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1. INTRODUCTION
There is growing recognition within the education policy community of the need to
reform how teachers are paid in order to improve the quality and performance of the
teaching workforce (Committee for Economic Development, 2004; Hassel, 2002; Malanga,
2001; Odden & Kelley, 1996; Odden, Kelley, Heneman & Milanowski, 2001; Southern
Regional Education Board, 2000). Traditionally, teachers have been paid using a fixed
salary schedule that takes into account years of experience and education but does not
consider teachers’ performance. Currently there is a great interest in adding
performance based components to teacher salaries. This interest is driven by both state
and local initiatives (including Florida, Minnesota, Texas, and Denver, Colorado among
others) and the federal Teacher Incentive Fund (TIF) program.

A key component to the new wave of performance based pay initiatives is the use of
student achievement data to evaluate teacher performance. The testing requirements of
the No Child Left Behind Act (NCLB) have resulted in greater numbers of students being
tested than ever before. Moreover, annual testing in grades 3 to 8 and one grade in high
school has yielded longitudinal data on students. At the same time as greater amounts of
data are being collected, researchers have been developing and applying innovative
statistical and econometric models to the longitudinal data to develop measures of an
individual teacher’s contributions to his or her students’ learning (Sanders, Saxton, and
Horn, 1997; Webster and Mendro, 1997; McCaffrey et al, 2004; Harris and Sass, 2006).
Generally referred to as value added models, this class of models has demonstrated
significant variation among teachers in their performance and demonstrated that this
variation among teachers is a significant source of variation in student outcomes (Rivkin,
Hanushek, and Kain, 2005, Kane, Rockoff, and Staiger, 2006, Gordon, Kane and Staiger,
2006).

The class of value added models includes a wide range of models with a common feature
of using students’ prior achievement to account for student inputs to their learning and to
separate these inputs from the inputs of their teachers. Such controls are necessary
because students are not uniformly assigned to classes and some classes include students
with significantly lower levels of achievement and at significantly greater risk for poor
achievement. The alternative specifications for value added models are likely to yield
estimates of teacher performance with different statistical properties in terms of the level
of error in the estimates and amount of residual confounding between estimated teacher
performance and the characteristics of the students in the teacher’s class.
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A few studies have compared subsets of the various value added estimators of teacher
performance (McCaffrey et al., 2004; Harris and Sass, 2006, Buddin et al., 2007) but few
have considered the alternative explicitly in the context of using the estimates as the basis
of performance based pay. Moreover, there has been very little consideration of aspects
of the process of generating performance measures and using them to award teacher
bonuses or make other compensation decisions.

This paper directly addresses these issues. It describes the process of taking a large
administrative database of student test scores and class assignments and turning it into
bonus decisions for teachers. The choices to be made at each step of the process are
illuminated with careful consideration of impact on the types of teachers who receive
awards of the choice of performance measure and decision rule for awarding bonus.
Middle school mathematics data from a large urban school system provide the case study
of the process of awarding teachers a bonus on the basis of their students’ progress. We
begin by describing the case study data and then turn the discussion of using data like
these to determine teacher compensation.

2. CASE STUDY DATA

In this paper we use a case study of generating performance measures for middle school
mathematics teachers and simulation studies of alternative decision rules for awarding
bonuses to illuminate some of the issues that arise in using student achievement to
determine teacher compensation. The data are from a large urban school district in which
roughly 50 percent of tested students are African American, 36 percent are white, 11
percent are Hispanic, and about 3 percent are Asian or other ethnic group. We focus on
middle school students and their teachers, using data for the district’s traditional middle
schools, including magnet schools but excluding special education and alternative
schools. The district treats grade levels five to eight as its traditional middle school grade
levels and we focus only on teachers of students in these grades. Our study population
includes all 37,887 students who attended any of the district’s middle schools in grades
five to eight for at least part of one or more of the school years 2004 05, 2005 06, or 2006
07.

The teacher population of interest for this case study consists of every teacher who taught
mathematics to the students in the student sample during the 2005 06 or 2006 07 school
years. Using the administrative data, we identified 478 teachers in the 2006 07 school year
and 476 teachers in the 2005 06 school year in our population. Of these teachers, 338
were in both years for a total of 615 teachers in our case study.
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The administrative data are collected from three sources: test score files, enrollment
history files, and course enrollment files. The test score files include both testing data the
student test scores and grade level of testing and the background variables such as race,
gender, and special education status. The enrollment history file contains enrollment
related transactions that can be used to determine the dates that every student was
enrolled in each middle school during each school year. The course files provide by
school the cumulative record of all the courses in which a student was enrolled during the
school year. The course data include course titles and teacher identifiers. The course file
does not provide any information about the dates in which the student was enrolled in
any course. The course file is used to link students to individual teachers.

The data sources were linked using student identifiers to create a database with one
record for each student in the study population for each year of the study and each tested
subject.1 Each record includes a school identifier for the school a student attended that
school year, the student’s grade level for the school year, student demographics such as
race and gender, and special education status when available. Using rules described
below, we also assigned to each record (defined by a student, year, and subject) an
identifier for the teacher who was accountable for the student’s learning in the specified
subject for the given school year. The rules for assigning students to teachers resulted in
some students being assigned no teacher for a given subject in a given school year even if
the student was enrolled in the district’s middle schools. In such cases, and in cases
where the student was not enrolled in the district, the teacher links are set to a missing
data value.

Students in the case study school district are tested each year on statewide assessment. In
the 2003 04, 2004 05, 2005 06, and 2006 07 school years students in grades 3 to 8 were
tested in mathematics, reading English language arts (ELA), social studies and science. In
2002 03 students in grades 3, 5 and 8 were tested in mathematics and reading. The
mathematics and ELA test scores are presented on a developmental scale with scores
linked across grades and test years from 2003 04 forward. The social studies and science
tests are not vertically linked or linked across school years. These tests are scaled to have
roughly the same mean and variance at each grade level and year of testing.

