
Write SQL queries specified below in a manner that is consistent with the table definitions.

a) Write a SQL query that lists all of the individual water readings recorded for each floor of McGill, a high
res dorm, on Jan 28, 2012 (HRWReadingDate = ‘2012-01-28’). Each row of the output should list dorm
name (all McGill), floor number, the date (yes, the dates in each row should be the same), the time of reading,
and the reading value.

b) Write a SQL query that lists all of the individual water readings recorded for each floor of each high res
dorm on Jan 28, 2012 (HRWReadingDate = ‘2012-01-28’). Each row of the output should list dorm name,
floor number, the date (yes, the dates in each row should be the same), the time of reading, and the reading
value.

c) Much like (b), but rather than listing all the readings for a given day, list the AVERAGE water reading
values for each day, together with the date, the dorm name, and the floor number.

d) Just like (c), but list only those daily averages that are computed over more than 5 values.

e) Write an SQL query that lists, for each dorm (low or high res), the AVERAGE ambient (outside)
temperature and the AVERAGE electricity readings on each day in which the MINIMUM ambient
temperature exceeds 70 degrees. Thus, the output should list dorm name, average electrical reading (listed as
AveElec), and average ambient temperature (as AveTemp), and the reading date.

f) Write an SQL query that lists the average electrical readings for each floor that were viewed by an observer
with ‘FloorWebPage.ObserverNetworkID = X’, for each day in which the MAX ambient temperature was
greater than 80 degrees (AmbientTemp > 80). Include ‘FloorWebPage.ObserverNetworkID = X’ as is. Note
that ‘X’ is a variable; when an unbound variable appears in a query, it is a parameter that is requested at
interpretation time). Each row of the output should list network id (which should be the same across all
rows), the AVERAGE ambient temperature for the day (as AveTemp), the dorm name, floor, sensor id,
electrical reading date, and average value (as AveElec).

Think about these queries for exam

The	answers	on	slides	3-10	assume	the	SQL	database	of	slides	11-onward	(which		
Was	also	posted	before	Exam	1)		
	
There	is	scoring	annotaBons	on	slides	3-10	from	a	prior	semester,	which	I	have		
decided	to	leave	so	that	you	can	get	a	sense	of	a	possible	rubric	later.	

Start with a total of 18 points (and adhjust as follows):

Because the HRWSensor table lists DormName and FloorNum, other tables like Floor and HighResDorm are not
needed. -2 points for each extra table.

Check that each of the two RA selection conditions are given (i.e., S.DormName = ‘McGill’ AND
R.HRWReadingDate = ‘2012-01-28’) and -3 points for each, if missing, and the join
condition is given S.HRWaterSensorID = R.HRWaterSensorID (-5 points if missing)). There should be no other
conditions, unless there are extra tables (in which case, you would have already been penalized – no additional
points off unless an answer with extra tables does NOT appropriately join them with other tables, then use
discretion based on how bad the failure to join is (but at least -1 per failure to join an extra table).

-1 for each missing attribute in the SELECT clause, and
-1 for any attribute that is listed which is not given above

If the query is nicely indented, as above, and there are no “typos” (e.g., misspelled table names), and otherwise easy
to read, then add 2 points (for max of 20)

Poorly formatted example
SELECT S.DormName, S.FloorNum, R.HRWReadingDate,
R.HRWReadingTime, R.HRWValue
FROM HRWSensor S, HRWReading R
WHERE S.DormName = ‘McGill’ AND R.HRWReadingDate = ‘2012-01-28’ AND
S.HRWaterSensorID = R.HRWaterSensorID)

a) Write a SQL query that lists all of the individual water readings recorded for each floor of McGill, a high res dorm,
on Jan 28, 2012 (HRWReadingDate = ‘2012-01-28’). Each row of the output should list dorm name (all McGill),
floor number, the date (yes, the dates in each row should be the same), the time of reading, and the reading value.
(20 points)

SELECT S.DormName, S.FloorNum, R.HRWReadingDate, R.HRWReadingTime, R.HRWValue
FROM HRWSensor S, HRWReading R
WHERE S.DormName = ‘McGill’ AND R.HRWReadingDate = ‘2012-01-28’ AND
 S.HRWaterSensorID = R.HRWaterSensorID

b) Write a SQL query that lists all of the individual water readings recorded for each floor of each high res dorm
on Jan 28, 2012 (HRWReadingDate = ‘2012-01-28’). Each row of the output should list dorm name, floor number,
the date (yes, the dates in each row should be the same), the time of reading, and the reading value. (15 points)

