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Abstract
A new method for the calibration of multi-axis, linear and redundant force
sensors is presented. This new procedure, named device hyperplane
characterization method, is inspired by the shape from motion method for it
reduces the burden represented by the need for a huge number of force
measurements, typical using least-squares methods, in order to reject errors
during the calibration procedure. The proposed technique is an application
of the rank theorem and achieves good noise rejection without much time
consumption focusing on sensor output measurements, and reducing the
effect of disturbances operating the projection of raw output data on the
hyperplane to which measurements are ideally compelled to belong in the
case of redundant sensors.
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(Some figures in this article are in colour only in the electronic version)

1. Introduction

Force sensor calibration procedures have to be accurate and
time effective. Traditional least-squares calibration methods
perform with high accuracy [1, 2], but outputs recording
require the precise application of a wide set of known forces
carefully selected to adequately span the space of the sensor
[3, 4]. The shape from motion method [3, 5] performs with
accuracy comparable to traditional least-squares methods, but
eliminates the need for explicit knowledge of all the applied
load vectors, yielding fast and precise calibration results. In
such a method [3], a constant-magnitude force (a mass in
a gravity field [6]) is randomly moved through the sensing
space of the sensor while raw data are continuously gathered.
Operating singular value decomposition, the calibration matrix
of the sensor is calculated by using only one known force,
thus reducing the burden of data collection for applied forces.
Besides, such an approach is efficient if the maximum force
applicable to the sensor does not depend on its direction. In that

case the external stimulus can be provided by simply attaching
a compact proof mass to the end effector of the device.
Differently, if force limits vary with respect to the direction
of the force, two solutions may be considered: building a
physical bond which would produce an adequate non-spherical
force distribution or, alternatively, using a spherical distributed
stimulus attaching a proof mass upper limited by the minimum
applicable force. Both these operations have limitations: in the
first case building a non-spherical force distribution may be a
complex operation, and the second solution may be inadequate
due to the reduced applied force (at least in one direction) with
respect to the full-scale one.

In this work, a new force sensor characterization method
is proposed. The procedure has been proved to be accurate and
time effective for a linear and redundant (i.e. higher number
of transducers with respect to the unknown load components
[7]) triaxial force sensor having a cylindrical working range.
The method, reported in section 4.1, is tested on a force
sensor belonging to the family described in [8], which was
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Figure 1. SEM image of the sensing chip.

Figure 2. Piezoresistor orientations with respect to the chosen
reference system.

characterized in [9] using a traditional least-squares method.
The main idea of this new procedure is to characterize the range
space of the sensor calibration matrix since the investigated
device is linear and redundant, and so output data have to
belong [7] to a hyperplane of R

4; hyperplane characterization
is a time effective output focused operation, given that it does
not require any knowledge of applied forces. Only three force
measurements are strictly needed in order to obtain calibration
matrices with good noise immunity, thanks to the operation
of projecting raw output data on the characteristic hyperplane
of the sensor. In section 4.4, results obtained in such a way
are compared to those achieved using least-squares methods,
which are summarized in section 3.6. This new method, as
outlined in sections 4 and 5, is also useful to automatically
check if the device is working properly (i.e. according to
the previously performed characterization) in its structured
environment [1, 2, 10, 11] without the need to apply known
forces to the sensor.

2. Sensor description and calibration setup

The sensor investigated in this work has been presented in
[8, 12], and characterized in [9] using a least-squares
procedure. It is a redundant [7] triaxial force sensor. It
consists of a sensing chip (figures 1 and 2) that comprises
four tethers whose axes are perpendicular to each other, and
a cylinder, located at the centre, which transmits the force.
Four bar shape p-type piezoresistors (figure 3), positioned in
high stress areas of the bottom side, are used independently
in order to measure the three components of an applied force
through fractional changes in resistance. Therefore, the three
components of an external force, applied on the cylinder, can
be obtained from the four fractional changes in resistance of

Figure 3. Bottom side of the sensor, showing the four piezoresistor
locations.
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Figure 4. Schematic view of the signal conditioning electronics.

the piezoresistors implanted in each tether. In particular, a
normal force will result in a uniform variation of the all four
fractional changes in resistance, while a tangential force, e.g.
directed along the X-axis of figure 2 will determine opposite
behaviour of the fractional changes in resistance of R2 and
R4, while it will not affect R1 and R3.