1 For students who were retained in a grade or skipped a grade the database contains a sequence of
records for each series of grades in which the student was enrolled. For example, for a student
who was enrolled in grade 6 in the 2005 06 school year and retained in grade 6 for a second year in
the 2006 07 school year, the file includes two series of records for the student each with
consecutive grades. The first has the student in grades 4, 5, 6, 7 in the 2002 03 to 2006 07 school
years with missing values for the 2006 07 school year. The second sequence has the student in
grades 3, 4, 5, 6 for the 2002 03 to 2006 07 school years with missing values for every year except
the 2006 07 school year.
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In our analyses we used both the raw mathematics scale scores and transformed values
we created to improve the bivariate relationship between tests from adjacent years. We
call our transformed values z scores or rank based z scores. We first transformed each
raw scale score to its percentile in the empirical distribution function of scores for a given
grade level and school year. The percentile of the empirical distribution function equals
the rank of the score, divided by one plus the total number of students with scores in this
grade level and school year. We then transformed the percentile to the corresponding
quantile from a normal distribution. In the base year of 2003 04, we transformed the
percentiles using the quantiles of the standard normal distribution. In later years we
allowed the mean and variance of the normal distribution to shift to account for possible
trends in the scores relative to the baseline. See Appendix 1 for details on this
transformation.

The database also includes teachers’ scores on the Learning Mathematics for Teaching
Project’s Multiple Choice Measures of Mathematical Knowledge for Teaching (LMT) for a
sample of 126 mathematics teachers teaching in the district during the 2007 08 school
year. The LMT was developed by a team at the University of Michigan to measure the 
mathematical knowledge specific to teaching (Hill & Ball, 2004; Humphrey & Wechsler, 
2007; Humphrey, Wechsler, & Hough, 2008a). It has been used successfully to document:
teacher learning in a California professional development program (Hill & Ball, 2004);
distributional problems in teaching knowledge in a nationally representative sample of
middle school teachers (Hill, 2007); and differences between certification routes
(Humphrey, Wechsler, & Hough, 2008a, 2008b). Finally, the instrument has been used to
document a relationship between teachers’ LMT scores and their students’ achievement in
first and third grade (Hill, Rowan, and Ball, 2005).

Extensive equating and validation work has been done on the three forms of the
instrument (Hill, Ball, Blunk, Goffney, & Rowan, 2007; Hill, et al., 2004; Schilling, Blunk, &
Hill, 2007; Schilling & Hill, 2007). The instrument measures knowledge in two domains –
content knowledge and knowledge of content and students – across three areas of
mathematics. Those three areas– number concepts and operations, geometry, and
patterns, functions, and algebra– make up much of the K 8 mathematics curriculum.
Analyses of item response theory reliabilities indicate all three forms of the instrument
had good to excellent reliability, ranging from 0.71 to 0.84 on subscales and 0.916 to 0.931
for whole forms. Coefficient alphas ranged from 0.450 to 0.821 on subscales and 0.845 to
0.888 for whole forms of the test (Hill, Schilling, and Ball, 2004 ).

The LMT scores in our data were based on a subset of items from the K 8 form. The items
were chosen to be most relevant to middle school mathematics while limiting the survey
burden on teachers. All middle school mathematics teachers in the district were invited to
complete the survey and roughly 40 percent did so. An informal review of the items
suggests that they focus on algebraic skills and reasoning more so than other mathematics
concepts.
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3. CREATING THE STUDENT ACHIEVEMENT DATABASE

The process of awarding teachers bonuses on the basis of their students’ achievement
begins with the task of creating a database of student achievement data linked to the
students’ teachers. The importance and inherent challenges of this first step in the process
are often overlooked and it is taken for granted that clean data appropriate for analysis
already exist and will be used for the estimation of effects and the final bonus decisions.
In our experience, administrative data, even from good systems, requires extensive
processing before it can be used to generate performance measures. The processing
involves making numerous decisions that do not necessarily have right or wrong
answers.

What Teachers to Include

One of the first tasks is to determine which teachers are eligible for bonuses and what
courses are to be included when measuring a teacher’s performance. Ideally, the policy
maker might want every teacher to be eligible for a bonus and to award bonuses so that
the “best” teachers receive bonuses regardless of what jobs the teachers have. This ideal is
unlikely to be feasible for systems designed to award performance measured by student
achievement tests. For many subjects, such testing does not exist or does not exist at some
grades. Hence, assuming that administrative data will be used for bonuses requires that
bonuses be restricted to teachers teaching tested subjects and grades. Also, if prior test
scores are to be used in the estimation of effects, bonuses will need to be restricted to
teachers in grades after the first grade of testing. Even in systems that combine
achievement based on test scores and other measures, the achievement based component
must be restricted to teachers of tested subjects and grades.

Identifying teachers to be measured via student performance can be more challenging
than might be expected. When making the choice for determining which teachers to
evaluate for specific teaching tasks such as a subject or a subject and grade level, there are
two considerations. First, for every teacher, the determination must be made about which
subjects and grade levels constitute a sufficiently substantial portion of the teacher’s job
responsibility and are sufficiently related to the standard achievement assessments so that
his or her students’ performance on the tests in this grade level are appropriate for
evaluating the teacher’s job performance. Second, because objective standards of
performance for teachers generally do not exist, most performance measures and all
compensation decisions depend on the teacher’s performance relative to some set of peers
who are also accountable for their performance teaching a grade level and subject. Hence,
for each teacher the determination must be made as to which peer groups he or she
should be assigned for establishing all teachers’ performance levels and compensation.
Such determinations might be made by school administrators, on the basis of rules
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applied to administrative data, or a combination of both sources (e.g., administrators are
given guidelines for selecting teachers for evaluation via each tested subject and grade
level and their decisions are checked via applying the rules to administrative data or visa
versa rules are applied to administrative data and the results are verified by school
administrators).