SELECT S.DormName, S.FloorNum, R.HRWReadingDate, R.HRWReadingTime, R.HRWValue
FROM HRWSensor S, HRWReading R
WHERE R.HRWReadingDate = ‘2012-01-28’ AND S.HRWaterSensorID = R.HRWaterSensorID

Much like (a), but missing one of the selection conditions. Start at 14/15 and use same point decrements for (a)
and 1 point increment (rather than 2) for “style”

c) Much like (b), but rather than listing all the readings for a given day, list the AVERAGE water reading values
for each day, together with the date, the dorm name, and the floor number. (15 points)

SELECT R.HRWReadingDate, S.DormName, S.FloorNum, AVG(R.HRWValue) AS AverageValue
FROM HRWSensor S, HRWReading R
WHERE S.HRWaterSensorID = R.HRWaterSensorID
GROUP BY R.HRWReadingDate, S.DormName, S.FloorNum

Start at 14/15 and use same decrementsand increments as (b), and
additionally -2 for each missing attribute in the GROUP BY clause (or -6 if there is no GROUP BY clause at all),
and -3 for no of AVG aggregate operator (or -2 for improperly formatted operator)

d) Just like (c), but list only those daily averages that are computed over more than 5 values.
(15 points)

SELECT R.HRWReadingDate, S.DormName, S.FloorNum,
 AVG(R.HRWValue) AS AverageValue
FROM HRWSensor S, HRWReading R
WHERE S.HRWaterSensorID = R.HRWaterSensorID
GROUP BY R.HRWReadingDate, S.DormName, S.FloorNum
HAVING COUNT(*) > 5

Start at 14/15 and use same decrements and increments as (c), and additionally -4 for no HAVING
clause (including an incorrect placement of teh HAVING condition in another clause, like WHERE)

e) Write an SQL query that lists, for each dorm (low or high res), the AVERAGE ambient (outside) temperature and
the AVERAGE electricity readings on each day in which the MINIMUM ambient temperature exceeds 70 degrees.
Thus, the output should list dorm name, average electrical reading (listed as AveElec), and average ambient
temperature (as AveTemp), and the reading date. (20 points) The following returns results for High Res Dorms only

SELECT S.DormName, AVG(R.HREValue) AS AveElec, QualDays.AveTemp, R.HREReadingDate
FROM HRElecSensor S,
 HREReading R,
 (SELECT AV.AmbientReadingsDate, AVG(AV.AmbientTemp) AS AveTemp
 FROM AmbientValues AV
 GROUP BY AV.AmbientReadingsDate
 HAVING MIN(AV.AmbientTemp) > 70) AS QualDays
WHERE QualDays.AmbientReadingsDate = R.HREReadingDate AND
 R.HRElecSensorID = S.HRElecSensorID
GROUP BY S.DormName, R.HREReadingDate, QualDays.AveTemp

One can picture the join in the OUTER query as
FOR each HREElecSensor, Si,
 FOR each HREReading, Rij (from sensor Si)
 FOR each Qual Day with suitable ambient temp (MIN > 70), QDATk, on same date as Rijs
 join Si + Rj + QDATk

Si	

Rij1	
Rij2	

Rij3	

Rij4	

Rij5	

QDATk	

Because there is only one QualDay.AveTemp per ReadingDate
some might have left QualDays.AveTemp from GROUP BY
(-1 if so), but shouldn’t if its to be used in SELECT clause

Give max of 14 points for “one half” of complete answer, using either high res or low res dorm as the basis.
Adapt grading guidelines from previous problems (e.g., extra tables, etc) to this one.

e) Write an SQL query that lists, for each dorm (low or high res), the AVERAGE ambient (outside) temperature and
the AVERAGE electricity readings on each day in which the MINIMUM ambient temperature exceeds 70 degrees.
Thus, the output should list dorm name, average electrical reading (listed as AveElec), and average ambient
temperature (as AveTemp), and the reading date. (20 points)

This would work for Low Res dorms only if it were just a matter of changing all ‘H’ to ‘L’, BUT ITS NOT!