The sensor, whose dimensions are 1.5 mm × 1.5 mm ×
0.65 mm, is connected to a carrier chip by flip chip bonding.
In this way the device can be connected to the external
instrumentation by means of wire bonding. The conditioning
electronics (figure 4) is the same as described in [8]: each
piezoresistor (RX, where X = 1, . . . , 4) is independently
conditioned using a quarter Wheatstone bridge configuration,
composed by two precision 1 k� resistors and one trimmer,
in order to adjust the initial offset level. The bridge output
signal is led to an instrumentation amplifier (AD620, Analog
Devices, Norwood, MA, USA) which converts the signal from
differential to single ended and provides a gain A = 420.
Considering a balanced bridge (i.e. at the bias point R1PCB =
R2PCB = Rtrim = RX = R), the output of the circuit is

VOUT = A · Vwb · �R

4R + 2�R
≈ A · Vwb

�R

4R
. (1)

The resistance variation �R of each piezoresistor can be
obtained once the output voltage VOUT of each channel is
known. Data acquisition is performed using a DAQ Card (NI
6062E, from National Instruments, Austin, TX, USA) while
operating load–unload cycles to the sensor as presented later
in section 3.2 using the test bench described in [9].
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3. Characterization methodology

3.1. Theoretical considerations

The main purpose of this work is to investigate the
methodology that can be applied in order to obtain a functional
relation between input and output of a linear redundant [7]
triaxial force sensor. From a systemic point of view, the
input applied to the sensor is the force vector F , and the
output is the vector R of four fractional changes in resistance,
obtained from the voltages collected between two nodes of
each Wheatstone bridge:

F =

Fx

Fy

Fz


 (2)

R =




�R1
R1

�R2
R2

�R3
R3

�R4
R4


 . (3)

The functional relation which describes the behaviour of the
sensor may be represented using the application β : R

3 → R
4,

where R
3 is the space of force vectors, and R

4 that of fractional
changes in resistance. Assuming that a linear relation between
input and output exists, the function β may be represented with
a compliance matrix within the working range of the sensor.

Although from a physical point of view the input signal
is the applied force, and the output is the vector of fractional
changes in resistance, from a functional perspective the sensor
would be used to recognize the input force. This theoretical
symmetry allows us to consider the vector of forces as an
independent variable, and the vector of fractional changes
in resistance as a dependent variable, or vice versa. In the
latter case, since the sensor is redundant, fractional changes
in resistance vectors have a constraint because they ideally
belong to a hyperplane of R

4. Those two opposite points of
view give the two linear relations (4) and (5), where B is a
uniquely determined 4 × 3 matrix (the aim is to evaluate it,
according to a certain optimum criterion), and A is a 3×4 one
(A matrix can be chosen in various suitable ways, as explained
in section 3.3.3):

F = A · R (4)

R = B · F . (5)

3.2. Characterization protocol

The protocol used to characterize the sensor gives a fixed
number of measurements near each point of a discrete set of
values of applied forces. A force is said to belong to the load
scheme X, Y or Z if Fx, Fy or Fz is much greater than the two
remaining components, respectively.

When a force is applied during the characterization
session, the test bench is used in such a way to guarantee that
the applied force pertains to a certain load scheme, having a
set of measurements with Fx � Fy and Fx � Fz, or Fy � Fx

and Fy � Fz, or Fz � Fx and Fz � Fy . In this way, if forces

belong to load schemes X, Y and Z, the R
3 space could be

generated by linear composition of the imposed force vectors,
and the problem is not badly conditioned, thanks to the quasi-
orthogonality of vectors belonging to different load schemes.
Due to the inevitable imperfect alignment between the axis of
the load cell, and the loaded axis of the sensor, during load
scheme Z, FX and FY are not null even if they are much lower
than FZ . The same phenomenon happens during load scheme
X or Y. This does not represent a problem because the load
cell is a three-axial one, and all three force components are
acquired during characterization.

