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ABSTRACT 

We perform delamination analysis in laminated composites in 2D and 3D using the discrete 
damage zone model within the framework of the finite element method. In this approach, spring-
like elements are placed at the laminate interface and damage laws are used to prescribe both 
interfacial spring softening and bulk material stiffness degradation to study crack propagation. 
The irreversibility of damage naturally accounts for the subsequent reduction of material 
stiffness once the material is loaded beyond the elastic limit. The model is implemented in the 
commercially available ABAQUS software via the user element subroutine (UEL). Numerical 
results for 2D mixed-mode and 3D mode-I delamination are presented. The results for the 
benchmark examples show good agreement with those obtained from virtual crack closure 
technique (VCCT), which validates the method. This discrete method is particularly suitable 
when the material nonlinearities in the continuum surrounding the crack tip are significant.  

1. INTRODUCTION 

Delamination and debonding are the two major failure modes in laminated composites [1], but, 
often damage may accumulate in the weaker matrix leading to matrix cracking. Therefore, 
specialized methods are needed for the numerical analysis of fracture and delamination in 
composites so as to obtain reasonable results. To this end, we have recently proposed a discrete 
damage zone model within the frame of the finite element (FE) method that is further explored 
herein. This method falls into the class of the cohesive zone models (CZMs), however, it is 
different from the widely popular continuum cohesive zone models (CCZMs), which is 
addressed later in this section.  

The numerical approaches used to study fracture and delamination in composites may be broadly 
classified into: (i) linear elastic fracture mechanics (LEFM) based [2, 3] and (ii) the cohesive 
zone modeling based. The LEFM approaches have been widely used to tackle delamination 
problems due to its simplicity and effectiveness [4– 6]; however, such an approach requires an 
initial crack and a negligible size of nonlinear zone at the crack tip [7]. In order to overcome 
these limitations, the cohesive zone modeling approach was proposed initially by Barenblatt and 
Dugdale [8, 9]. The concept introduces a bounded stress within the cohesive zone at the crack 
tip. This method has been widely used in simulations for composite materials and dynamic crack 
growth [10–13]. However, there are some inevitable computational issues associated with the 
CCZMs, such as the shape of the softening region of the cohesive laws and the integration 
scheme may cause convergence difficulties, oscillation and mesh sensitivity [11–13]. 



In order to deal with the computational issues associated with the CCZMs, discrete interfacial 
spring elements were introduced by Cui and Wisnom [14], instead of continuum cohesive 
elements. Later, Xie and Waas [15, 16] developed this idea by proposing the discrete cohesive 
zone model (DCZM), which employs bilinear traction-separation laws as constitutive laws in the 
discrete spring elements at the finite element nodes of the interface. Their approach is shown to 
overcome the computational issues of the continuous CZMs. However, this discrete cohesive 
zone model does not consider the material nonlinearities in the continuum finite elements 
surrounding the crack tip and so it precludes matrix cracking as a failure mode. Further, this 
DCZM has only been tested for bilinear traction separation laws and the corresponding negative 
tangent stiffness of the interface element may lead to convergence issues.  

The current discrete damage zone model (DDZM) is different from the above mentioned models 
in three respects: (i) it employs spring-like elements at FE nodes whose softening behavior is 
given by a damage law; (ii) it considers damage of the surrounding continuum so as to include 
the effects of matrix cracking on the macroscopic mechanical behavior; and (iii) it uses the non-
negative secant modulus in order to avoid convergence issues. The DDZM defines the force-
separation law of the interfacial spring elements based on continuum damage mechanics and not 
particularly from any cohesive zone model. For homogeneous isotropic material, the same 
damage law is implemented in both the interfacial spring and bulk continuum elements; whereas, 
for a laminated composite, the damage law or parameters may be different in the springs and in 
the continuum. This paper is organized as follows: Section 2 describes the DDZM formulation, 
the procedure for parameter identification and the numerical implementation. Section 3 presents 
the results for two benchmark examples involving 3D mode-I and 2D mixed-mode delamination 
and discusses their convergence to the LEFM solution. In addition, we present results of fracture 
analysis under a three-point bending test to study fracture in adhesive joints. Section 4 details the 
conclusions and the directions of future research.  