SELECT S.DormName, AVG(R.LREValue) AS AveElec, QualDays.AveTemp, R.LREReadingDate
FROM LRElecSensor S,
 LREReading R,
 (SELECT AV.AmbientReadingsDate, AVG(AV.AmbientTemp) AS AveTemp
 FROM AmbientValues AV
 GROUP BY AV.AmbientReadingsDate
 HAVING MIN(AV.AmbientTemp) > 70) AS QualDays
WHERE QualDays.AmbientReadingsDate = R.LREReadingDate AND
 R.LRElecSensorID = S.LRElecSensorID
GROUP BY S.DormName, R.LREReadingDate, QualDays.AveTemp

CREATE TABLE LowResDorm (

DormName VARCHAR(35), /* Corresponds to a DormName in Dorm */
StartDate DATE, /* Date at which it became a LowResDorm */
LRElecSensorID INTEGER NOT NULL,
UNIQUE(LRElecSensorID), /* UNIQUE indicates a key; typically implies NOT NULL */
LRElecSensorOnLineDate DATE,
LRWaterSensorOnLineDate DATE,
LRWaterSensorID INTEGER,
PRIMARY KEY (DormName)

);

Just change [LRElecSensor S] to [LowResDorm S] in query at top?

e) Write an SQL query that lists, for each dorm (low or high res), the AVERAGE ambient (outside) temperature and
the AVERAGE electricity readings on each day in which the MINIMUM ambient temperature exceeds 70 degrees.
Thus, the output should list dorm name, average electrical reading (listed as AveElec), and average ambient
temperature (as AveTemp), and the reading date. (20 points)

The Low Res result after minor change

SELECT S.DormName, AVG(R.LREValue) AS AveElec, QualDays.AveTemp, R.LREReadingDate
FROM LowResDorm S,
 LREReading R,
 (SELECT AV.AmbientReadingsDate, AVG(AV.AmbientTemp) AS AveTemp
 FROM AmbientValues AV
 GROUP BY AV.AmbientReadingsDate
 HAVING MIN(AV.AmbientTemp) > 70) AS QualDays
WHERE QualDays.AmbientReadingsDate = R.LREReadingDate AND
 R.LRElecSensorID = S.LRElecSensorID
GROUP BY S.DormName, R.LREReadingDate, QualDays.AveTemp

/* which can be unioned with High Res Dorm results for full results required by question */

UNION

SELECT S.DormName, AVG(R.HREValue) AS AveElec, QualDays.AveTemp, R.HREReadingDate
FROM HRElecSensor S,
 HREReading R,
 (SELECT AV.AmbientReadingsDate, AVG(AV.AmbientTemp) AS AveTemp
 FROM AmbientValues AV
 GROUP BY AV.AmbientReadingsDate
 HAVING MIN(AV.AmbientTemp) > 70) AS QualDays
WHERE QualDays.AmbientReadingsDate = R.HREReadingDate AND
 R.HRElecSensorID = S.HRElecSensorID
GROUP BY S.DormName, R.HREReadingDate, QualDays.AveTemp

Give max of 18 points for answer that approximates this one. Adapt grading guidelines from previous
problems (e.g., extra tables, etc) to this one.

e) Write an SQL query that lists, for each dorm (low or high res), the AVERAGE ambient (outside) temperature and
the AVERAGE electricity readings on each day in which the MINIMUM ambient temperature exceeds 70 degrees.
Thus, the output should list dorm name, average electrical reading (listed as AveElec), and average ambient
temperature (as AveTemp), and the reading date. (20 points)

The previous query computes QualDays twice. The following does it once by unioning at finer granularity

SELECT S.DormName, AVG(R.Value) AS AveElec, QualDays.AveTemp, R.ReadingDate
FROM (SELECT DormName, LRElecSensorID AS ID FROM LowResDorm
 UNION
 SELECT DormName, HRElecSensorID AS ID FROM HRElecSensor)
 AS S,

 (SELECT LRElecSensorID AS ID,
 LREReadingDate AS ReadingDate,
 LREValue AS Value
 FROM LREReading
 UNION
 SELECT HRElecSensorID AS ID,
 HREReadingDate AS ReadingDate,
 HREValue AS Value
 FROM HREReading)
 AS R,

 (SELECT AV.AmbientReadingsDate, AVG(AV.AmbientTemp) AS AveTemp
 FROM AmbientValues AV
 GROUP BY AV.AmbientReadingsDate
 HAVING MIN(AV.AmbientTemp) > 70) AS QualDays

WHERE QualDays.AmbientReadingsDate = R.ReadingDate AND R.ID = S.ID
GROUP BY S.DormName, R.ReadingDate, QualDays.AveTemp

What hidden assumptions underlie this query? The previous version? Does this query assume that sensor ids

are unique ACROSS HRElecSensorID and LowResDorm, for example?