Forces belonging to the load scheme Z have Fz between
0 N and 2.5 N, while in load schemes X and Y, Fx and Fy are
between 0 N and 0.25 N. This is the reason why the shape
from motion method could not be easily applied to this kind of
sensor. In fact, if a spherical stimulus in the space of forces is
used, its modulus cannot be greater than 0.25 N. Alternatively,
the whole working range of the sensor can be explored using
another kind of force distribution in the space of forces (for
example an elliptical one), but this operation could be very
difficult, given that a geometrical bond has to be built in order
to be sure that the distribution of forces is the expected one.

Each measurement is composed by a load–unload cycle:
data with both the sensor loaded and unloaded are saved.
During the post-processing phase, the difference between each
load and unload measurement is made, in order to minimize
the offset vector without spending much time regulating the
trimmer of each Wheatstone bridge. In the following sections,
Q(= 36) is the total number of measurements.

3.3. Data interpolation methods

3.3.1. Least-squares solution. In order to obtain the 12
coefficients of the matrix B, 12 independent equations are
needed. In the ideal (errorless) case, the interpolation problem
is to find the matrix B which solves, for all i, the equation

Ri = B · F i , where Ri and F i are the vector of fractional
changes in resistance and forces measured during the ith
relevation overall Q, respectively. To obtain 12 independent
equations, three independent forces have to be applied. As
previously mentioned, the number of measurements Q was
36, in order to achieve a satisfactory trade-off between the
error rejection and the data collection time expense.

In this case, since Q > 3, the solution can be in the least-
squares meaning, and it is achieved in the following through
the standard regression technique, described by the relations:

B
LSM

= R · FT · (F · FT )−1. (6)

T is the transposition operator; F and R are the matrices
containing the 3 × Q force and the 4 × Q fractional changes
in resistance measurements, respectively:

F =




F 1
X . . . F

Q
X

F 1
Y . . . F

Q
Y

F 1
Z . . . F

Q
Z


 R =




R1
1 . . . R

Q
1

R1
2 . . . R

Q
2

R1
3 . . . R

Q
3

R1
4 . . . R

Q
4


 . (7)
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3.3.2. Normalized least-squares solution. The least-squares
method minimizes the canonic 2-norm of the residuals matrix
(i.e. R −B

LSM
·F ), but it does not minimize parameters based

on relative error because it overestimates data having higher
modulus. For the sensor inspected in this work, the range of
variability of FZ is ten times greater than those of FX and FY .
In order to take more care of relative error than of absolute
error, the matrix B

NLSM
has also been calculated on the same

data set with the least-squares method, applying the following
normalization:

F → F
n

=




F 1
X√

(F 1
X)2+(F 1

Y )2+(F 1
Z)2

. . .
F

Q
X√

(F
Q
X )2+(F

Q
Y )2+(F

Q
Z )2

...
...

...
F 1

Z√
(F 1

X)2+(F 1
Y )2+(F 1

Z)2
. . .

F
Q
Z√

(F
Q
X )2+(F

Q
Y )2+(F

Q
Z )2



(8)

R → R
n

=




R1
1√

(F 1
X)2+(F 1

Y )2+(F 1
Z)2

. . .
R

Q
1√

(F
Q
X )2+(F

Q
Y )2+(F

Q
Z )2

...
...

...
R1

4√
(F 1

X)2+(F 1
Y )2+(F 1

Z)2
. . .

R
Q
4√

(F
Q
X )2+(F

Q
Y )2+(F

Q
Z )2


 .

(9)

3.3.3. Pseudoinversion. In order to obtain an A matrix,
Moore–Penrose pseudoinversion is applied, since A is not
uniquely determined. In fact, the matrix B transforms the

space of forces R
3 into the space of fractional changes in

resistance B(R3), which is a hyperplane in R
4. The matrix B

can be inverted from B(R3) to R
3, but not from R

4 to R
3.