Regardless of the means for determining which teachers’ performance to measure using
student outcomes on a given test and grade level, several factors make such
determinations challenging. First, some teachers teach very few students in a particular
subject. Resource and special education teachers might teach very few students in any
particular subject or from any particular grade. Similarly, teachers with special language
skills might teach small numbers of students. The class sizes might be even smaller when
students who are unlikely to complete are excluded. One must decide if a teacher with
very few mathematics students meets the criteria for being a mathematics teacher for
evaluation purposes. Should a teacher with very few mathematics students be
accountable for this instruction when the teacher primarily teaches other subjects? Should
such a teacher be used in evaluating the relative performance of other mathematics
teachers?

Class size is not the only factor that can make choices of which teachers should be
evaluated on a subject complicated. The range of courses being taught is also a
complicating factor. Many secondary schools offer a complex array of courses to students
even in the basic subject areas of mathematics or English language arts. In our middle
school data, mathematics courses include special education courses, sheltered
mathematics courses for English language learners, traditional grade level courses, pre
algebra, algebra and advanced courses, including geometry and algebra II. It seems quite
clear that most policy makers and researchers would to want to consider teachers of all
these courses as mathematics teachers and hold them accountable for student
mathematics performance. It might be debatable, however, whether the standardized
statewide assessments adequately measure the learning that the teacher is responsible for
supporting. This is especially true for special education and advanced courses.

It is also less clear whether teachers of these diverse courses and grade levels should be
combined when measuring the relative performance of teachers or when making
normative decisions for awarding compensation. That is, one must decide if the
performance of a fifth grade teacher teaching mathematics in a self contained classroom
should be compared to the performance of a teacher teaching algebra to eighth graders.
This decision will affect the determination of teacher population and must be carefully
considered when developing performance measures because most performance measures
and compensation systems rely on teachers’ performance relative to a peer group to
assess performance and determine compensation.
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Educators, policy makers, and researchers do not generally have an objective standard for
evaluating teacher performance. Typically, performance measures implicitly define a
teacher’s contribution to student learning by comparing student outcomes when taught
by the teacher to counterfactual outcomes that would have occurred under alternative
conditions. The implicit use of a counterfactual to define teacher contributions to learning
results in performance measures being relative to a reference point that functions as the
counterfactual. Common reference points are the average performance for students
across teachers in a district or state. For example, models that estimate effects with linear
regression models (such as the ANCOVA, regression residuals, multilevel mixed models
and fixed effects approaches described in the following section) typically include school
district specific intercepts by grade level that make the reference point the average
performance of teachers in the district who are teaching students in the same grade level
and included in the teacher population according the rules established when creating the
data. Methods that use data from the entire state to estimate expected performance (e.g.,
the lookup table method described below or the Student Growth Percentiles measure
used in Colorado, Betebenner, 2007) use the average performance across teachers from the
entire state as the point of reference.2

Beyond the estimation of effects, compensation decisions also typically involve comparing
performance measures among teachers combined into a peer group (e.g., all middle
school mathematics teachers). For example, the XX system in Florida proposed awarding
teachers in the top quintile of their peer group in the state. Other methods award teachers
compared to the statistical population describing the general distribution of teacher
performance (e.g., awarding bonuses to all teachers above the 80th percentile of an
appropriately scaled normal distribution).

In any of these methods for measuring performance or awarding compensation, the
choice of the peer groups can be significant. Changing the teachers included together in a
peer group can change a teacher performance measure and how that measure is valued.
Different groups can be used in estimation and compensation decisions, but the decision
of which teachers to evaluate on a specific subject and include in the population needs to
be carefully considered relative to the goals of the system and the performance measure to
be used.

2 Regression methods are all based on predicting students’ performance under some alternative
condition and comparing the students’ performance to the expected value to determine the
teacher’s input. One method for estimating performance measures that does not require implicit
comparisons to a standard in the estimation process is average gain score (i.e., the student’s current
year score less his prior year score). Gain scores estimate performance as the change in
performance for a teacher’s students without centering these gains against a standard. However,
implicit in this estimation method is the assumption that in the absence of variation in teacher
effectiveness, average gain scores would be equal across classrooms.
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The choices of teachers to evaluate using a given test are even more complex for language
arts tests because there are many language arts related classes that might not be
considered the primary course work of students. For example, in our middle school
database students were taking courses in drama and speech as well as standard language
arts courses. Whether or not teachers in these courses should be considered language arts
teachers is open to debate. In addition, many students in our middle school data had
reading classes separate from language arts. Again, it is not clear if reading teachers and
language arts teachers should be evaluated by a reading test, a language arts test, or both.
Similarly, whether or not comparative samples should combine these teachers or be
restricted to only reading and only language arts teachers is a choice with no clear answer
but the potential to significantly affect inferences about individual teachers and
compensation decisions. Another consideration for language arts and reading is the
contribution of social studies teachers to these skills. Social studies teachers often
emphasize reading and writing skills in their classes. Should these teachers be evaluated
by their students’ performance on these tests? Should these teachers be included in
normative samples for determining the performance of teachers teaching reading and
language arts courses? Similar and equally vexing problems arise when considering other
subjects.

In the case study presented here, we focus on estimating the performance of teachers of
courses labeled as mathematics in one of the district’s standard middle schools. We did
not restrict the courses included in this sample and we did not control for courses in our
analysis. Also, we included teachers teaching any of the grades in the middle schools and
combined data across grades for teachers who taught students from multiple grades. We
did not restrict the sample by the number of students the teachers taught in mathematics
or the courses taught, including special education courses.

