
Indexing

CSx265

This lecture assumes that you have watched Widom’s videos on indexing or read the
corresponding material from Ullman and Widom, and watched Doug’s four videos on B+
tree indexing and extendible-hash indexing

Let’s define clustered and unclustered B+ tree indices

Consider two B+ trees. 19

5 13 24 30

2* 3* 5* 7*8*10* 14*16* 19*20*22* 24*27*29* 33*34*

2..8 3..1 5..20 7..1 8..15 10..6 14..4 16..3 19..17 20..10 22..14 24..8

4 9 15

*1*1 *2*3 *4*6 *8*8 *9 *10 *13 *14 *15*17*19 *20

B+ tree for attribute A of
table T (clustered)

B+ tree for attribute B of
table T (unclustered)

“Table T”

SELECT T.C FROM T WHERE T.A > 14 AND T.B <= 10

Exploiting T.A clustered B+ tree index will result in fewer pages being read from disk.

 a* and *b are
 indices. Each
 index is of form
<table.attrvalue,<pageid,slot#>>

Evaluation of relational operators

1) A file (data records for a table) may be
unsorted (with no index)

2)A file may be sorted by the values of one
attribute (with no index)

3) We can have a clustered B+ tree index for
the file on an attribute

Leaf index nodes with entries
 <T.a, <pageid, slot#>>

Actual data records

4) We can have an unclustered B+ tree index for
a file on an attribute

5) We can have a hash index for a file on an
attribute

index nodes with entries
 <T.a, <pageid, slot#>>

Actual data records

Consider:

SELECT * SELECT *
FROM Shipped FROM Shipped
WHERE Shipped.ShipId = x WHERE Shipped.ShipId > x

1) Shipped unsorted with respect to ShipId; No index on
ShipId: perform file scan

2) Shipped sorted with respect to ShipId; no index on
ShipId: perform file scan. Can terminate early.

3) Clustered B+ tree on ShipId: Lookup x and scan data
records directly

4) Unclustered B+ tree on ShipId: Lookup x and scan index
leaves, only reading/scanning data pages that satisfy
Query

5) Hash Index on ShipId: Lookup x and scan data pages in
 case of ‘=‘; file scan in case of ‘>’

σ (Shipped)
ShipId=x σ (Shipped)

ShipId>x

Consider:

SELECT *
FROM Shipped
WHERE Isbn = x AND Quantity < y AND ShipId > z

σ (Shipped)
Isbn=x & Quantity < y & ShipId > z

1) No indices and unsorted with respect to Isbn, Quantity, ShipId:
 file scan

2) Hash Index on Isbn and no index/sort on other two: scan data
pages with matching Isbn and check for other conditions.

3)Clustered B+ tree index on ShipId, no index on Quantity,
hash index on Isbn: Scan data pages with matching ShipId and
check for other conditions OR scan data pages with matching Isbn
and check for other conditions OR Intersect indices with
matching Isbn and ShipId and check for Quantity condition

4) Clustered composite B+ tree index on (Isbn, ShipId)
and no other indices: scan data pages with matching Isbn,ShipId
and check for Quantity condition.

5) Clustered composite B+ tree on (Isbn, ShipId, TransNumber):

6) Clustered composite B+ tree on (TransNumber, ShipId, Isbn):

σ (Shipped)
Isbn=x & Quantity < y & ShipId > z

B+ tree for Isbn: nodes
with identical or contiguous
Isbn values B+ tree for ShipId:

Nodes with identical
or contiguous ShipId
values

B+ tree for TransNumber:
Nodes with identical or
contiguous values

Data
records

Consider the queries:

SELECT Isbn, ShipId SELECT DISTINCT Isbn, ShipId
FROM Shipped FROM Shipped

SELECT Isbn, Quantity SELECT DISTINCT Isbn, Quantity
FROM Shipped FROM Shipped

π (Shipped)
Isbn, ShipId

π (Shipped)
Isbn, Quantity

How might sorting be used?

How might hashing be used?