2. FORMULATION AND IMPLEMENTATION 

2.1 Discrete Interface Element 

The proposed DDZM is developed from the perspective of damage mechanics. Therefore, the 
material failure is interpreted as stiffness degradation due to damage evolution in both interface 
and bulk elements. Figure 1 shows a typical mesh for the double cantilever beam (DCB) with 
standard quadrilateral finite elements in the continuum and with interface elements at the finite 
element nodes along the interface. These interface elements are multi-dimensional spring like 
elements resisting displacement along and perpendicular to their axis. In this article, the analysis 
needs only two-dimensional springs and the implementation is detailed in Section 2.3. 

Now, let us derive the force-separation law for a one-dimensional spring element by considering 
the damage model proposed by Mazars [17] for brittle materials, 

𝐷 = 1 − (1 − 𝐴) 𝛿௖௥𝛿 − 𝐴exp (𝐵(𝛿 − 𝛿௖௥)) 
[1]

where 𝐷 is the damage variable, 𝐴 and 𝐵 are parameters, 𝛿 is the interfacial separation, and 𝛿௖௥ 
is the critical interface separation required to initiate damage. We assume the parameter 𝐴 = 1.0 



 

 

 

 

 

Figure 1. Schematic diagram showing the finite element mesh for the mode-I delamination 
analysis of a double cantilever beam. The ‘x’s indicate the integration (Gauss) points and the 
dots indicate the finite element nodes and the dashed line indicates the delamination surface. 

for simplicity of the expressions without loss of generality. The behavior of this damage model is 
shown in Figure 2(a). Using equation 1, the force–separation (𝐹 − 𝛿)  relation at a point 𝛿∗ ∈(𝛿௖௥, 𝛿௠௔௫), may be written from the 𝐹 − 𝛿 curve’s geometry shown in Figure 2(b) as,  

𝐹∗ = 𝐾∗𝛿∗ = (1 − 𝐷)𝐾଴𝛿∗ = 𝐾଴𝛿∗exp (𝐵(𝛿∗ − 𝛿௖௥)) 
[2] 

where 𝐾଴ is the initial undamaged stiffness of the spring and  𝛿௠௔௫ is the maximum separation 
in the spring just before complete failure (rupture). Note that for the current exponential model 𝛿௠௔௫ = ∞. Thus, the general one-dimensional force–separation law in the spring element with 
exponential softening is given by, 

𝐹 = ൞  𝐾଴𝛿,      if 𝛿 ∈ [0, 𝛿௖௥]𝐾଴𝛿exp൫𝐵(𝛿 − 𝛿௖௥)൯ , if 𝛿 ∈ ( 𝛿௖௥, ∞]       

[3] 

  

(a) Damage vs. separation (b) Force vs. separation 

Figure 2. The damage and mechanical behavior of the current discrete interface element. 
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Thus, the procedure to derive the force-separation law from a given damage model is 
straightforward. The behavior of the springs in multi-dimensions can be similarly written for 
each directional component assuming there is no interaction between the normal and tangential 
components. Then, the interaction under mixed-mode fracture can be incorporated using the 
combined fracture energy criterion, which is detailed in the Section 2.4. In this article, we 
consider only Mazars damage model, however, the formulation is general and other damage 
models may also be employed to derive appropriate force–separation laws.  

2.2 Parameter Identification 

The parameters that need to be identified include the critical separation for damage 
initiation, 𝛿௖௥, the undamaged spring stiffness, 𝐾଴, and the damage coefficient, 𝐵, along and 
perpendicular to the axis of the spring. Now, let us consider a 2D interface element and 
determine the parameters from the three principles of linear elastic fracture mechanics. First, the 
spring forces along (normal) and perpendicular (tangential) to its axis are maximum when the 
corresponding separations reach the critical values, that is,  𝑑𝐹௡𝑑𝛿௡ฬఋ೙ୀఋ೙೎ೝ = 0 

[4] 

𝑑𝐹௧𝑑𝛿௧ฬఋ೟ୀఋ೟೎ೝ = 0 
[5] 

where the subscripts 𝑛, 𝑡 denote the normal and tangential components, respectively. Second, the 
maximum tractions (𝑇௡, 𝑇௧) correspond to the respective cohesive strengths (𝜎௠௔௫, 𝜏௠௔௫) , 𝑇௡|ఋ೙ୀఋ೙೎ೝ = lim∆௔→଴ 𝐹௡∆𝑎ฬఋ೙ୀఋ೙೎ೝ = 𝜎௠௔௫ [6] 