Selecting students for evaluating teachers

After identifying which teachers will be evaluated for the performance of students from a
given population on achievement in a selected subject, the students to be used in the
evaluation must be selected. The challenge here arises because not all students are taught
by a single teacher for the entire year for a given subject. It must be determined for which
students a teacher should be held accountable. For example, most people would believe
that a teacher probably had minimal effect on a student in his or her class for only a few
days and most teachers would probably feel being held accountable for such a student’s
progress would be inappropriate.

The cut point for the length of time is a policy question. The cut point must meet general
expectations about which students’ outcomes might reasonably attributable to actions of
the teacher. On the other hand, choosing to exclude students from teacher evaluations
has the potential negative consequence of encouraging teachers to focus on other
students. More restrictive rules for inclusion will create greater potential for negative
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consequences because more students will be at risk for exclusion and at risk for reduced
attention for a larger portion of the school year. For example, if we exclude only students
who were in a teacher’s class for less than 2 weeks, then we will put few students at risk
for decreased attention and the period of decreased attention will be just two weeks. If
we exclude students who were in the teacher’s class for less than 95 percent of the school
year, we will exclude more students and a student could be at risk for less attention for up
to 95 percent of the school year. However, including students for whom the teacher
might have had only very minimal input could weaken teacher confidence in the
evaluation system and potentially add error to the performance measures.

In the case study presented here, we decided that the student needed to be in the teacher’s
class for greater than 95 percent of the school year. Other rules might be to include only
students who were enrolled continuously from the start of school until testing or were
enrolled above a fraction of days in the months prior to testing.

Conversely, all students might be linked to their teachers but the time spent in the
teacher’s class might be factored into the estimation of teacher effects. There is little
research on the relative contributions to learning of multiple teachers on students taught
by more than one teacher in a school year. Weighting by time in the class might be one
solution. This would add complexity to statistical analyses.

Another complication is students linked to multiple teachers of the same subject from the
same school during the school year. For example, a student might be linked to both a
special education and a traditional classroom teacher for mathematics, or the student
might be linked to both a reading and language arts teacher. There are again two
challenges with such situations. First, there is the challenge in determining how much
time each teacher taught the student and, second, there are the considerations of for
which students teachers should be accountable when students are being taught
simultaneously by multiple teachers and how to apportion responsibility to the multiple
teachers.

In our experience with our case study data and other databases, links to multiple teachers
indicated different patterns of course taking. Links to multiple teachers might mean that
a student changed courses mid year, for example switching to a more advanced
mathematics class or transferring between regular and special education classes. Multiple
links can also imply that a student was taught simultaneously by two or more teachers,
for example, students receiving reading instruction from one teacher and language arts
instruction from another. We also found that it could mean course assignments in the
early part of the school year were incorrect in the database and later corrected without
removing the errors. Depending on rules for assigning teachers, the alternative meanings
for the same data can have different implications for processing the data and the
ambiguity might make it impossible to implement some desired rules.
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Again, the correct way to apportion the contribution of multiple simultaneous teachers is
not clear. If the data are very detailed then the time spent with each teacher might be
available, but it is not clear if this truly accounts for contributions and if our experience
with high quality administrative data is representative of other school districts’ data, it is
very likely that such detailed data will not exist. Moreover, detailed data might not be
completely accurate. We found that when teachers reviewed rosters of students assigned
to them using our administrative database that a significant proportion of teachers
identified errors in assignments. Some of the errors included students not properly
identified as leaving the school or students changing classes, often to special education,
without this information being properly captured in the database. Our experiences are
limited primarily to one school system’s data and another district’s data might be more
(or less) accurate. However, we believe that careful evaluation of the quality of course
data will be a necessary component of any compensation system.

Many of the problems associated with linking students to teachers, other than data errors,
could be eliminated or mitigated if all the teachers were assigned students according to
the proportion of total instruction in a subject the student received. The data would need
to be accurate and provide details on time spent with each teacher. However, using this
method to ameliorate the problems of linking students to teachers might actually create
complexities for estimating teacher performance measures. Also, it might be challenging
to explain to teachers, especially given the lack of evidence for the appropriate weighting
of students taught by multiple teachers.

If the approach is taken that students will be linked to teachers only if they meet certain
criteria (e.g., they have been in the teacher’s class for a sufficient time and have not been
taught by multiple teachers), then some students might be in the database but not link to a
teacher for a given subject and school year. These students could be deleted from the data
or retained in the data without a teacher link. Deleting these students can create problems
for longitudinal analyses since their scores in prior years might be lost due to the deletion
rule. Retaining the students requires assigning them a teacher. In our case study, we
retained these students and assigned them to a teacher whose effect was set to zero in
multivariate models. The effects of this modeling choice have had limited evaluation in
the literature; however, McCaffrey et al. (2005) compared this method to alternatives in
the context of multivariate mixed model fit in the Bayesian framework and found
estimated teacher effects were robust to this decision.

In the current case study, we linked teachers to students only if the student linked to the
teacher for over 95 percent of the school year and the student had only one mathematics
teacher in the school for the year. In 2007, XX percent of the students enrolled at any time
during the school year were not linked to a mathematics teacher. Of the students enrolled
in a single school for over 95 percent of the school year only XX percent were not linked to
a mathematics teacher. If we had applied our rules to English language arts, only XX
percent of enrolled students would have had links and only XX percent of students
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enrolled in a single school for over 95 percent of the school year would have had teacher
links.