Give max of 20 points for answer that
approximates this one. Adapt grading
guidelines from previous problems
(e.g., extra tables, etc) to this one.

f) Write an SQL query that lists the average electrical readings for each floor that were viewed by an
observer with ‘FloorWebPage.ObserverNetworkID = X’, for each day in which the MAX ambient
temperature was greater than 80 degrees (AmbientTemp > 80). Include
‘FloorWebPage.ObserverNetworkID = X’ as is. Note that ‘X’ is a variable; when an unbound variable
appears in a query, it is a parameter that is requested at interpretation time). Each row of the output
should list network id (which should be the same across all rows), the AVERAGE ambient temperature
for the day (as AveTemp), the dorm name, floor, sensor id, electrical reading date, and average value (as
AveElec). (15 points)

SELECT FWP.ObserverNetworkID, AVG(AV.AmbientTemp) AS AveTemp, FWP.DormName,
 FWP.FloorNum, S.HRElecSensorID, R.HREReadingDate, AVG(R.HREValue) AS AveElec
FROM FloorWebPage FWP, AmbientValues AV, HRElecSensor S, HREReading R
WHERE FWP.ObserverNetworkID = X AND
 AV.AmbientReadingsDate = R.HREReadingDate AND
 R.HRElecSensorID = S.HRElecSensorID AND S.FloorNum = FWP.FloorNum AND
 FWP.DormName = S.DormName
GROUP BY R.HREReadingDate, FWP.ObserverNetworkID, FWP.DormName, FWP.FloorNum,
 S.HRElecSensorID
HAVING MAX(AV.AmbientTemp) > 80

All the attributes listed in the Group By should be given

Assignment A-w4 KEY Spring 2018 Name:

For the Dorm Energy Monitoring DB design, some constraints are given and
some are absent. You are asked to fill in some of these absent constraints.

1.  Fill Foreign Key constraints (FKs) for selected tables.

2.  Fill in in-table CHECK statements for selected tables, which will typically use
 nested queries. Nested queries are allowed in in-TABLE CHECK statements in
 the SQL standard, but they are not supported on any platform (nonetheless, you
 might implement them one day). If these were supported, then they would be
 evaluated when an insertion or update is made to the table.

3.  Fill in general assertions that are (in theory) evaluated whenever any change
 (insertion, deletion, update) is made to any table named in the assertion. Again, part of
 SQL standard, though not implemented on any platform.

4. Fill in trigger definitions, using SQLite syntax.

Instructions on where you are to fill in FKs, in-table CHECKs, general assertions, and
triggers, are shown in red. There are other constraints that you are not required to fill in,
but you are welcome to and you can compare them later on the key.

The	addiBons	in	blue	are	all	that	is	required	

/* Observer records information about those who are observing campus enery and water usage. These may be
 on-campus or off-campus observers. Observer associates computer network identifiers (e.g., IP addresses) with
 campus dormitories. DormName can be NULL, thus allowing easy recording of off-campus (or otherwise non-
 dorm) network identifiers of virtual visitors to dorm web-based electricity and water usage summaries. */

CREATE TABLE Observer (

NetworkID CHAR(20),
DormName VARCHAR(35), /* Corresponds to a DormName in Dorm */

 PRIMARY KEY (NetworkID),
 FOREIGN KEY (DormName) REFERENCES Dorm ON DELETE CASCADE ON UPDATE CASCADE
); /* Add a FOREIGN KEY constraint that will cause a DELETE or UPDATE in Dorm (of a row with a matching
 DormName) to CASCADE to Observer. */

/* A record of visits to a Dorm’s (often assembled, on demand) Webpage, which displays statistics
 on electricity and water usage */