Let us call A
1

: B(R3) → R
3 the inverse of B. In

a theoretical situation, the fact that the inversion of B is well

defined only from B(R3) would not represent a problem, given
that ideally the sensor should return only fractional changes
in resistance vectors belonging to the hyperplane B(R3).
Nevertheless, dealing with real data, this does not happen,
due to noise, experimental errors and negligible nonlinearities
of the sensor. Thus, fractional changes in resistance vectors
could not belong to the hyperplane B(R3), as represented in

figure 5 for a simplified imaginary R
2 situation. In general,

those vectors will form an angle with the hyperplane B(R3)

which would be as little as noise, experimental errors and
nonlinearities are limited. The matrix A can be defined as
a pseudoinverse of B and written as the product of the two

rank-3 matrices M : R
4 → B(R3) and A

1
, where M is a

projection matrix over the hyperplane B(R3), thus obtaining

A = A
1

· M : R
4 → R

3. In particular, A and A
1

are
numerically the same matrix, but formally they are different
because they represent linear applications having different
domains. As introduced in section 3.3.1 or 3.3.2, B

LSM
and

B
NLSM

can be used as an estimation of B. Then, A
LSM

and A
NLSM

can be calculated through the Moore–Penrose
pseudoinversion of B

LSM
and B

NLSM
respectively.

It is useful at this point to remark that, since B is injective,
a pseudoinverse of B is a left inverse of B, i.e. a matrix

A : R
4 → R

3 such that A · B = I
3

(where I
3

is the identical
3×3 matrix). The Moore–Penrose pseudoinversion calculates

Figure 5. 2D simplification of the hyperplane bond.

A such that B ·A = M is the orthogonal projection of a vector

of R
4 over the hyperplane B(R3). The possibility of estimating

M without previous knowledge of A and B will be used in
section 4 to introduce the new calibration method.

3.4. Compliance matrix regularities

As pointed out in [9], and confirmed here in section 3.6,
coefficients of each (supposed) good estimated matrix B have
the following characteristics: |b2,1| and |b4,1|, belonging to the
first column of each matrix, are at least one order of magnitude
higher than |b1,1| and |b3,1|. This is due to the mechanical
and technological characteristics of the sensor [8, 12],
given that the sensor cross-shape guarantees the mechanical
decoupling of the shear components of the applied load, and
the transversal sensitivity of each piezoresistor is much lower
than its longitudinal one. Moreover, b2,1 and b4,1 are opposite
in sign, due to the fact that a force applied along the X-
axis causes tension in piezoresistor R2 and compression in
R4 or vice versa, according to force orientation. The same
regularities can be found considering the second column of
each matrix B, observing that |b1,2| and |b3,2| are much greater
than |b2,2| and |b4,2|, and that b1,2 and b3,2 are opposite in sign.
The coefficients of the last column, instead, have the same
sign, and all have almost the same magnitude, given that a
force belonging to the Z-axis ideally stresses the sensor in
a symmetrical way. Similar regularities can be highlighted
observing the rows of each matrix A, obtained applying the
pseudoinversion operator to B.

3.5. Error parameters

In order to evaluate the error due to noise, experimental
problems and second-order effects, some parameters have to
be defined.

Let us define the ith modelled fractional changes in
resistance vector as Ri

mod = B · F i
meas, where F i

meas is the
real ith vector of force, measured using the ATI Nano17
F/T transducer. In the same way, the modelled force can
be defined as F i

mod = A · Ri
meas, where Ri

meas is the real ith
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Table 1. Force and fractional changes in resistance error parameters using the least-squares method (LSM) and the normalized least squares
method (NLSM), as described in sections 3.3.1 and 3.3.2. For force ranges see section 3.2.

rms(‖�F‖) rms
(

‖�F‖
‖F‖

)
mean(‖�F‖) mean

(
‖�F‖
‖F‖

)
std(‖�F‖) std

(
‖�F‖
‖F‖

)
mean(αF ) std(|αF |)

LSM 0.009 08 N 9.6% 0.008 29 N 7.57% 0.003 71 N 5.91% 3.28◦ 6.8◦

NLSM 0.009 66 N 8.77% 0.0086 N 7.22% 0.0044 N 4.97% 3.13◦ 5.37◦

rms(‖�R‖) rms( ‖�R‖
‖R‖ ) mean(‖�R‖) mean(

‖�R‖
‖R‖ ) std(‖�R‖) std(

‖�R‖
‖R‖ ) mean(αR) std(|αR|)

LSM 0.001 22 9.13% 0.001 11 7.52% 0.000 511 5.18% 3.34◦ 5.69◦

NLSM 0.001 34 8.71% 0.001 18 7.43% 0.000 637 4.55% 3.2◦ 4.1◦

vector of fractional changes in resistance, measured using the
conditioning electronics, and the data acquisition system, as
described in section 2.