Other factors in creating the student achievement database

Administrative data are often messy and challenging in part because their use for
administrative purposes differs from use for analysis purposes or because student
experiences are varied to meet their complex individual needs. Some of the challenges
posed by the data include:

a. students with data from one administrative data set that contradict data in
another data source, for example, grade level in the test score files differs from
the grade level in the enrollment file for a given school year;

b. students who are missing data from one or more file, for example students
might be in the enrollment file for a given year but not in the course listing and
test score files or students might have records in the test score file but not in
the enrollment files; and

c. students who have multiple records for a given year in one or more files, for
example students with two different sets of test scores for the same school
year.

These types of problems are familiar to any analyst who has used administrative data to
address research problems. Analysts typically develop rules for cleaning data and
assume that lost data or remaining errors have a minimal effect on their conclusions.
Sensitivity analyses or additional modeling might be conducted when the proportion of
records with errors is not trivial.

Such common data errors, however, might be more problematic when using data to
estimate teacher performance and award compensation. Dropping student records can
signal to teachers that certain students do not count and could have negative
consequences for these students. Hence, practices to retain all the available data are likely
to be important. Furthermore, teachers who are unsatisfied with the compensation
decisions might question their performance measures. Any data of questionable accuracy
might support their challenges to the compensation system and could undermine other
teachers’ confidence in the system, possibly eroding any motivating effects the system
might have. Careful review of the data with knowledgeable district staff and teacher
verification of data prior to assigning awards are likely to be necessary components of any
compensation system. For our case study we had a district employee research
questionable data and provide accurate values when possible. However, because our
primary goal was to demonstrate issues and compare performance measures and
bonuses, we also used some of the standard approaches to data cleaning for the examples
presented in this paper. For example, we changed values when data were inconsistent
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and deleted test scores when grade level from the enrollment file and test score files
disagreed.3

4. MEASURING TEACHER PERFORMANCE

Value added modeling entails a great variety of statistical and econometric approaches
for analyzing longitudinal test score data to estimate teacher effects. We employed 24
different approaches to our middle school mathematics data to estimate teacher effects for
the 2005 06 and 2006 07 school years. In this section, we describe the various methods,
provide some general summary statistics for the methods and then compare four methods
in detail to highlight how different teachers might fare under the alternative methods. In
the next section, we discuss the effects of alternative rules for awarding bonuses on the
basis of these performance measures.

Before describing the individual estimation methods, we consider two general issues that
must be considered when creating performance measures. These are the unit of
measurement for the teacher and the frame of reference for the performance measures.

Teachers teach various groups of students defined by course, grade level, school year,
demographics and possibly other factors. When defining a teacher’s performance, we
need to determine how the performance across these varied groups will be used to
determine compensation. Compensation might be based on average performance, or
weighted average performance, performance on a subset of students (only students for
the current school year or only students in mathematics courses) or a combinations of
performance with multiple groups (e.g., the teacher receives a bonus if they exceed a
threshold of performance for students in every course he or she teaches). Estimating
performance on different subgroups of students may provide better information about
variation in a teacher’s performance but it can also introduce greater sensitivity to the
idiosyncratic outcomes of specific students or sampling error. Thus there is a need to
balance between these two goals of estimation. The correct balance will depend in part on
the goals of the compensation system and the likely size of sampling error in the
estimates. Given the generally large levels of sampling error, we suspect that rather
coarse sub sampling will be preferable in most cases.

Decisions about the how to measure teacher performance for teachers teaching in varied
contexts, however, must be made in conjunction with decisions about which students and
subjects a teacher is accountable for and for which populations of teachers a teacher’s

3 The analyses presented here are not the analyses used by the National Center on Performance
Incentives in its POINT experiment or other work with individual teacher compensation. The
approach used here was chosen to facilitate the case study and estimates were not used in any way
to provide compensation to teachers.
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performance will contribute to normative assessments of teachers. Such decisions must
be based on considerations of what performances are comparable and what student
outcomes the teacher is likely to have affected. But they must also be based on what
inferences the available data and statistical methods are able to support. Once the
decisions are made they determine how the data must be coded and how the statistical
procedures of the performance measure must be implemented.

As noted above, because performance measurement and compensation are almost always
determined on a relative basis it is important to consider the frame of reference when
determining the implementation of a performance measure. The choice of teachers to
include in the population in part determines the frame of reference for evaluating
performance, but modeling choices can also change the normative group used for
evaluating a teacher’s performance. For example, including course indicators in a model
implicitly restricts some comparisons to teachers teaching the same course. Again, the
appropriate comparison depends on what performance the policy makers believe should
be comparable and what estimation is feasible.

In our case study, we assumed that comparisons of middle school mathematics teachers
would be relevant to many practitioners considering implementing such a compensation
system and combined together all such teachers, although our models included a grade
level specific intercept so that students were compared to their counterfactual outcome
across the average teacher in the district or state for their grade level. In our case study,
we also aggregated estimates to teacher by school year. We assumed that compensation
was an annual decision so that estimates would be made annually and would be relevant.
To reduce sampling error we combined across grade level, course and demographic
groups. This also allows for all middle school mathematics teachers to be compared as
was our desired comparison.

In our estimation of teacher performance for a given year, we use only data from that year
or prior school years. Data from future years is not used. For example, we do no use data
from the 2006 07 school year when estimating the teacher effects from the 2005 06 school
year. Some estimation methods (e.g., multivariate mixed models or fixed effects methods,
see details below) could use future data by jointly modeling all the years of data and
waiting to produce estimates for a given school year until future year data are available.
We felt it was unrealistic to assume that compensation decisions would be delayed for
more than an entire school year in order to include future data in the estimation of teacher
performance. Hence, we do not use such data in our estimation.

