
Student	
SSN		PK	
BirthDate	
PermAddress	

Applicant	 Vandy	
Student	

Complete	coverage	
No	overlap	

Translate the following into table and constraint definitions

ApplyDate	
EntryDate	

See (partial) answer next page

Some Basic Mistakes

Translate the following into table and constraint definitions

CREATE TABLE Student (
 SSN INTEGER PRIMARY KEY,
 BirthDate Date,
 PermAddress VARCHAR(60))

CREATE TABLE Applicant (
 SSN INTEGER PRIMARY KEY,
 ApplyDate Date,
 FOREIGN KEY (SSN) REFERENCES Student
 ON DELETE CASCADE ON UPDATE CASCADE)

CREATE TABLE VandyStudent (
 SSN INTEGER PRIMARY KEY,
 EntryDate Date,
 FOREIGN KEY (SSN) REFERENCES Student
 ON DELETE RESTRICT ON UPDATE RESTRICT)

What’s missing? Assertions (or alternatively in-table checks and/or triggers) – see the sample dorm energy
DB, past exam key and quiz keys for examples of such assertions and intable CHECKS and triggers

BTW – you don’t need special assertions for “partial coverage” allowed or “overlap allowed” conditions

Student	
SSN		PK	
BirthDate	
PermAddress	

Applicant	 Vandy	
Student	

Complete	coverage	
No	overlap	

ApplyDate	
EntryDate	

Consider the following buggy UML snippet, in which the Name attribute in the Floor table refers to the Name attribute
in the Dorm Table. Floor# is an integer no greater than 10. Replace it by a correct UML snippet that represents the same
database definition.

Dorm	 Floor	
	

Name	PK	
Occupancy	

Name	PK	
Floor#	PK	
…	

1..1	 1..*	
See answer next page

Consider the following buggy UML snippet, in which the Name attribute in the Floor table refers to the Name attribute
in the Dorm Table. Floor# is an integer no greater than 10. Replace it by a correct UML snippet that represents the same
database definition.

Dorm	 Floor	
	

Name	PK	
Occupancy	

Name	PK	
Floor#	PK	
…	

1..1	 1..*	

Dorm	 Floor	
	

Name	PK	
Occupancy	

Floor#	(PK)	
…	

1..*	

u	

1..1	
PK	

remember that I treat the composition
operator as synonymous
with 1..1 and the
aggregation operator as synonymous
with 0..1

CREATE TABLE Floor (
 Floor# INTEGER,
 DormName VARCHAR(60),
 PRIMARY KEY (Floor#, DormName), /* PK attributes always NOT NULL, whether explitely declared or not */
 FOREIGN KEY (DormName) REFERENCES Dorm(Name) )

Consider the following buggy UML snippet, in which the Name attribute in the Floor table refers to the Name attribute
in the Dorm Table. FloorID is an auto-increment PK

Dorm	 Floor	
	

Name	PK	
Occupancy	

Name	
FloorID	PK	
…	

1..1	 1..*	

Consider the following buggy UML snippet, in which the Name attribute in the Floor table refers to the Name attribute
in the Dorm Table. FloorID is an auto-increment PK

Dorm	 Floor	
	

Name	PK	
Occupancy	

Name	
FloorID	PK	
…	

1..1	 1..*	

Dorm	 Floor	
	

Name	PK	
Occupancy	

FloorID	PK	
…	

1..1	 1..*	

CREATE TABLE Floor (
 FloorID INTEGER,
 DormName VARCHAR(60) NOT NULL, /* if NOT NULL forgotten then consistent with 0..1 rather than 1..1
 PRIMARY KEY (FloorID),
 FOREIGN KEY (DormName) REFERENCES Dorm(Name) )

Pa@ent	 LabTest	
	

Name	PK	
Address	

TestID	PK	
Result	
Date	

1..1	 0..*	

LabOrder	

OrderID		PK	
...	

1..*	

0..*	

1..1	

1..1	

Joe			Elm	
Jane	Oak	

LO1			Joe		
LO2		Jane	

LT11	LO1	Joe	...					
LT12	LO1	Joe	...	
LT21	LO2	Jane	...	
LT21	LO2	Jane	...		

