed circuit board (PCB).
The design of this illumination system was carried out considering
a trade-off between power consumption, size and the amount of
light necessary for diagnostic purposes. Taking in to account these
features high efficiency LEDs (Nesw007AT, Nichia, Nokushima,
Japan) were chosen with a dimension of 1.2 mm in height (h) ×
2 mm in width (w)  × 1.3 mm in thickness (t) and light intensity of
1000 mcd  with a power consumption of 15 mA@3.3 V [8].

The white LEDs board can be replaced with color LEDs board
with no major design changes in the hardware, in order to obtain
white light by color light combination [9] or to enable spectroscopic
imaging, such as autofluorescence imaging [10]. In these cases, the
color LEDs are controlled by independent driving circuits imple-
mented on the FPGA enabling a precise control on the amount of
light provided to the scene, as will be explaned in more details in
Section 3.1.

2.2. Control board and FPGA architecture

The control board is based on a FPGA which implements the
main functionalities of the whole system. FPGAs were introduced as
an alternative to digital custom Integrated Circuits (ICs) for imple-
menting the entire system on one chip and to provide flexibility
of re-programmability to the user [11]. Therefore, thanks to its
high-flexibility and low cost, FPGA represents the best choice for
testing different solutions to select the optimal for our application.
A detailed benchmark analysis was  carried out to choose an FPGA,
suitable not only for testing purpose but also to be integrated in
a future miniaturized version of the system, which will be fitted
in an endoscopic pill. As consequence, parameters such as power

consumption, physical size and overall gate count were taken into
account. A compact system from SiliconBlue (iCE65L08) was cho-
sen being 4.79 (h) × 4.37 (v) mm in size with a very low power
consumption (12 mA@32 MHz). These features make the iCE65L08
suitable to be fit in an endoscopic pill.

 dashed line will be integrated in the wireless endoscopic capsule.
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In order to have a real time video streaming, a frame rate of
t least 15 fps is needed. However, increasing the amount of data
auses huge increase in power consumption in the RF transmission
12], that is the main constraint in WCE. Hence, applying image
ompression is necessary for limiting the transmission workload
nd saving the power dissipation.

A compression engine which is well suited for WCE  must
ave low power consumption, logic resources and limited mem-
ry size needed for the compression. Current JPEG compression
hips require the availability of a considerable amount of hardware
esources resulting in a high power consumption (typically more
han 100 mW),  which is not acceptable in this application [13].
mong simple dedicated algorithms, we chose the low-complexity
ompression engine developed by [14] because its performances
re comparable with JPEG2000, but lowering the complexity allow-
ng its implementation on the chosen FPGA.

The FPGA is also used to distribute the clock to the whole sys-
em. The image sensor is then driven by a 8 MHz@1.8 V clock,
hile the FPGA internal logic by a 16 MHz@1.8 V with an external

2 MHz@3.3 V oscillator in input to the FPGA.
As in Fig. 2, several logic blocks were implemented on the FPGA

n order to carry out some basic tasks such as the Vector2 config-
ration, the image acquisition and illumination control. Moreover,

 simple PC-based software allows the user to configure the FPGA
nd the vision chip and to show the acquired images on screen
hrough the USB connection. The Vector2 configuration task is per-
ormed by the USB Interface, the Instruction (n.b.) Control and I2C

aster blocks. The configuration data, sent by the user through the
eveloped software, are received by the USB Interface block that

nterconnects the FPGA with the external Cypress FX2 USB con-
roller. The Instruction Control block decodes the instructions and
ends the configuration data to the I2C Master block. Finally, the I2C
aster configures the Vector2 chip through the I2C bus. The Instruc-

ion Control block sends configuration data also to the LED Driver in
rder to control the LEDs and the amount of light provided to the
cene, as it will be explained in Section 3.1. After the configuration
hase, the Vector2 Receiver decodes the data acquired by the vision
hip, converting the LVDS signals to a 10-bit parallel format. Then
he acquired frames are stored in the external SRAM chip, which is
sed as a frame buffer. The memorized frames can be read from the
RAM by the Memory Controller block and sent to the PC through
he USB Interface block and external USB controller.

The logic blocks implemented in this configuration are written
ith VHSIC Hardware Description Language (VHDL), and use 31%1

f the total FPGA (2400 logic cells) and can operate at a maximum
requency of about 41 MHz. The power consumption of the devel-
ped system is less than 360 mW and it splits as follows: 40 mW
or the Vector2 chip, about 10 mW for the FPGA and 310 mW for
ebug blocks which will be not foreseen in the final miniaturized
rototype.