𝑇௧|ఋ೟ୀఋ೟೎ೝ = lim∆௔→଴ 𝐹௧∆𝑎ฬఋ೟ୀఋ೟೎ೝ = 𝜏௠௔௫ [7] 

Owing to the finite element discretization, the force in each spring acts on an area of ∆𝑎, which 
depends on the characteristic size of the mesh. Third, the areas under the normal and tangential 
force–separation curves should correspond to the mode-I and mode-II critical fracture energy 
release rates, that is, 

න 𝑇௡(𝛿௡, 0)𝑑𝛿௡ఋ೙೘ೌೣ
଴ = න 𝐹௡(𝛿௡)∆𝑎 𝑑ఋ೙೘ೌೣ

଴ 𝛿௡ = 𝐺ூ஼ 
[8] 

න 𝑇௧(𝛿௧, 0)𝑑𝛿௧ఋ೟೘ೌೣ
଴ = න 𝐹௧(𝛿௧)∆𝑎 𝑑ఋ೟೘ೌೣ

଴ 𝛿௧ = 𝐺ூூ஼ 
[9] 



Using the above six equations 4–9, we can calibrate the six parameters of the exponential 
softening law, 𝐵௡,  𝛿௡௖௥, 𝐾௡଴,  𝐵௧,  𝛿௧௖௥ and 𝐾௧଴ in 2D. The final expressions for the parameters after 
some mathematical simplification are, 

𝛿௡௖௥ = 𝐺ூ஼𝜎௠௔௫ exp (1) ; 𝛿௧௖௥ = 𝐺ூூ஼𝜏௠௔௫ exp (1)  [10] 

𝐵௡ = 1𝛿௡௖௥ ; 𝐵௧ = 1𝛿௧௖௥ [11] 

 𝐾௡଴ = 𝐵௡ଶ∆𝑎 𝐺ூ஼exp (1) ; 𝐾௧଴ = 𝐵௧ଶ∆𝑎 𝐺ூூ஼exp (1) [12] 

2.3 Numerical Implementation 

In this section, we shall describe briefly the numerical implementation of the discrete damage 
zone model within the framework of the finite element method. Let us consider the behavior 
around the crack tip as shown in Figure 3. Under an applied load, as the extensions of interface 
springs increase the interface separates and the crack opens. Eventually, under a sustained load 
this will lead to the complete failure of the springs. In Figure 3, spring 6 has completely failed 
whereas springs 1, 2 have zero extensions and so all these springs have zero force. The springs 3, 
4, 5 have non-zero extensions and non-zero forces.  

 

Figure 3. Sketch of the discrete damage zone model (DDZM) in a domain with an initial crack 

In a general case scenario, when the point of fracture initiation in a domain is not known, every 
node of the finite element mesh is defined as double nodes and discrete spring elements are 
placed between these double nodes. For benchmark problems, the potential crack path is already 
known and hence there is no need to put springs in the whole domain. The proposed DDZM is 
implemented in the commercial finite element analysis software ABAQUS. The discrete spring 
elements are defined via the user defined element subroutine UEL. Figure 4 shows the element 
definition and node numbering convention. Even for the case of 3D delamination analysis, the 



interface forces can be resolved into normal and tangential components and the following 
scheme can be implemented using the principles of vector and tensor calculus. For brevity and 
simplicity, we describe the implementation for a general 2D spring element that is not aligned 
with the global coordinate axes. Note that the initial length of these spring elements is zero since 
the springs are attached between double nodes. After deformation, the displacement vector in 
global Cartesian coordinates (𝑥ଵ, 𝑥ଶ) is given by, 𝒖 = (𝑢ଵ, 𝑢ଶ, 𝑢ଷ, 𝑢ସ)T [13] 

In local coordinates (𝑥ଵᇱ , 𝑥ଶᇱ ), the vector is given as, 𝒖ᇱ = 𝑹𝑢 = (𝑢ଵᇱ , 𝑢ଶᇱ , 𝑢ଷᇱ , 𝑢ସᇱ )T [14] 

where a “ T ” in the superscript denotes transpose and 𝑹 is the anticlockwise rotation matrix is 
given by, 

𝑹 = ቎ 𝑐𝑜𝑠𝜃 𝑠𝑖𝑛𝜃−𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃 0 00 00 00 0 𝑐𝑜𝑠𝜃 𝑠𝑖𝑛𝜃−𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃቏ 
[15] 

 

 

 

 

 

 

 

 

 

 
 
 

Figure 4. Sketch of the discrete spring element placed at the nodes of the continuum elements at 
the interface and the definition of degrees of freedom in local and global coordinates. The 

inclination of the spring 𝜃 defines the angle of coordinate rotation. 
 