Consider the query:

SELECT *
FROM Transactions T, Shipped S
WHERE S.TransNumber = T.TransNumber

Shipped Transactions
S.TN=T.TN

Shipped Transactions

JoinResult ß Empty
For each tuple, s, in Shipped
 For each tuple, t, in Transactions
 If (s.TN=t.TN) add s+t to JoinResult

S T
 (s R t)

JoinResult ß Empty
For each tuple, s, in S
 For each tuple, t, in T
 if (s R t) add s+t to JoinResult

JoinResult ß Empty
FOR each tuple, s, in S
 FOR each tuple, t, in σ(sRt)(T)
 add s+t to JoinResult

Index
Nested
Loops
join

Index on right (inner) table of a join is most important

Consider the query:

SELECT *
FROM Transactions T, Shipped S
WHERE S.TransNumber = T.TransNumber

Shipped Transactions
S.TN=T.TN

Shipped Transactions

No indices, no sorts?
S sorted on TN?
T sorted on TN?
Index on S.TN only? Clustered?
Index on T.TN only? Clustered?
Index on both S.TN and T.TN?

Consider the following Query in SQL and relational algebra:

SELECT *
FROM Shipped S1, Transactions T1
WHERE S1.TransNumber = T1.TransNumber AND
 S1.Isbn = I1 AND T1.PaymentClearanceDate = CD

I1 and CD are parameters

(σPCD=CD ((σIsbn=I1 (Shipped)) Transactions))

((σIsbn=I1 (Shipped)) (σPCD=CD (Transactions)))

(σIsbn=I1 (Shipped (σPCD=CD (Transactions))))

Other possibilities?

SELECT *
FROM Shipped S1, Transactions T1
WHERE S1.TransNumber = T1.TransNumber AND
 S1.Isbn = I1 AND T1.PaymentClearanceDate = CD

Query Evaluation Trees

σPCD=CD

TN=TN

σIsbn=I1

Shipped

Transactions

σPCD=CD

TN=TN

σIsbn=I1

Shipped Transactions σPCD=CD

TN=TN

σIsbn=I1

Shipped

Transactions Other trees ??

Left-deep tree: each right child of a join is a base table

Consider the following Query in SQL and relational algebra:
 For each book, I1, bought on date CD, by a customer T1.CEA on transaction S1.TN, list the Transactions
 S2.TN for which T1.CEA bought a second book, I2. (this query might be an auxiliary/nested query for updating
 CoBought books or the like)

SELECT S1.TransNumber, S2.TransNumber
FROM Shipped S1, Shipped S2, Transactions T1, Transactions T2
WHERE S1.TransNumber = T1.TransNumber AND
 T2.TransNumber = S2.TransNumber AND
 S1.Isbn = I1 AND T1.PaymentClearanceDate = CD AND
 T1.CustomerEmailAddress = T2.CustomerEmailAddress AND
 S2.Isbn = I2

I1, I2, and CD are parameters

πS1.TN,S2.TN (σS2.Isbn=I2
 (((((σPCD=CD ((σIsbn=I1 (ρ(S1, Shipped))) ρ(T1,Transactions)))

 ρ(T2,Transactions)))

 ρ(S2, Shipped))

))

Draw left-deep tree(s) for this query

σT1.PCD=CD

S1.TN=T1.TN

σIsbn=I1

Shipped

Transactions

T1.CEA=T2.CEA

T2.TN=S2.TN

σS2.Isbn=I2

πS1.TN, S2.TN

TN = TransNumber
CEA = CustEmailAddr
PCD = PaymentClearDate
I1, I2, CD are parameters

A left-deep query tree: the right child
of each join is a base table.

σT1.PCD=CD

S1.TN=T1.TN

σIsbn=I1

Shipped

Transactions

T1.CEA=T2.CEA

T2.TN=S2.TN

σS2.Isbn=I2

πS1.TN, S2.TN

TN = TransNumber
CEA = CustEmailAddr
PCD = PaymentClearDate
I1, I2, CD are parameters

A left-deep query evaluation plan

On-the-fly

Index nested loops
join with pipelining

Index nested loops
join with pipelining

On-the-fly

Index nested loops
join with pipelining

materialize (alternatively, could specify on-the-fly
and send result directly to an output
buffer)

(hash index on Isbn,
 hash index on TN)

clustered B+ tree index on PCD,
unclustered B+ tree index on CEA,
hash index on TN

Unclustered B+ tree (versus
hash) index might facilitate
alphabetical listing of intervals

Exploit index,
do not
materialize

What is the estimated cost of this plan?
How does its estimated cost compare
 to the estimated cost of other plans?