According to the kind (force or fractional changes in
resistance) of input chosen, we can define the residual vector
as �Ri = Ri

mod − Ri
meas or �F i = F i

mod − F i
meas. Some

relevant error parameters are

rms

( ‖�R‖
‖Rmeas‖

)
=

√√√√∑Q
i=1

‖�Ri‖2

‖Ri
meas‖2

Q
(10)

mean

( ‖�R‖
‖Rmeas‖

)
=

∑Q
i=1

‖�Ri‖
‖Ri

meas‖
Q

(11)

std

( ‖�R‖
‖Rmeas‖

)
=

√
rms2

( ‖�R‖
‖Rmeas‖

)
− mean2

( ‖�R‖
‖Rmeas‖

)
(12)

where rms means root mean square. Analogously, also
absolute error parameters are defined, considering rms
(‖�R‖), mean(‖�R‖) and std(‖�R‖). The same parameters
can be defined with respect to force error vectors.

These parameters describe the error (absolute or relative)
linked to the norm of the mismatch between the measured
force and the modelled one.

It is useful to evaluate also the difference between the
direction of the real force and the modelled one, introducing
parameters that describe the error in terms of the angle
cos αi

F = 〈
F i

meas, F
i
mod

〉 · (∥∥F i
meas‖ · ‖F i

mod

∥∥)−1
between those

two ith forces, where 0◦ � αi
F � 180◦, and 〈#, #〉 means inner

product. The mean value and the standard deviation of that
angle are calculated:

mean(αF ) =
∑Q

i=1 αi
F

Q
(13)

std(αF ) =
√∑Q

i=1

[
αi

F − mean(αF )
]2

Q
. (14)

In the same way, mean(αR), and std(αR) have been defined.
Obviously, those error parameters depend both on the data set
and on how matrices B and A have been estimated.

3.6. Experimental results

Examples of both matrix B and matrix A, calculated using
a least-squares (LSM) procedure and a normalized (NLSM)
one, are shown in (15), (16), (17) and (18). Regularities, as
explained in section 3.4, are evident.

B
LSM

=




−0.0049 −0.0906 0.0431
0.1031 0.0028 0.0386
0.0058 0.1063 0.0436

−0.0968 0.0133 0.0488


 N−1 (15)

A
LSM

=

 0.0038 5.3376 0.4412 −4.6184

−5.1023 −0.2955 5.0369 0.2424
6.6381 5.6088 4.7730 5.9239


N (16)

B
NLSM

=




−0.0048 −0.0931 0.0429
0.1033 −0.0018 0.0388
0.0052 0.1108 0.0442

−0.0973 0.0180 0.0489


 N−1 (17)

A
NLSM

=

−0.2243 5.3036 0.6451 −4.6032

−4.9195 −0.3092 4.8573 0.1728
6.6531 5.6167 4.7269 5.8884


 N.

(18)

Table 1 shows error parameters calculated applying LSM
and NLSM to the sensor described in section 2. The two
methods have been applied over the same data set. Solutions in
the least-squares meaning ensure the best rms(‖�X‖), while,
in general, normalized ones give better performances in terms
of rms

( ‖�X‖
‖X‖

)
, mean(αX) and std(αX).

4. Device hyperplane characterization method

4.1. Method description

Matrices B
LSM

and B
NLSM

reported in section 3.6 have rank 3,

and so could not generate the whole R
4, but only a subspace of

R
4 having dimension 3. For example, by applying three force

vectors directed along the principal axes to the matrix B
LSM

,
the following fractional changes in resistance vectors would
be obtained, considering a noiseless condition:


 0

0
0.1


 N →




4.31
3.86
4.36
4.88


 × 10−3 (19)


0.1

0
0


 N →




−0.49
10.31
0.58

−9.68


 × 10−3 (20)


 0

0.1
0


 N →




−9.06
0.28

10.63
1.33


 × 10−3. (21)
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Furthermore, due to the physics of the considered sensor
and to the rank theorem [13], in a noiseless environment,
there is no force stimulus which would produce the following
fractional changes in resistance vector (or multiples of it):


−0.5015
0.4836

−0.5042
0.5103


 × 10−3. (22)