4.1 Performance Measures Compared in the Case Study

As shown in Table 1, the set of performance measures we consider can be classified
according to three factors: by method, scale of the data (raw scale score or z scores), and
statistical adjustment (whether or not estimates were adjusted via shrinkage). Shrinkage



This paper has not been formally reviewed and should not be cited or distributed without the authors permission 14

is a statistical adjustment to reduce the error in estimates; details are provided below. We
consider eight different methods. The methods can be grouped into five categories:
methods based on deviations from expectation estimated with a single score; methods
based on gain scores methods; methods based on deviations from expectation estimated
with multiple scores; methods based on multivariate mixed models; and methods using
fixed effects. For each estimation method we derived performance measures using both
raw scores and z scores and both with and without shrinkage. The exceptions were the
two multivariate mixed effects models which take extra computation time to compute via
Monte Carlo simulation and the lookup table method which requires data from the state
for estimation of performance measures. For the multivariate mixed models, we consider
only estimates based on z scores with shrinkage. When using z scores for estimation both
current and prior year z scores were used in modeling. When using raw scores for
modeling, both current and prior year raw scores were used. The state could not provide
us with z scores, so we only estimated lookup table methods with the raw score data. All
estimation methods were used to estimate the performance of 2005 06 teachers and
separately for the 2006 07 teachers.

Table 1 About Here

Performance measures based on deviations from expectation estimated with a single score

Methods based on deviations from expectation estimated with a single score method
share the common feature that the teacher’s effect is estimated as the average of this or her
students’ deviations from their expected scores given their prior year mathematics test
scores. We use three such methods. The first, which we refer to as regression residuals,
uses linear regression to estimate the expected outcome using the single prior year math
score for students. For each student, we then calculated the regression residual as the
difference between the student’s observed score and his or her expected score from the
linear regression model. The teacher’s performance measure equals that average of these
residuals across all the students in his or her classes regardless of grade level. Students
who were missing prior scores or without standard grade progressions were excluded
from the estimation.

We calculated both raw averages and shrunken averages. Shrunken averages are
sometimes referred to as empirical Bayes or Stein estimates (Carlin and Louis, 2000).
Theoretical results show that the average squared error (the square of the difference
between an estimate, teacher performance measure, and the true quantity of interest, true
teacher performance) can be minimized across an ensemble of estimates (e.g., teachers) if
the individual estimates are combined with the average estimate to produce shrunken
estimates. For example if î denotes the performance measure for teacher i, and
denotes the average estimate across all teachers, then the shrunken estimate for this
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teacher is ci î + (1 ci) . In our case, = 0 for all our estimates so we are shrinking the
estimate toward zero. The shrinkage factor, ci, depends on the ratio of the estimate of the
sampling error or noise in the estimate for teacher i to the variability among the estimated
effects for all the teachers adjusted to account for noise the greater the ratio of noise to
variability among teachers, the smaller the value of ci. The primary effect of shrinkage is
to shrink the estimates for teachers with very few students (less than 10) and it had
minimal impact on teachers with 20 or more students. Details on this estimation method
are in the Appendix.

Also in the class of performance measures based deviations from expectation estimated
with a single score is what we call the ANCOVA estimate. Like regression residual, we
estimate a student’s expected achievement using a linear model. However, in this model
we control for a student’s teacher in 2007 when estimating the regression coefficient for
prior mathematics achievement. This is the linear model that corresponds to the
traditional analysis of covariance (ANCOVA, Snedecor and Cochran, 1980), so we call it
the ANCOVA method. If true teacher effectiveness is correlated with the prior
achievement of students, (e.g., more effective teachers are assigned to classes with
students who achieved higher in the past), then regression adjustments without
controlling for class assignment can result in bias estimation of the coefficient for prior
achievement and could potentially over adjust scores by attributing some of the true
teacher performance to the student’s prior scores. Ballou, Sanders, & Wright (2005)
provide additional details on this potential bias. The ANCOVA method avoids this
potential bias.

By default the linear model fit for the ANCOVA yields estimated teacher effects.
However, the default estimates from many statistical software packages including SAS
and Stata will not be appropriate as measures of teacher performance. The ANCOVA
model is over parameterized because the teacher effect for every teacher and the overall
mean cannot be uniquely estimated. Most statistical packages account for over
parameterization by setting one of the teacher effects to zero. All other teacher effect
estimates are then differences between the holdout teacher (the teacher whose effect is
forced to zero) and other teachers. Estimates are sensitive to the choice of holdout teacher
and can be extremely unstable across years. The alternative is to constrain the estimated
effects to sum to zero. Estimates are relative to the overall mean and are stable across
years. Our estimates use this constraint.

The final performance measure in the performance measures based deviations from
expectation estimated with a single score are lookup table estimates. Again we estimate a
student’s expected performance using the single prior year mathematics achievement
score. However, rather than use a linear regression model to predict the expected score
from the prior score, we use the average current score for all students in the state with
this exact prior score as the estimate of the expected score. For example, we identified all
eighth graders in the 2006 07 school year in the state who scored 503 as seventh graders
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on the state mathematics test in 2005 06. We averaged the eighth grade scores for these
students (510.5) and this is the expected score for a student who 480 as a seventh grader.
Even at the state level some scores were very rare and the average scores were noisy. We
removed this noise by smoothing across prior scores within a grade level and forcing the
expected scores to increase monotonically with prior scores. That is, we forced the
expected score associated with a lower prior score to be lower than the expected score
associated with a higher prior score. This smoothing resulted in very minor changes to
the raw averages for almost all prior scores. The final estimates of expected scores create
a lookup table were the rows are the prior scores and the column value is the expected
score.

For each student, we found the expected score from the lookup table and calculated the
difference between the student’s observed and expected score. The teacher’s performance
measure is the average difference between observed and expected scores for his or her
students. We average scores across all grade levels. We again created shrunk and raw
estimates. Because the state could not provide us with z scores, we were unable to
produce estimates with z scores.