.3. Debug board

The system is also equipped with a debug board to increase the
exibility of the system. The board is equipped with the Cypress
X2 USB controller that provides high-speed connection and fully
onfigurability by the integrated 8051 microcontroller. The debug

oard is also equipped by the Cypress CY7C1339G SRAM chip that

s used as frame buffer for the acquisition of images from the sen-
or chip and to store additional data for image processing. Finally,
everal connectors are used to monitor each pin of the FPGA. The

1 We use the logic cells as a measure of the FPGA resources occupation. The pre-
ented area occupation refers to the basic configuration, without the compressor,
rightness control block or wireless transmitter block.
Fig. 3. Acquired images from different gastrointestinal tracts, during ex vivo tests.

purpose of this board is to provide a real time debug platform for the
whole demo system. A PC-based software is used to set up the reg-
isters of the FPGA and of the Vector 2 chip and to monitor the status
of the system through the USB connection. The acquired images are
stored in the SRAM, sent to the PC and shown on the screen. Finally,
the USB connection is used also for the control of the illumination
and the LED drivers.

3. Tests and sub-modules integration

Some experiments were done to test separately and finally
together each sub-module which will be integrated in the final pill.

3.1. Images acquisition and brightness control

At first, images from ex vivo animal tissue were acquired using
the vision board, with the optics and white illumination, in order

to define the imager and illumination control settings necessary to
achieve a suitable image quality for diagnostic purposes (Fig. 3(a)
and (b)). A simple LED driver was implemented in the FPGA able
to set the amount of light driving the LEDs by a Pulse Width Mod-
ulation (PWM)  technique. The LED driver switches on and off the
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Fig. 4. Image blocks used to brightness leve

llumination during the integration time of the optical sensor, thus
odulating the average current provided to the LEDs. The length

f the current pulses provided to the illumination system and their
umber are set by a few internal registers, which can be modifided

n real time with the USB connection. However, the illumination
s switched on only when the optical sensor is in its integration
hase in order to avoid flickering effects. In the case of RGB LEDs,
hree drivers controlled by three different groups of registers are
mplemented on the FPGA in order to drive each group of LEDs
ndependentely. Since in a real application such as WCE, it is not
esirable to manually set the proper amount of light, we also imple-
ented an automatic brightness control system.
In modern vision systems, the brightness of the acquired images

epends on several factors. Among others, the most important ones
re the lens, the sensitivity and integration time of the vision sensor
nd the illumination. In our prototype the lens is chosen based on
he field of view and size requirements, while the integration time
f the sensor is fixed in order to achieve the desired frame rate. As a
onsequence, we can set the brightness of the images by controlling
he amount of light provided to the scene. This is equivalent to con-
rol the exposure time in standard digital cameras. Exposure control
lgorithms typically divide the acquired image in several blocks and
ompute the average luminance signal in each block. Then the block
uminance values are combined with different weights in order to
stimate backlit or frontlit scene [15]. Since in our application the
nly possible case is the frontlit because the only source of light are
he LEDs, we decided to compute the average luminance signal of

 single 128 × 128 pixels block in the centre of the image (Fig. 4).
oreover, we cannot compute the luminance values of the pixels

ecause of the Bayer CFA mounted on the Vector2 chip and the
ack of the demosaicing block. Consequently, we decided to esti-

ate the brightness based only on the green pixel values because
he green component mostly contributes to the luminance of an
mage [16] and in a Bayer filter their number are double than the
ed and blue ones. The brightness control block reads the pixel
alues recovered by the receiver and drives the LED driver block
ccordingly with the estimated brightness level. Hence, the LEDs
ntensity is controlled to maintain the brightness within a defined
nterval. The LEDs are driven by the defined sequence of current
ulses only during the sensor integration time in order to min-

mize the power consumption. This strategy allows not only to

ccurately control the amount of light provided to the scene but
lso to simulate a global shutter. The entire sensor starts gathering
ight when the LEDs are turned on, while the contents of the sen-
or are read out when they are turned off, thus minimizing image
rtefacts [17].
ation and brightness control architecture.

The FPGA implementation of the proposed brightness control
block uses 320 logic cells, while the impact on the maximum clock
frequency is minimal.