This would mean applying a compression on two opposite
piezoresistors (for example R2 and R4) and a traction on the
other two (for example R1 and R3). Moreover, the rank
theorem guarantees such a property: if the number of inputs to
the sensor is three (the three force components) and there are
no hidden inputs (or eventual hidden inputs remain constant),
then the space which could be generated as an output from the
sensor may have at most dimension 3 in R

4.
Observe that, as confirmed later by the experimental

results in (31) and (32), this means that sensor outputs would
be compelled to belong to an hyperplane. Such a hyperplane
is characterized by its normal n, and the vector of fractional
changes in resistance reported in (22) is then a numerical
estimation of this normal direction.

The main idea of the method described in this
section, called the device hyperplane characterization method
(DHCM), is to use the hyperplane constraint in order to reduce
errors during the calibration phase, exploiting the point that
the sensor output projection along n is due to errors.

The DHCM is composed by the following steps:

• a great number of sensor outputs are gathered in order
to characterize the hyperplane while unknown forces are
applied;

• at least three forces are applied to the sensor and measured
together with the corresponding sensor outputs;

• these last acquired sensor outputs are projected on the
hyperplane;

• the sensor calibration matrices are obtained by fitting the
applied forces and the projected data.

It is relevant to note that, as underlined in [3], data
acquisition is time consuming for forces, but not for fractional
changes in resistance. In order to measure the force that
is applied to the sensor, a calibrated load cell [9] has to be
used, taking care about its relative orientation with respect
to the device under test (DUT). Moreover a coordinates
transformation for forces from the calibrating unit reference
system to that of the DUT is required. Measuring a fractional
changes in resistance vector without knowing the applied
force, instead, simply means using the conditioning electronics
and the data acquisition system while loading the sensor
with random stimuli. So, the most demanding operation in
the DHCM is to measure simultaneously at least three force
vectors and the related fractional changes in resistance vectors.

Before applying the regression, the hyperplane is
characterized without taking care of the applied forces,
considering the fractional changes in resistance R1 . . . RQ

obtained applying random stimuli and searching for the row
vector T = [T1 T2 T3] such that:

R1
4 = T ·




R1
1

R1
2

R1
3


 . . . R

Q
4 = T ·




R
Q
1

R
Q
2

R
Q
3


 (23)

where R
j

i has the same meaning as in (7). The row vector T can
be obtained using a least-squares procedure (or, alternatively,
a normalized least-squares one, as explained in section 3.3.2).
For example, using a least-squares procedure, the result (see
sections 3.3.1 and 3.3.3) is:

T = (
R1

4 . . . R
Q
4

) ·




R1
1 . . . R

Q
1

R1
2 . . . R

Q
2

R1
3 . . . R

Q
3




†

(24)

where † represents the Moore–Penrose pseudoinversion.
The hyperplane is now characterized by the equation

T1 · R1 + T2 · R2 + T3 · R3 − R4 = 0. (25)

The vector

m =




T1

T2

T3

−1




is orthogonal to the hyperplane.
The transformation described in equation (26) returns the

vector n, which is orthogonal to the hyperplane, and of unitary
modulus.

n = m

||m|| = m√
(T1)2 + (T2)2 + (T3)2 + (−1)2

. (26)

Once the hyperplane is characterized and the vector n obtained,
if a certain fractional changes in resistance vector is measured,
the experimental error is statistically reduced applying the
transformation (27).

Rproj = Rmeas − n · nT · Rmeas = (I − n · nT ) · Rmeas. (27)

Observe that

• Equation (27) means that M = I − n · nT is the matrix of

the orthogonal projection of R
4 on the hyperplane

• The matrix M may be obtained using a wide data set,
acquired without spending much time because it requires
only fractional changes in resistance measurements.