CREATE TABLE DormWebPage (

DWPageID INTEGER,
CreateDate DATE NOT NULL, /* NOT NULL indicates field cannot be NULL in any record */
CreateTime TIME NOT NULL,
ObserverNetworkID CHAR(20) NOT NULL, /* Corresponds to a NetworkID in Observer */
DormName VARCHAR(35) NOT NULL, /* Corresponds to a DormName in Dorm */
PRIMARY KEY (DWPageID),

 FOREIGN KEY (ObserverNetworkID) REFERENCES Observer (NetworkID)
 ON DELETE NO ACTION ON UPDATE CASCADE,
 FOREIGN KEY (DormName) REFERENCES Dorm
 ON DELETE NO ACTION ON UPDATE CASCADE
); /* Add a FOREIGN KEY constraint that will block (i.e., prevent) a Dorm from being deleted if there is a
 tuple in DormWebPage with a matching DormName. Define the same FK to cascade an update in Dorm
 to DormWebPage. */

Dorm Energy Monitoring Application (standard tables and assertions)

2 pts for this (all or nothing), or 2 points for placing FK phrase after DormName declaration (using syntax found
here by following column-def, then column-constraint, then foreign-key-clause)

2 pts for this (all or nothing), 1 of which is for NO ACTION or RESTRICT

/* Dorms can be high res and low res, and tables for each subtype have an FK reference to Dorm, which
contains the common information that is inherited for each type of dorm. Dorms are also FK referenced by
a number of other tables. */

CREATE TABLE Dorm (

DormName VARCHAR(35),
MaxOccupancy SMALLINT,
PRIMARY KEY (DormName)
CHECK ((DormName IN (SELECT DormName FROM HighResDorm) UNION
 (SELECT DormName FROM LowResDorm))

);

/* A table of time-stamped outdoor temperatures (required) and light conditions (optional) */

CREATE TABLE AmbientValues (

AmbientReadingsDate DATE,
AmbientReadingsTime TIME,
AmbientTemp TINYINT NOT NULL,
AmbientLight CHAR(2),
PRIMARY KEY (AmbientReadingsDate, AmbientReadingsTime)

);

/* Every high res dorm is also a dorm */

CREATE TABLE HighResDorm (

DormName VARCHAR(35), /* Corresponds to a DormName in Dorm */
StartDate DATE, /* Date at which it became a HighResDorm */
PRIMARY KEY (DormName),
FOREIGN KEY (DormName) REFERENCES Dorm
 ON DELETE CASCADE ON UPDATE CASCADE
CHECK (DormName IN (SELECT DormName FROM Dorm))

); /* Add an in-table CHECK that ensures a DormName found in HighResDorm is also found in Dorm */

2 pts for in-table CHECK as written;
other answers may be possible

This duplicates, in part, the affect of a
FK constraint (which I’ve shown in green,
and would also be an acceptable answer,
even without delete/update actions given
explicitly – in this case, the FK
constraint would be preferred)

/* A LowRes dorm is assumed to have a unique (NOT NULL) electricity sensor, but the definition
allows water sensors to be shared across dorms (not unique) and none at all (allowed NULL) */

CREATE TABLE LowResDorm (

DormName VARCHAR(35), /* Corresponds to a DormName in Dorm */
StartDate DATE, /* Date at which it became a LowResDorm */
LRElecSensorID INTEGER NOT NULL,
UNIQUE(LRElecSensorID), /* UNIQUE indicates a key; typically implies NOT NULL */
LRElecSensorOnLineDate DATE,
LRWaterSensorOnLineDate DATE,
LRWaterSensorID INTEGER,
PRIMARY KEY (DormName),
FOREIGN KEY (DormName) REFERENCES Dorm
 ON DELETE CASCADE ON UPDATE CASCADE

 CHECK (DormName NOT IN (SELECT DormName FROM HighResDorm))
);

Since	DormName		is	also	the	PK	of	this		
table,	it	must	be	NOT	NULL,	so	an	acBon		
of	SET	NULL	would	cause	an	error.	