One advantage of this method is that it does not rely on linearity so nonlinearity in the
bivariate relationships between current and prior year scores is not a problem for this
estimator. However, z scores could potentially reduce the problem of heteroskedasticity
which also exists in the data and results in greater variability among students with
extremely high or low prior scores. Another advantage of this method is that its reference
is the state, so teachers in a single district are not directly competing against each other.
Under this method all the teachers in a district could have positive or negative
performance measures. For the case study presented here, we were not concerned with
competing teachers in the same district and most of the other estimators had the district as
the point of references, so we forced the average effect for this method to be zero.

One feature common to all three of the methods is that students who are missing the prior
year mathematics score are excluded from estimation. Implicitly teachers are not held
accountable for these students. This could create incentives for teachers to give less
attention to these students and result in negative consequences for the system.

Another common feature of these methods is that they do not require scores to be on a
single developmental scale for the methods to be interpretable. The prior score is used to
predict estimation and there is no assumption that it must have a particular relationship
to the current score other than it predicts likely performance and deviations from that
prediction should not depend systematically on factors other than the current year
teacher. This last requirement is unlikely to hold in practice because of the limited
information about students contained in a single prior test score. The errors created by
the failure of this assumption are discussed below.



This paper has not been formally reviewed and should not be cited or distributed without the authors permission 17

Performance measures based on gain scores

A commonly considered method for estimating teacher performance is the average gain
score for the teacher’s students. A student’s gain score equals the difference between her
current year score and her score from the previous year on the same subject. We created
both raw and shrunk estimates.

Gain scores have a meaningful interpretation only when scores are linked across grades
to be on a single scale, so that a score of 500 at any grade level can be interpreted as
corresponding to the same level of achievement. There is considerable debate about
whether linking of tests can provide data that support measuring gains (c.f., Martineau,
2006). These concerns should be carefully considered for any system that would use this
performance measure.

As an alternative to gain scores on the raw scale score data, we also estimated gain scores
using z scores. These correspond to students’ change in their rank or place in the
distribution of scores. A single developmental scale is no longer required but the gain no
longer measures growth, but rather growth relative to the distribution of growth.

For this measure we estimate both shrunk and raw estimates for both the scale score and
z score gains.

Performance measures based on deviations from expectation estimated with multiple scores

One of the limitations of performance measures based on deviations from expectation
estimate with a single score is the limited information about a student’s performance
provided by a single score due to the measurement error in the test and the inherent year
to year fluctuation in a student’s performance. One approach to overcome this limitation
is to use additional data when predicting expected scores. We created such a
performance measure by using all the available prior scores in mathematics and other
subjects to predict student achievement in mathematics in 2006 07 and then again using
separate models for the 2005 06 data. We controlled for classrooms when estimating the
intercepts and slopes, so this model is a multivariate or multiple covariate extension of the
ANCOVA method and we refer to this performance measure as the Multivariate
ANCOVA measure.

This multivariate ANCOVA not only provides a potentially better means for controlling
for student inputs but this method also potentially reduces the noise in the estimated
performance measure using more background data for estimating expected scores
compared to the ANCOVA method. It also uses more students by including students with
any prior achievement data and not only those with prior year mathematics scores.
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Given that many students did not have complete data from all the prior testing, we could
not exclude students with incomplete data. Rather we used all the prior score data
available for each student. For instance, if a student only has scores from 2005 06 we used
those scores; but if a student had data from 2005 06, 2004 05 and 2003 04, then we would
use of all of this data in our estimation. Because different students have different patterns
of data we needed to fit separate models for each pattern of response. However, we
wanted to control for teachers with a single teacher control, within grade level. To
accomplish this estimation, we created indicator variables for a student’s pattern of
responses and included in the model terms for the interaction of these indicators and the
available prior year test scores. A separate model was fit for each by grade level and year
of outcome testing (2005 06 and 2006 07). We fit models by grade level because of the
complexity of estimating different models by response pattern.

We enforced sum to zero constraints for estimated teacher effects within grade level by
calculating adjusted residual values for each student that control for prior score and
overall intercept but not the teacher.

There were several potential methods to combine values across grade levels for each
teacher. One method combined the adjusted residual and then averaged these. Another
method averaged the values by grade level and then averaged the averages. A third
method averaged the residuals by grade level and then created a weighted average of the
grade level values where the weights equal the precision (the reciprocal of the square of
standard error due to sampling error) of the mean for each year. Preliminary analyses
suggested the third method provided the measures with the best statistical properties so
we report the estimates based on that method. Differences across these alternative
methods for combining across grade levels are small, so conclusions we make based the
chosen performance measures hold for the alternatives.

For shrunken estimate we again had multiple options. The performance measure we
report in this paper shrunk the averages by grade level and then combined them with
precision weighting.

We repeat the estimation using raw scale scores as outcomes and inputs and using z
scores as outcomes and inputs.

Performance measures based on multivariate mixed effects models

Multivariate mixed effects models develop a statistical model for the entire vector of
student scores. The model includes random terms for teacher inputs to those scores and
allows multiple scores from the same student to be correlated via an unspecified
correlation structure. Details on these models are found in McCaffrey et al. (2003) and
Lockwood et al. (2007). In our estimation we model only mathematics scores. For a
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limited example we modeled both mathematics and ELA scores and found this resulted in
trivial differences in estimated teacher effects.

Following Lockwood et al. (2007) we fit the models using a Bayesian framework and the
posterior mean as our estimate of a teacher’s performance and the posterior standard
deviation as the measure of error in that estimate. For simplicity we refer to the posterior
standard deviation as the standard error of the estimate, although technically this is
incorrect, but the difference is inconsequential.