As for the shape from motion method [3], for which
only one force measurement is necessary, a reduced set of
force measurements with respect to a traditional least-squares
procedure is needed, but those few forces have to be measured
in a very accurate way. For example, using the shape from
motion method, if the measured force is accidentally scaled
by a factor ρ, or rotated by an angle θ with respect to the
really applied one, the calculated compliance matrix would be
scaled by the same factor ρ, or rotated by θ . Something similar
happens also for the proposed method, given that, if the number
of full measurements decreases, the susceptibility to accidental
errors increases, but, as pointed out later in section 4.4, a
small number of good force acquisitions may ensure good
results. Otherwise, if good force measures are not achievable,
a wider set of trials could be applied, obtaining higher error
rejection with respect to a traditional least-squares procedure,
and achieving almost the same time consumption.
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Table 2. Force and fractional changes in resistance error parameters using DHCM, as described in section 4.1.

rms(‖�F‖) rms
(

‖�F‖
‖F‖

)
mean(‖�F‖) mean

(
‖�F‖
‖F‖

)
std(‖�F‖) std

(
‖�F‖
‖F‖

)
mean(αF ) std(|αF |)

DHCM 0.0108 N 9.05% 0.009 18 N 7.35% 0.005 74 N 5.29% 3.18◦ 6.44◦

rms(‖�R‖) rms( ‖�R‖
‖R‖ ) mean(‖�R‖) mean(

‖�R‖
‖R‖ ) std(‖�R‖) std(

‖�R‖
‖R‖ ) mean(αR) std(|αR|)

DHCM 0.001 52 9.05% 0.001 29 7.72% 0.000 808 4.72% 3.32◦ 4.57◦

4.2. Hyperplane hypothesis validation parameters

In order to evaluate the robustness of DHCM, two other
parameters with respect to those described in section 3.5
have been introduced. Given that, ideally, fractional changes
in resistance vectors have to belong to the characteristic
hyperplane of the sensor, hyperplane bond hypothesis and
sensor linearity as well, are as much verified as the angle
between each measured fractional changes in resistance vector
and the estimated hyperplane is reduced. So, naming those
angles βi

R , mean(βR), and std(βR) have been considered,
where symbols have the same meaning as in section 3.5.
Results are shown in section 4.4.

4.3. Noise rejection properties

Given that the sensor is a redundant one, it has a certain
noise immunity. Assuming that a linear relationship between
input and output exists, and pretending that the characteristic
hyperplane of the sensor is a priori known, measured
fractional changes in resistance have to belong to that
hyperplane. So, a real fractional changes in resistance
measurement can be represented as the sum of an informative
vector and a stochastic vector, having a certain probability
density function. The informative vector has to belong to the
characteristic hyperplane of the sensor, while noise may not
have any privileged/forbidden direction in R

4. So, having
an orthonormal family of 4 × 1 vectors [v1, v2, v3], which
generates the characteristic hyperplane of the sensor, and
considering the vector n defined in (26), which is normal
to the hyperplane, each fractional changes in resistance
measurement Rm can be written as:

Rm = (a1 + nde1) · v1 + (a2 + nde2) · v2

+ (a3 + nde3) · v3 + (nde4) · n (28)

where ai are the informative coefficients, and ndei (which are
characterized by a certain joint probability density function)
describe noise, disturbance and experimental error. Assuming
that each ndei has null mean, increasing the number of
measurements during the characterization session reduces the
error in calculating A and B with a least-squares method.
The device hyperplane characterization method allows to
increase the number of only fractional changes in resistance
measurements without much time consumption. That way,
having first characterized the hyperplane, sensor outputs noise
belonging to the n direction (in R

4) is rejected using the
projection (27) during the few (but 3 at least) force/fractional
changes in resistance measurements. This already happens
using a traditional least-squares method, but measurements
have to be full ones (force and fractional changes in
resistance), making the acquisition of a huge data set very
expensive.

4.4. Experimental results

As shown in table 2, error parameters (defined in section 3.5,
and refined in section 4.2) related to DHCM are almost equal
to those obtained (see 1) using the least-squares procedures
described in sections 3.3.1 and 3.3.2. We stress that in
this approach the full data set was composed by only
three force/fractional changes in resistance measurements.
Moreover, for the reduced (only fractional changes in
resistance, for hyperplane characterization) data set, the
number of measurements was as high as that used previously
in order to obtain B and A with a least-squares procedure. This
way, there was a substantial saving of time for data acquisition,
given that only fractional changes in resistance measurements
were carried out applying a random force to the sensor (there
was no need to take care with load cell alignment).