Suppose you have patients Joe and Jane, shown as examples above.

•  Joe has lab order LO1 with particular tests LT11 and LT12.
•  Jane has lab order LO2 with particular tests LT21 and LT22.

Above is the DB as we would intend it – correct and consistent (i.e., Joe always associated with same tests and orders;
Jane always associated with same tests and orders)

But can Joe, for example, be mistakenly associated with LO2 in LabOrder, while Jane is associated with LO2 in LabTest,
without causing a constraint violation? YES! “Circularity” can introduce redundancy that enables inconsistency

Subtle Source of Redundancy and Possibly Inconsistency

Suppose we have three classes. One is a Patient class. When a patient goes to the doctor, a battery of
tests can be ordered at one time as represented by the LabOrder class. The individual tests within
these packaged orders are represented by the LabTest class.

FK(Name)	REFS	Pa@ent	

FK(OrderID)	REFS	LabOrder	

FK(Name)	REFS	Pa@ent	

Pa@ent	 LabTest	
	

Name	PK	
Address	

TestID	PK	
Result	
Date	

1..1	 0..*	

LabOrder	

OrderID		PK	
...	

1..*	

0..*	
1..1	

1..1	

Joe			Elm	
Jane	Oak	

LO1			Joe		
LO2		JaneJoe	

LT11	LO1	Joe	...					
LT12	LO1	Joe	...	
LT21	LO2	Jane	...	
LT21	LO2	Jane	...		

FK(OrderID)	REFS	LabOrder	

Joe could be erroneously associated with LO2 in LabOrder, and Jane could be associated with LO2 in LabTest, and
there would be no constraint violation, of either the FK constraint from LabOrder to Patient or the FK constraint
from LabTest to LabOrder.

This example isn’t about wrongness per say, its about inconsistency – LO2 is now, in different parts of the database,
associated with both Jane and Joe, and still, no constraint violation.

We could write an assertion or trigger to ensure consistency, or do some other design modification to ensure
consistency. Some might think that redundancy, for purposes of error checking, can be good ... and it can be, like parity
bits, but in this DB case can be expensive (interesting thought: think about how you might use PK box construct(s) to
build in redundancy that can be easily checked within table at the cost of a couple of additional fields per tuple).

My point here is just be aware of inconsistency that can arise from “circularity” and in any case.

FK(Name)	REFS	Pa@ent	

FK(Name)	REFS	Pa@ent	

Remember that you would NOT put explicit
references to FK constraints in a UML – rather
these belong in the SQL translation of the UML

Pa@ent	 LabTest	
	

Name	PK	
Address	

TestID	PK	
Result	

1..1	 0..*	

LabOrder	

OrderID		PK	
Date	

1..*	

0..*	
1..1	

1..1	

Joe			Elm	
Jane	Oak	

LO1			Joe		
LO2		JaneJoe	

LT11	LO1	Joe	...					
LT12	LO1	Joe	...	
LT21	LO2	Jane	...	
LT21	LO2	Jane	...		

FK(OrderID)	REFS	LabOrder	

LO2 is now unambiguously associated with Joe – it still may be incorrect, but not inconsistent!

Alternatively, a design team might think about getting rid of the LabOrder class (or making it
an association class) and replacing the LabOrder table with a view, perhaps

Lesson – beware the redundancy that arises from circularity (and otherwise)

FK(Name)	REFS	Pa@ent	

X	

Consider removing the Patient/LabTest link

Pa@ent	 LabTest	
	

Name	PK	
Address	

LabID	PK	
Result	

LabOrder	

OrderID		PK	
Date	

1..*	

0..*	

1..1	

1..1	

Joe			Elm	
Jane	Oak	

LO1			Joe		
LO2		Jane	

LT11	LO1	...					
LT12	LO1	...	
LT21	LO2	...	
LT21	LO2	...		

We don’t need the direct connection between Patient and LabTest to access the individual lab
tests of patients:

SELECT P.Name P.Address, LT.LabID, LT.Result
FROM Patient P, LabOrder LO, LabTest LT
WHERE P.Name = LO.Name AND LO.OrderID = LT.OrderID