Assume the following conditions hold for a relational DB that we’ve designed for an e-bookseller.

i) a block/page is 2^12 bytes.
ii) each tuple of Transactions requires 2^4 bytes
iii) each tuple of Shipped requires 2^4 bytes
iv) Each index (for any attribute of any table) requires 2^3 bytes
v) There are 2^27 tuples in Transactions
vi) There are 2^28 tuples in Shipped
vii) There are 2^17 tuples that satisfy PCD=CD
 (PCD is PaymentClearanceDate, CD is a particular value, i.e., a constant)
viii) There are 2^20 unique Isbn distributed across Shipped
ix) There are 2^18 unique CEA distributed across Transactions (CEA is CustEmailAddress)
x) clustered B+ tree of order 2^8 index on PCD for Transactions, hash index on TN for Transactions,
 hash index on CEA for Transactions, hash index on Isbn for Shipped, hash index on TN for Shipped
 (TN is TransactionNumber)

•  Which of these, (i) – (x), would be stored in the System Catalog. Elaborate as necessary with page
references. I am particularly curious about (vii).

•  Under the conditions listed above, what is the shallowest that the B+ tree on PCD can possibly be?
What is deepest that it can be? Give your answers in terms of index nodes (root included) only (i.e., do
not count the data pages as part of the tree).

σT1.PCD=CD

S1.TN=T1.TN

σIsbn=I1

Shipped

Transactions

On-the-fly

Index nested loops
join with pipelining

(hash index on Isbn,
 hash index on TN)

clustered B+ tree index on PCD,
unclustered B+ tree index on CEA,
hash index on TN

Exploit index,
do not
materialize

Assume:

•  a block/page is 212 bytes (upper range)

•  each tuple of Shipped relation/table requires 24 bytes
 è one block/page holds 212/24 = 28 Shipped tuples
•  each index on Isbn of form <Isbn, <pageid, slot#>> requires 23 bytes
 è each block/page holds 212/23 = 29 indices

•  there are 228 tuples in Shipped (Cardinality) è 228/28 = 220 pages <= Size <= 221 = 228/27 pages
•  there are 220 distinct Isbns in Shipped (Index Cardinality) è 228/29 = 219 <= Index Size <= 220 = 228/28

1. Estimate size of result (under
 uniform assumption).

228/220 = 28 tuples estimated to
 satisfy S.Isbn=I1
Estimated size of result = 28 tuples

28/228 < 5% of Shipped table
 (probably cheaper to use
 index, versus file scan, p. 401)

Information found in System Catalog

σT1.PCD=CD

S1.TN=T1.TN

σIsbn=I1

Shipped

Transactions

On-the-fly

Index nested loops
join with pipelining

(hash index on Isbn,
 hash index on TN)

clustered B+ tree index on PCD,
unclustered B+ tree index on CEA,
hash index on TN

Exploit index,
do not
materialize

1. Estimate size of result (under
 uniform assumption, p. 401).

228/220 = 28 tuples estimated to
 satisfy S.Isbn=I1
Estimated size of result = 28 tuples

2. Estimate # of page scans using
 Index on Isbn

 1 index page since 28 per Isbn < 29 indices per block

 between 1 data page (if all 28 tuples
 fit on 1 page) and
 28 data pages (if each 28 tuples
 on different data page)
Exercise: can you find some reference to an “average” or expected number of data pages?

Assume:

•  a block/page is 212 bytes (upper range)

•  each tuple of Shipped relation/table requires 24 bytes
 è one block/page holds 212/24 = 28 Shipped tuples
•  each index on Isbn of form <Isbn, <pageid, slot#>> requires 23 bytes
 è each block/page holds 212/23 = 29 indices

•  there are 228 tuples in Shipped (Cardinality) è 228/28 = 220 pages <= Size <= 221 = 228/27 pages
•  there are 220 distinct Isbns in Shipped (Index Cardinality) è 228/29 = 219 <= Index Size <= 220 = 228/28

σT1.PCD=CD

S1.TN=T1.TN

σIsbn=I1

Shipped

Transactions

On-the-fly

Index nested loops
join with pipelining

(hash index on Isbn,
 hash index on TN)

clustered B+ tree index on PCD,
unclustered B+ tree index on CEA,
hash index on TN

1. Estimated size of result = 28 tuples

2. Estimated # of page scans using
 Index on Isbn
 = 1 + 28 (worst case) page scans

Assume:

•  a block/page is 212 bytes (upper range)