3.2. Column pattern noise correction

The CMOS imagers often suffer from Fixed Pattern Noise (FPN)
[18]. FPN is a non-temporal spatial noise, and it is caused by the
non-uniformity of the transistor’s characteristics within the pixels
and the column amplifier, this resulting from fabrication process
tolerances.The pixel FPN noise is usually removed at the pixel level
by hardware subtraction, while a way to eliminate the column FPN
is a subtraction between the acquired image and a reference dark
image. This simple method requires that the dark image is acquired
and stored into the FPGA or in the external SRAM. Since a full
frame cannot be memorized inside the FPGA because of the lack
of memory and in the real application it is not desirable to use an
external SRAM, we developed and tested an alternative version of
the algorithm that reduces the memory requirements. Our idea is
to compute the mean values of the even and odd rows of a dark
image and to recursively subtract these from the acquired images.
In this way, the memory requirements of the architecture can be
reduced to two  rows only (2 × 320 × 10 bits). We  compute two dif-
ferent mean values for even and odd rows because the CFA mounted
on the imager uses a pattern of 2 × 2 pixels.

At first, the illumination is switched off and the FPGA starts to
acquire a dark image. Each couple of rows is accumulated in a two-
rows memory inside the FPGA. At the end of the acquisition, the
average values are computed. Then the LEDs are switched on and
when the next image is received by the FPGA, the reference dark
rows are substracted from each couple of row acquired. Fig. 5(a)
shows the image with the FPN, while Fig. 5(b) shows the result
of the correction strategy. The resulting image is better in terms
of perceived resolution. In order to evaluate the effectiveness of
our algorithm we  calculated the standard deviation of the origi-
nal image and the elaborated one. Since the fixed pattern noise
is a short-range noise, we  acquired a white image with an uniform
illumination in order to exclude the contribution of image contrasts
and dark fixed pattern noise. We  observed that the standard devi-
ation of the image after elaboration is 20% less than the original
one.
3.3. Compressor implementation

In order to fulfil the frame rate requirements, a image com-
pressor was  implemented on the FPGA. Several compressors were
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Fig. 6. Acquired images before and after compression.

An FPGA-based development system was  designed in order to
Fig. 5. Original image and denoised image with reconstructed dark image.

ested [13,19] taking into account the power limitation and small
ize conditions which are the main features of WCE. For these rea-
ons, a low-power, low-complexity lossy compressor specifically
eveloped for capsule endoscopy was chosen [14]. The imple-
ented compressor is based on integer version of discrete cosine

ransform (DCT) and performs sequentially four operations: color
ransformation, image transformation, coefficients quantization
nd entropy coding. This configuration consumes about 77% of the
esources of the FPGA and 25 block RAMs and can work at a fre-
uency of up to 39 MHz.

Finally, the results of the implementation of the chosen com-
ressor can be seen in Fig. 6(a) and (b) . The first picture shows
n image acquired with an integration time of 50 ms  and LEDs
witched on for 25 ms,  while the second one shows the same image
fter the compression stage with a ratio of about 8. As can be seen,
he compressor introduces some artifacts due to the lossy nature of
he compression algorithm, but the quality of the image is sufficient
or diagnostic purposes. As a final remark, it can be noted that the

ompression ratio can be set through a proper choice of the com-
ressor parameters, thus allowing the reduction of the amount of
ata between 8 and 20 [14].
Fig. 7. Miniaturized prototype.

4. Conclusions and future works
test a complete wireless imaging acquisition chain suitable for
WCE. The final goal is to achieve a smooth real time video stream
with at least 15 fps and low power consumption.
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The main challenge faced integrating the system, in order to
nable a real time diagnosis, was related to image compression and
ireless video stream transmission vs. the original data payload.

After the analysis of several wireless technologies [20], we
ecided to implement the transmitter presented in Ref. [21]. The
hosen solution is based on near-field technology and presents the
est performance in terms of data rate and the best efficiency in
erms of power consumption vs. data rate [20], enabling a trans-

ission of 1.5 Mbit/s with a power consumption of 2 mW@1.8 V.
Since the Vector2 imager resolution is a QVGA and each pixel is

ecoded by 10 bits, the original amount of data for each frame is
68 kbit. Considering an average compression ratio of 10, the min-

mum frame rate is 19.53 fps with an overall power consumption
f 90 mA@3.3 V and 26 mA@1.8 V.

Considering the results obtained with the development system,
 miniaturized version was designed and now under test (Fig. 7).
he prototype consists of two boards connected by a permanent
exible interconnection with a diameter of 9.9 mm in order to
t in a pill case with an inner diameter of 10 mm.  Moreover, the
dditional three flexible circuit parts allow the connection of other
oards with components required by the system, such as battery
r wireless power supply [22] and inertial sensors [23].
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