The stiffness of the spring is a function of damage variable 𝐷 in both directions, along (𝑛) and 
perpendicular (𝑡) to its axis, 
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𝐾௡ = (1 − 𝐷௡)𝐾௡଴ [16] 𝐾௧ = (1 − 𝐷௧)𝐾௧଴ [17] 

Note that the above two equations give the expressions for the non-negative secant moduli, 
which avoid the convergence issues associated with the possibly negative tangent moduli. In 
order to implement this interface element via ABAQUS user element subroutine UEL, the 
element stiffness matrix, 𝑲 (AMATRX), and the residual force vector, 𝒓 (RHS), in global 
coordinates need to be defined. The corresponding expressions are given by, 

𝒓′ = 𝑹T ⎩⎨
⎧−𝐾௡(𝑢ଵᇱ − 𝑢ଷᇱ )−𝐾௧(𝑢ଶᇱ − 𝑢ସᇱ )𝐾௡(𝑢ଵᇱ − 𝑢ଷᇱ )𝐾௧(𝑢ଶᇱ − 𝑢ସᇱ ) ⎭⎬

⎫
 

[18] 

𝑲 = 𝑹T ൦ 𝐾௡ 00 𝐾௧ −𝐾௡ 00 −𝐾௧−𝐾௡ 00 −𝐾௧ 𝐾௡ 00 𝐾௧ ൪ 𝑹 

[19] 

Note that, in addition to UEL subroutine for the discrete element, we have implemented the user 
material subroutine UMAT for incorporating damage in the continuum elements. A scalar 
damage variable is used to implement Mazars damage in the continuum. Again, for brevity, the 
numerical implementation of the UMAT is omitted in this section since it is quite 
straightforward.  

2.4 Mixed-Mode Fracture Criterion 

In most of the engineering applications, delamination involves both mode-I and mode-II 
opening. Therefore, we need to specify the failure based on mixed-mode fracture energy 
criterion. Herein, we use a linear criterion for mixed-mode interaction, previously suggested by 
Wu and Reuters [19], is given by,  𝐺ூ𝐺ூ஼ + 𝐺ூூ𝐺ூூ஼ = 1.0 [20] 

where 𝐺ூ and 𝐺ூூ are evaluated as,  

𝐺ூ = න 𝐹௡(𝛿௡)∆𝑎 𝑑ఋ೙଴ 𝛿௡ ; 𝐺ூூ = න 𝐹௧(𝛿௧)∆𝑎 𝑑ఋ೟଴ 𝛿௧ 
[21] 

If the criterion in equation 20 is met for an interface element, then we consider that it has failed 
and the damage in the spring is set as 𝐷௡ = 𝐷௧ ≈ 1.0.  



3. NUMERICAL EXAMPLES AND RESULTS 

In this section, we present three examples including one benchmark examples of 2D mixed-mode 
fracture known as the single leg bending (SLB) problem [18]. A convergence study is performed 
for the SLB problem to show the influence of cohesive strength in comparison to the results 
obtained from LEFM. The other two examples include 3D mode-I delamination in a double 
cantilever beam (DCB) problem and fracture at adhesive joints in a simply supported beam 
(SSB) problem. Table 1 summarizes the material properties used in each example. The SLB 
problem specimen consists multiple layers made of two different composite materials (L1 and L2) 
and the SSB problem compares a weak and strong interface, as given in Table 1.  

Table 1. Summary of material properties used in each example. 

Material 𝑬𝟏𝟏 

(𝐍/𝐦𝐦𝟐) 

𝑬𝟐𝟐 

(𝐍/𝐦𝐦𝟐) 

𝝊𝟏𝟐 𝑮𝑰𝑪 

(𝐍/𝐦𝐦𝟏) 

𝝈𝒎𝒂𝒙 

(𝐍/𝐦𝐦𝟐) 

𝑮𝑰𝑰𝑪 

(𝐍/𝐦𝐦𝟏) 

𝝉𝒎𝒂𝒙 

(𝐍/𝐦𝐦𝟐) 