•  each tuple of Shipped relation/table requires 24 bytes
 è one block/page holds 212/24 = 28 Shipped tuples
•  each index on Isbn of form <Isbn, <pageid, slot#>> requires 23 bytes
 è each block/page holds 212/23 = 29 indices

•  there are 228 tuples in Shipped (Cardinality) è 228/28 = 220 pages <= Size <= 221 = 228/27 pages
•  there are 220 distinct Isbns in Shipped (Index Cardinality) è 228/29 = 219 <= Index Size <= 220 = 228/28

S1.TN=T1.TN

σIsbn=I1

Shipped

Transactions

(hash index on Isbn,
 hash index on TN)

clustered B+ tree index on PCD,
unclustered B+ tree index on CEA,
hash index on TN

1. Estimated size of result = 28 tuples

2. Estimated # of page scans using
 Index on Isbn
 = 1 + 28 (worst case) page scans

Assume:

•  a block/page is 212 bytes (upper range)

•  each tuple of Shipped relation/table requires 24 bytes
 è one block/page holds 212/24 = 28 Shipped tuples
•  each index on Isbn of form <Isbn, <pageid, slot#>> requires 23 bytes
 è each block/page holds 212/23 = 29 indices

•  there are 228 tuples in Shipped (Cardinality) è 228/28 = 220 pages <= Size <= 221 = 228/27 pages
•  there are 220 distinct Isbns in Shipped (Index Cardinality) è 228/29 = 219 <= Index Size <= 220 = 228/28

28 tuples

In general, a join can increase or decrease the
number of tuples, but TN is the primary key for
Transactions and TN is a foreign key (and NOT
NULL) for Shipped, so estimated result size for
join remains 28 tuples (but each result tuple
is about twice the size of tuples resulting
from initial select)

1 index page and 1 data page
for each 28 tuples from σ on
Shipped

σT1.PCD=CD

S1.TN=T1.TN

σIsbn=I1

Shipped

Transactions

On-the-fly

(hash index on Isbn,
 hash index on TN)

clustered B+ tree index on PCD,
unclustered B+ tree index on CEA,
hash index on TN

Estimated # of page scans using
 Index on Isbn
 = 1 + 28 (worst case) page scans

28 tuples

In general, a join can increase or decrease the
number of tuples, but TN is the primary key for
Transactions and TN is a foreign key (and NOT
NULL) for Shipped, so expected result size for
join remains 28 tuples (but each result tuple
is about twice the size of tuples resulting
from initial select)

(1+1)28 = 29 page scans (worst case)

Total estimated page scans so far:
 1 + 28 + 29

(exercise: can you find a reference to
lower expected cost stemming from possibility
of Transaction Index or data pages
being in page buffer?)

Estimate the expected result size and worst case page scans for this operation.
What additional informaion do you need to know?

1. Finish estimating the total cost of the example plan (found on slide 3).

2. Give 2 alternative left deep plans for the sample query.

3. Estimate the cost of these alternative left deep plans (remember: the index and other catalog
 assumptions will remain the same!!)

On Selecting Indexes

Selection of indexes should be informed by the frequency of
•  queries
•  inserts, deletes, and updates
that you expect will be run on the database.

If we were just worried about queries (SELECTs) then we might well index
everything, but

inserts, deletes, and updates can be more costly with stupid indexes, since each
indexing structure must also be revised when table entries are revised.

Thus we might be more liberal in our use of indexes in a table where inserts and
deletes are relatively rare (e.g., the Books table in one of our illustrative
databases), than in the Transactions table where inserts are frequent.

Professor Widom spoke of sophisticated software that could select indexes automatically
given a set of queries, inserts, deletes, updates (call this set O for “operations”).

Roughly speaking, this software will select an index if the expected cost associated with
using the index is less than the expected cost of NOT using it, or:

 ExpectedCostSavings(Index I) = ΣO P(O)[Cost(O,~I) – Cost(O,I)],

where P(O) is the estimated proportion of time O is executed over all operations in the
workload;
•  Cost(O,~I) is an estimate of the cost of executing O without the index, I; and
•  Cost(O,I) is an estimate of O’s cost with I.

You can imagine that to be more accurate, this software would consider the effect of
multiple indexes simultaneously, rather than considering them independently as above, so if
you’ve had the AI class before, you can probably see the relevance to some of the methods
studied there – search, constraints, optimization, planning.