Matrices (33) and (34) obtained in such a way are very
similar to (15), (17) and (16), (18), respectively. As stated in
section 3.3.3, the calculated (35) projection matrix M has the
following properties:

A · M = A (29)

M = B · A. (30)

Furthermore, the projection matrix M has a null
eigenvalue, related to the eigenvector which is orthogonal
to the characteristic hyperplane of the sensor; all three
other eigenvalues, related to eigenvectors belonging to
the hyperplane, are 1 given that the projection on the
hyperplane of a vector belonging to that subspace of R

4

is the vector itself. As expected, matrix M represents the
identical application for vectors belonging to the hyperplane
of the sensor. Finally, the hyperplane hypothesis is reasonably
validated given that the absolute mean value and the standard
deviation (defined in section 4.2) of the angle between
fractional changes in resistance vectors and the characteristic
hyperplane are less than 1◦:

mean(βR) = 0.506◦ (31)

std(βR) = 0.195◦. (32)

Observe that, according to how angles have been defined,
βi

R � 0 ∀i, so it is normal for mean(βR) to be greater than
zero.

B
DHCM

=




−0.0050 −0.0934 0.0425
0.1020 −0.0043 0.0378
0.0056 0.1115 0.0445

−0.0958 0.0223 0.0499


 N−1 (33)

A
DHCM

=

−0.3222 5.4247 0.8553 −4.5970

−4.9362 −0.3323 4.7844 0.1841
6.7220 5.6122 4.6646 5.8968


 N

(34)
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M
DHCM

=




0.74819 0.24226 −0.25284 0.25648
0.24226 0.76693 0.24325 −0.24676

−0.25284 0.24325 0.74612 0.25754
0.25648 −0.24676 0.25754 0.73875


 (35)

5. Conclusions

A new calibration method for redundant linear force sensors
has been proposed in this paper. The device hyperplane
characterization method guarantees an accuracy which is
similar to that achievable using traditional least-squares
methods and is time effective, requiring, like the shape from
motion method, only a few precise force measurements. This
method is inspired by the shape from motion method [3, 5] and
collaborative calibration [14] since it reduces the burden of
data collection and considers sensor calibration as an output
focused problem. Furthermore, according to the kind of
sensor, it may require a simpler test bench with respect to shape
from motion, given that there is no need for any geometrical
bond for applied forces.

The results shown in this work may be improved,
using better conditioning electronic circuitry, reducing the
bandwidth of the output signals (for static characterization,
only the DC value of each signal is needed), or applying
a low/medium frequency sinusoidal supply voltage signal,
instead of the DC polarization used here. That way, there
would be no static polarization of the resistors, and the effect
of flicker noise [15] would be reduced; each informative
signal may be obtained using a differential amplifier followed
by a demodulation system. That kind of conditioning
electronic circuitry (similar to chopper [16] amplifiers or to
DSB-SC modulators–demodulators) would not have particular
limitations both for static and dynamic force sensing, and
would increase the SNR (signal-to-noise ratio) with respect to
the simpler one used in this work.

Finally, the method proposed here suggests a time
effective geometrically inspired way for calculating calibration
matrices, given that it is based on the hyperplane constraint,
allowing rapid and precise calibration and real time monitoring
of the proper functioning of the sensor. For instance, using
relations (29) and (30) for M , this method may also be used to
check if the sensor is working properly in the case that some
parameter (temperature, humidity, etc) variation affects M . In
fact, the evaluation of matrix M can be performed while the
sensor is working in its structured environment (artificial hand,
prosthesis stump/socket interface, surgical instrument, etc)
using a periodic automatic routine avoiding the application of
a known force. This property may be used, in order to improve
robustness and reliability of the calibrated sensor, as an alert
system which would warn the user if the sensor is not working
according to its model (properties (29) and (30) with respect
to the previously calculated calibration matrices, eigenvectors
of M , etc), and eventually suggest recalibrating or replacing
the sensor.

The authors are investigating also the possibility of using
DHCM for slippage detection, as in [17], with the packaged
tactile sensor described in [18] exploiting a mismatch, which
occurs during slippage events, between the characteristic

hyperplane of the inner sensor and fractional changes in
resistance vectors. That way, using such a system, only output
readings would be necessary for slippage detection, without
the need for preliminary calibration, given that hyperplane
characterization is an output-only problem.
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