SLB (L1) 9.1e6 1.5e6 0.51 5.6 2.0e3 9.3 5.0e3 

SLB (L2) 2.5e6 1.5e6 0.14 5.6 2.0e3 9.3 5.0e3 

DCB (3D) 8.00e6 8.00e6 0.00 1.2 4.0 - - 

SSB (weak) 2.4e3 2.4e3 0.25 3.0 3.3e1 3.0 3.3e1 

SSB (strong) 2.4e3 2.4e3 0.25 3.0e2 3.3e2 3.0e2 3.3e2 

3.1 2D Mixed-Mode Delamination: Single Leg Bending 

Herein, we validate and illustrate the convergence of the DDZM for mixed-mode delamination. 
The set up of the single leg bending (SLB) benchmark problem is shown in Figure 6. The beam 
is simply supported at the left and right ends. A crack of length 𝑎଴ is prescribed as shown so as 
to initiate delamination. The dimensions of the beam are as follows: 𝑎଴ = 0.27 mm, 𝐻ଵ = 0.0884 
mm, 𝐻ଶ = 0.2876 mm, 𝐿ଵ = 3.0 mm, 𝐿ଶ = 4.8 mm, 𝐿 = 6.0 mm.  

 

Figure 5. Initial geometry and boundary conditions for single leg bending (SLB) model 



To initiate mixed mode delamination, displacement increments are applied at mid-span as shown 
in the Figure 5. Note that displacement control is applied in order to capture the softening 
behavior of the load–displacement (P–Δ) curve. The discrete spring elements are placed only 
along the dashed line, which describes the expected delamination path. Figures 6(a) and 6(b) 
show the Mises contour plots on deformed shape at time step “A” when the crack propagates to 
the point of load application and at the final time step “B”  f the simulation. It can be seen from 
Figure 6 that once the lower layer separates it is under zero.  

 

  

 

(a) Time step A when the crack propagates to the point of load application 

 

 

 

(b) The final time step B of the simulation 

Figure 6. Mises contour plot on deformed shape at the application point and the end of the 
simulation. The area circled by red dashed line is zoomed in to show the finite element mesh. 

Figure 7 shows the P–Δ curves and the behavior at time steps A and B are marked. As the beam 
deforms under the applied loading, the extensions (δ) in the interface elements increase and 
eventually when a critical displacement is reached, the crack propagates very quickly so as to 
cause an abrupt drop in the load bearing capacity of the beam. This sudden drop in load bearing 
capacity happens till the crack reaches the application point of load at time step A. From this 
point, the crack propagates much slower and the behavior of the beam is close to linear elastic 
with a different slope than at the beginning. This behavior can be clearly observed in Figure 7. 
Results obtained from the virtual crack closure technique (VCCT) are used as reference LEFM 
solutions. The results from the DDZM are in good agreement with those of VCCT, which 



validates our implementation; however, the DDZM results depict a slightly less abrupt failure 
than the VCCT results owing to bounded stress in the cohesive zone.   

Next, in order to demonstrate the convergence of the scheme, we vary the material cohesive 
strengths one component at a time. In the results of Figure 7(a) the normal cohesive strength 𝜎௠௔௫ is a constant while in those of Figure 7(b) the tangential cohesive strength 𝜏௠௔௫ is a 
constant. The numerical results obtained from higher cohesive strengths converge to the VCCT 
results demonstrating the convergence of the DDZM to the LEFM solution.  

                             (a) Constant 𝜎௠௔௫                               (b) Constant 𝜏௠௔௫ 

Figure 7. The load vs. displacement curves for the single leg bending problem. The results for higher 
cohesive strengths demonstrate convergence to the LEFM solution. 

3.2 3D Mode-I Delamination: Double Cantilever Beam 

Herein, we demonstrate the applicability of the DDZM for mode-I delamination analysis in 3D. 
The initial geometry and boundary conditions are shown in Figure 8. The right end of the beam 
is fixed and displacement boundary conditions are applied on both the upper and lower layers at 
mid-point on the left end. Each layer is a 2D plate with zero thickness. The dimensions are as 
follows: 𝑊 = 1 mm, 𝐿 = 9 mm.  

 

Figure 8. Initial geometry and boundary conditions for double cantilever bending (DCB) in 3D 
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The delamination occurs due to the debonding of the upper and lower layers. The discrete spring 
elements are placed between these two layers by connecting double nodes belonging to each 
layer. Again, displacement control is used so as to capture the global softening behavior. Figure 
9(a) and 9(b) show the Mises contour plots on deformed shape at the end of the first and last time 
steps of the simulation, respectively. Upon close observation, one can see the variation of the 
stress in the y-direction close to the left edge. This is the effect of a local stress concentration as 
the displacement increments are applied at the mid-point of the edge. Far away from the point of 
application, the stress is uniform across the width of the specimen.  