/* Similar meanings as DormWebPage, but for high res case */

CREATE TABLE FloorWebPage (

DormName VARCHAR(35), /* Corresponds to DormName in Floor */
FloorNum TINYINT, /* Corresponds to FloorNum in Floor */
FWPageID INTEGER,
CreateDate DATE NOT NULL,
CreateTime TIME NOT NULL,
ObserverNetworkID CHAR(20) NOT NULL, /* Corresponds to NetworkID in Observer */
PRIMARY KEY (FWPageID),

 FOREIGN KEY (ObserverNetworkID) REFERENCES Observer (NetworkID),
 ON DELETE NO ATION ON UPDATE CASCADE, /* block deletes if Network ID has observation records */
 FOREIGN KEY (DormName, FloorNum) REFERENCES Floor
 ON DELETE NO ACTION ON UPDATE CASCADE /* block deletes if floor has observation records */
);

/* For example, FloorNum = 3 and DormName = McGill is 3rd floor of McGill */

CREATE TABLE Floor (

DormName VARCHAR(35), /* Corresponds to a DormName in HighResDorm */
FloorNum TINYINT,
MaxOccupancy SMALLINT,
PRIMARY KEY (DormName, FloorNum),
FOREIGN KEY (DormName) REFERENCES HighResDorm ON DELETE CASCADE ON UPDATE CASCADE

);

/* Definition allows multiple sensors per floor (thus, DormName,Floor not required UNIQUE) */

CREATE TABLE HRElecSensor (

DormName VARCHAR(35) NOT NULL, /* Corresponds to DormName in Floor */
FloorNum TINYINT NOT NULL, /* Corresponds to FloorNum in Floor */
HRElecSensorID INTEGER,
HRElecSensorOnLineDate DATE,
PRIMARY KEY (HRElecSensorID),
FOREIGN KEY (DormName, FloorNum) REFERENCES Floor
 ON DELETE CASCADE ON UPDATE CASCADE

);

/* If you bother to record a reading, the value should be NOT NULL (perhaps coupled
 special value(e.g., -999) indicating not read because not functional sensor */

CREATE TABLE HREReading (

HRElecSensorID INTEGER, /* Corresponds to HRElecSensorID in HRElecSensor */
HREReadingDate DATE,
HREReadingTime TIME,
HREValue INTEGER NOT NULL,
PRIMARY KEY (HRElecSensorID, HREReadingDate, HREReadingTime),

 FOREIGN KEY (HRElecSensorID) REFERENCES HRElecSensor
 ON DELETE NO ACTION /* if readings associated with a sensor, then block delete */
 ON UPDATE CASCADE
);

/* As with elect sensors in high res case, definition allows multiple sensors per floor (thus, DormName,Floor
 not required UNIQUE) */

CREATE TABLE HRWSensor (

DormName VARCHAR(35) NOT NULL, /* Corresponds to DormName in Floor */
FloorNum TINYINT NOT NULL, /* Corresponds to FloorNum in Floor */
HRWaterSensorID INTEGER,
HRWaterSensorOnLineDate DATE,
PRIMARY KEY (HRWaterSensorID),
FOREIGN KEY (DormName, FloorNum) REFERENCES Floor
 ON DELETE CASCADE ON UPDATE CASCADE

); /* Write a Foreign Key constraint ensures that every (DormName, FloorNum) pair in HRWSensor is
 associated with exactly one tuple of Floor. Cascade on both deletes and updates. */

/* Time-stamped readings are associated with sensors*/

CREATE TABLE HRWReading (

HRWaterSensorID INTEGER, /* Corresponds to HRWaterSensorID in HRWaterSensor */
HRWReadingDate DATE,
HRWReadingTime TIME,
HRWValue INTEGER NOT NULL,
PRIMARY KEY (HRWaterSensorID, HRWReadingDate, HRWReadingTime),
FOREIGN KEY (HRWaterSensorID) REFERENCES HRWaterSensor
 ON DELETE NO ACTION /* if readings associated with a sensor, then block delete */
 ON UPDATE CASCADE

);

2 pts all or nothing; 0 points for two
separate FKs for DormName and
FloorNum individually

/* The earlier definition of LowResDorm indicates exactly one sensor per low res dorm */

CREATE TABLE LREReading (

DormName VARCHAR(35), /* Corresponds to DormName in LowResDorm */
LREReadingDate DATE,
LREReadingTime TIME,
LREValue INTEGER NOT NULL,
PRIMARY KEY (DormName, LREReadingDate, LREReadingTime),
FOREIGN KEY (DormName) REFERENCES LowResDorm
 ON DELETE NO ACTION /* if readings associated with a low res dorm, then block delete */
 ON UPDATE CASCADE