 

(a) Delamination at the end of the first time step 

 

(b) Delamination at the end of the final time step 

Figure 9. Mises contour plot on deformed shape of double cantilever bending in 3D 



 

Figure 10. Load vs. displacement curves for double cantilever beam (DCB) debonding in 3D 

The load-displacement (P– Δ) curve obtained from the DDZM is plotted against the result from 
VCCT, shown in Figure 10. The VCCT result consists of a linear regime followed by a failure 
regime exhibiting small fluctuations in load bearing capacity, whereas, the DDZM result depicts 
a smoother global failure curve. This is expected since the DDZM assumes a cohesive zone with 
damageable interface elements wherein the individual elements gradually failure while 
simultaneously redistributing the forces to the surrounding active interface elements.  

3.3 Mode-I fracture: Simply Supported Beam Bending 

Herein, we consider mode-I fracture of an adhesive joint in a beam element using the DDZM. 
The initial geometry and boundary conditions for this simply supported beam are shown in 
Figure 11. Both the initial crack and the load are prescribed at mid-span. Displacement boundary 
condition is applied in order to deform the beam. The dimensions are as follows: 𝑎଴ = 10 mm, 𝐻 
= 20 mm, 𝐿ଵ = 45 mm, 𝐿ଶ = 22.5 mm, 𝐿 = 90 mm. 

 

Figure 11. Initial geometry and boundary conditions for simply supported beam (SSB). The 
adhesive joint interface is indicated by the dashed line.  
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The discrete spring elements are placed along the adhesive joint interface described by the 
dashed line in Figure 11.  Mazars damage law [17] governs the behavior of both the interface and 
continuum elements. We consider two hypothetical cases, one with weak interface and the other 
with strong interface. The materials properties assumed are given in Table 1. Damage contour 
plots for these two cases are shown in Figure 12. For a weak interface the failure occurs 
primarily in the interface elements, whereas, for a strong interface the damage occurs in the 
continuum elements surrounding the crack tip. 

 

Case I: weak interface (hypothetical) 

 

Case II: strong interface (hypothetical) 

Figure 12. Damage contour plots for both weak interface and strong interface. The red areas 
indicate completely damaged elements. 

The DDZM is able to capture both interface failure in the adhesive joint as well as the failure of 
surrounding matrix due to microcracking. Thus, this example illustrates the generality of the 
current approach.  

4. CONCLUSIONS 

4.1 Summary 

The discrete damage zone model (DDZM) [20] has been implemented to study delamination in 
laminated composites. The model has been developed from the perspective of damage mechanics 
and so it naturally accounts for the irreversibility of stiffness degradation once the material is 
loaded beyond the elastic limit. The model considers both damage of the continuum and the 
interface and so it is able to capture multiple failure modes such as debonding and matrix 



cracking. For a homogeneous isotropic material the same damage law governs both the interface 
element and continuum element stiffness degradation, thus, leads to a unified formulation. 
Further, since damage evolution is allowed in both interfacial and bulk elements, the  model is 
applicable to problems where the point of fracture initiation and the path of fracture propagation 
are not know a priori. 

This generalized formulation is simple and can be readily incorporated into existing finite 
element software such as ABAQUS. The numerical results, of 2D mixed-mode single leg beam 
bending and 3D double cantilever beam mode-I delamination, from the DDZM show good 
agreement with the reference VCCT results. Moreover, the numerical investigation of the mixed 
mode single leg bending test with various cohesive strengths demonstrates the convergence to 
linear elastic fracture mechanics. The results of mode-I fracture of adhesive joint interface in 
beam elements demonstrate the versatility of the method for problems involving multiple modes 
of failure. Thus, the study conducted in the article illustrates the viability of the method for study 
failure in laminated composites which is important to predict their durability and performance.  

4.2 Afterwords 

The irreversibility of damage makes this numerical scheme particularly suitable for studying 
fatigue behavior of composites. By decomposing the total damage into static and cyclic 
components and by defining the corresponding damage laws we can investigate failure under 
fatigue loading. Currently, we are working on extending the discrete damage zone model.   
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