);

/* The earlier definition of LowResDorm indicates at most one water sensor per low res dorm */

CREATE TABLE LRWReading (

DormName VARCHAR(35), /* Corresponds to DormName in LowResDorm */
LRWReadingDate DATE,
LRWReadingTime TIME,
LRWValue INTEGER NOT NULL,
PRIMARY KEY (DormName, LRWReadingDate, LRWReadingTime)
FOREIGN KEY (DormName) REFERENCES LowResDorm
 ON DELETE NO ACTION /* if readings associated with a sensor, then block delete */
 ON UPDATE CASCADE

);

/* Write a general assertion that ensures that all Dorms are Low Res or High Res */

CREATE ASSERTION CompleteCoverOverLowAndHighRes (
 CHECK (NOT EXISTS (SELECT D.DormName FROM Dorm D
 EXCEPT
 SELECT LRD.DormName FROM LowResDorm LRD)
 EXCEPT
 SELECT HRD.DormName FROM HighResDorm HRD
))); /* OR PERHAPS */

CREATE ASSERTION CompleteCoverOverLowAndHighRes (
 CHECK (NOT EXISTS (SELECT D.DormName FROM Dorm D
 EXCEPT
 (SELECT LRD.DormName FROM LowResDorm LRD)
 UNION
 SELECT HRD.DormName FROM HighResDorm HRD)
))); /* OR PERHAPS */

CREATE ASSERTION CompleteCoverOverLowAndHighRes (
 CHECK (NOT EXISTS
 (SELECT D.DormName FROM Dorm D
 WHERE D.DormName
 NOT IN (SELECT LRD.DormName FROM LowResDorm LRD)
 UNION
 SELECT HRD.DormName FROM HighResDorm HRD)
))); /* OR PERHAPS */

CREATE ASSERTION CompleteCoverOverLowAndHighRes (
 CHECK (NOT EXISTS
 (SELECT D.DormName FROM Dorm D
 WHERE D.DormName
 NOT IN (SELECT LRD.DormName FROM LowResDorm LRD)
 AND D.DormName
 NOT IN (SELECT HRD.DormName FROM HighResDorm HRD)
)));

3 pts for any of these; others may be
possible

/* Write a general assertion that ensures that there is no Dorm in LowResDorm that is also in
 HighResDorm, and vice versa.*/

CREATE ASSERTION NoOverlapBetweenHighAndLowRes (
CHECK (NOT EXISTS (SELECT * FROM LowResDorm L, HighResDorm H
 WHERE L.DormName=H.DormName)
); /* OR */
CREATE ASSERTION NoOverlapBetweenHighAndLowRes
CHECK (NOT EXISTS (SELECT DormName FROM LowResDorm
 INTERSECT
 SELECT DormName FROM HighResDorm)
);

3 pts for any of these; others may be
possible

/* Write a general assertion that ensures that each Floor of a high res dorm is
 associated with at least one high res electricity sensor */

CREATE ASSERTION FloorParticipatesHRElecSensor (
CHECK (NOT EXISTS
 (SELECT *
 FROM Floor F
 WHERE (F.DormName, F.FloorNum)
 NOT IN (SELECT HRES.DormName, HRES.FloorNum
 FROM HRElecSensor HRES)))
);

CREATE ASSERTION FloorParticipatesHRElecSensor
CHECK (NOT EXISTS
 (SELECT F.DormName, F.FloorNum FROM Floor F
 EXCEPT
 SELECT HRES.DormName, HRES.FloorNum FROM HRElecSensor HRES)
);

CREATE ASSERTION FloorParticipatesHRElecSensor (/* A complicated version of first
solution */
CHECK (NOT EXISTS
 (SELECT * FROM Floor F
 WHERE F.DormName NOT IN (SELECT HRES.DormName
 FROM HRElecSensor HRES
 WHERE HRES.FloorNum = F.FloorNum)
 OR F.FloorNum NOT IN (SELECT HRES.FloorNum
 FROM HRElecSensor HRES
 WHERE HRES.DormName = F.DormName)
);

3 pts for any of these; others may be
possible

/* Ensure that each Floor of a high res dorm is associated with at least one electricity
 sensor */

Why don’t these work?

CREATE ASSERTION FloorParticipatesHRElecSensor (
CHECK (EXISTS (SELECT F.DormName, F.FloorNum
 FROM HRElecSensor HRES, Floor F
 WHERE HRES.DormName = F.DormName AND
 HRES.FloorNum = F.FloorNum)
);

CREATE ASSERTION FloorParticipatesHRElecSensor (
CHECK (EXISTS
 (SELECT *
 FROM Floor F
 WHERE (F.DormName, F.FloorNum)
 IN (SELECT HRES.DormName, HRES.FloorNum
 FROM HRElecSensor HRES)))

/* Write a trigger in SQLite that mimics the DELETE CASCADE action of a Foreign
 Key constraint in HRElecSensor that references Floor. That is, when a DELETE is
 made to Floor, all HRElecSensors associated with that floor are deleted */

CREATE TRIGGER DeleteHRElecSensorsWhenFloorDeleted
AFTER DELETE ON Floor
FOR EACH ROW /* “FOR EACH ROW” optional */
BEGIN
DELETE FROM HRElecSensors
 WHERE FloorNum = OLD.FloorNum AND DormName = OLD.DormName;
END;

/* Write a trigger in SQLite that implements part of the constraint that each Floor
 participate in HRElecSensor. In particular, when the only representative of a floor
 is deleted from HRElecSensors, then that floor is also deleted from Floor */

CREATE TRIGGER DeleteFloorWhenOnlyHRElecSensorDeleted
AFTER DELETE ON HRElecSensor
FOR EACH ROW /* “FOR EACH ROW” optional */
WHEN NOT EXISTS (SELECT * FROM HRElecSensor
 WHERE FloorNum = OLD.FloorNum AND DormName = OLD.DormName)
BEGIN
DELETE FROM Floor
 WHERE FloorNum = OLD.FloorNum AND DormName = OLD.DormName;
END;

3 pts for this; forgive minor syntactic
errors (this time) like parens, missing ‘;’,
etc

3 pts for this; forgive minor syntactic
errors (this time) like parens, missing ‘;’,
etc

The last representative was just deleted

/* Extra Credit: Write a trigger in SQLite that implements part of the constraint that
 each Floor participate in HRElecSensor. In particular, when a floor is inserted into
 Floor, an initial entry into HRElecSensors for that inserted floor */

CREATE TRIGGER InsertHRElecSensorWhenFloorInserted
AFTER INSERT INTO Floor
FOR EACH ROW /* “FOR EACH ROW” optional */
WHEN NOT EXISTS (SELECT * FROM HRElecSensor /* WHEN clause optional */
 WHERE FloorNum = NEW.FloorNum AND
 DormName = NEW.DormName)
BEGIN
INSERT INTO HRElecSensor VALUES (NEW.DormName, NEW.FloorNum, -1, NULL);
END;

HRElecSensorID is the PK of HRElecSensor (look at
the table declaration), and so cannot be NULL.
If your answer made reference to some special default
value, like -1 (as shown), or an autoincrement variable
for HRElecSensorID then you should receive credit.

HRElecSensorOnlineDate is allowed to be NULL in
HRElecSensor (again, look at the table declaration). If
it had been declared as NOT NULL, then we could not
put NULL here, though we could (again) use a special
default (dummy, initial) value, or the CurrentDate (any
reference to current date should receive full credit).

2 pts

Reflect on these questions. You do NOT need to answer and submit them in writing, but they will be topics of
discussion.

a) If you try to delete a row in Observer that has one or more ‘associated’ entries in DormWebPage, what will happen?

b) If you try to delete a Dorm, for which no one has ever looked at (Observed) a DormWebPage for it, what will
 happen?

c) If you try to delete a Dorm, for which there have been one or more recorded views of DormWebPages for it,
 what will happen?

d) How many electricity sensors are associated with a low res dorm (so far as the DB encodes)? And vice versa?

e) How many electricity sensors are associated with a high res dorm (so far as the DB encodes)?

f) Could the current database design (tables and assertions) support the situation of a low res dorm becoming
 a high res dorm WITHOUT losing past data from its low res days? If so, explain, and if not, explain what changes
 to the DB design you might make to support this (high likelihood eventuality) PRIOR to DB implementation.

g) How could the DB design be changed to support records of room and plug level measurements of electricity (and

perhaps faucet level water readings)?