One complexity to modeling outcomes via multivariate mixed effects models arises from
students’ membership in different classes each year. The model must then account for the
effect of prior year teachers on students’ later outcomes. McCaffrey et al. (2004) and
Lockwood et al. (2007) develop a model that allows prior year teacher inputs to contribute
additively to current year scores but weighted by persistence parameters estimated from
the data. Lockwood et al. (2007) call this the variable persistence model and we use this
model to estimate performance measures. Alternatively, Sanders, Saxton and Horn (1997)
and Ballou, Sanders, and Wright (2005) suggest a model where prior teacher effects
contribute to students’ outcomes additively without any weighting. In terms of the
variable persistence model, the persistence parameters are assumed to equal 1.
Following Sanders et al. (1997) we refer to this as the layered model and also use it to
estimate performance measures.4

We fit these models separately by cohorts defined by grade level in 2006 07 and grade
level in 2005 06 to estimate teacher effects separately for these two school years. For each
teacher we combine the estimates from the different grade level using precision weighted
averages.

Because the models rely on multivariate normality and are time consuming to fit through
Monte Carlo methods, we created performance measures only with z scores. Shrinkage is
implicit in mixed model estimation; hence we only produced shrunken estimates.

Performance measures based on fixed effects

A common econometric approach to remove possible bias when estimating program
effects using longitudinal data is to estimate changes in outcomes within unit (e.g., a
student) by controlling for the unit’s average level of outcomes via “fixed effects” or
indicator variables for each unit. If we think of the current year teacher as treatment
applied to a student, the fixed effects approach applied to estimating teacher performance
entails fitting a linear model to multiple years of student data with indicator variables for
students (to remove the student’s fixed effects and estimate the teacher’s performance

4 Lockwood et al. (2007) refer to this as the complete persistence model.
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using the difference between the student’s performance in the teacher’s class and his or
her average performance) and indicator variables for the “treatments” or the teachers.
Our implementation of fixed effects using fixed effects with level scores is appropriate if
teacher effects do not persist at all across years. In the economics literature, fixed effects
on gain scores are also applied, which we did not apply because of our relatively short
data series on some students.

We implemented this approach using both raw and z scores. We estimated separate
effects by cohort defined student grade levels in 2006 07 and again by grade levels in
2005 06 to support estimation of performance measures separately for these two school
years. For each teacher, we combined the estimates across grade levels using precision
weighted average. We created both raw and shrunken estimates. For the shrunken
estimates we shrunk the estimates by cohort and then combined the shrunken estimates.

Fixed effects estimation is challenging with large samples because the models must
account for many students. Statistical software has methods to handle this challenge but
the default estimates for teacher effects from standard software cannot be used as
performance measures because the estimates are relative to a holdout teacher rather than
based on the sum to zero constraint. In our estimation we forced the sum to zero
constraint; when we did not the estimates were unstable and yielded uninterpretable
results where teacher effects across grade levels within a year or across years had
negative or very low correlations.

Fixed effects are a generalization of gain scores that use all the students’ scores rather than
just current and prior year scores. Only students with no prior mathematics achievement
scores are excluded from estimation.

As with gain scores, fixed effects methods implicitly assume that scores must be on a scale
where differencing scores across grades is sensible. Scores on a truly developmental scale
would meet this requirement. In addition, the theory supporting the use of fixed effects
requires that the commonality among the multiple scores from a single student depends
on a single factor that contributes additively to every score. When this assumption fails to
hold, fixed effects estimators can perform less well than multivariate mixed models
(Lockwood and McCaffrey, 2007). In the case of z scores, fixed effects require that
differences of rank placement rescaled are meaningful and that a single additive factor
explains the correlation in students’ rescaled ranks. There is no obvious psychometric
justification to support these assumptions so the support for using z scores in this context
will be primarily empirical.

4.2 Comparison and evaluations of performance measures

Table 2a presents various summary statistics for each of the 24 performance measures.
These indices provide useful information on how the various measures behave and how
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they differ but they do not necessarily provide accurate comparisons of the statistical
properties of the performance measures. Estimated teacher effects consist of three
components: the true teacher performance, error that is correlated with other factors such
as student inputs, which we call “bias”, and errors that are uncorrelated with other
factors, which we call noise or sampling error. To compare the performance measures on
the basis of their statistical properties, we ideally would evaluate the contribution of each
component to the variability of estimated effects. This would provide a meaningful
comparison because the errors in most compensation rules and the consequences of errors
in the performance measures depend on the relative shares of total variability attributable
to each of these factors. However, we cannot develop indices that uniquely estimate these
contributions to the variability of each factor – each measure we consider possibly
confounds the effects of at least two factors for the following reasons:

1. We do not know the true level of a teacher’s performance.
2. Even though we have a proxy for the true level of performance, the LMT, this

measure is imperfect. It is not necessarily scaled on the same scale as teacher
performance based on achievement test outcomes and, more importantly, it
appears that the skills measured by the LMT do not measure all the skills we
might want to capture with a performance measure. The LMT is concentrated on
algebraic skills and tends to be lower for teachers teaching special education and
lower achieving students, even when our test based performance measures
indicate these teachers are high performing.

3. It appears that true teacher performance is correlated with the potential level of
achievement for the students in their classes. For instance, the LMT is negatively
correlated with the percent minority students in the teacher’s class in 2007 07 (
0.28) and positively correlated with the average of the students’ average prior z
scores (.36), where the student average prior z scores equals the average of the
mathematics z scores from years prior to the 2006 07 school year. These
correlation coefficients remain large even when we exclude teachers who teach
special education or advanced classes such as algebra.

4. Class size is positively correlated with average prior score. This is in part due to
special educations classes tending to have smaller numbers of students.

5. Variables such as average prior scores can be correlated with both bias and noise.
Hence attempts to use such measures to determine the relative strength of bias can
be distorted by the correlation with the noise. For example, because gain scores
subtract the prior score from the current score, classroom average gain scores are
negatively correlated with classroom average prior year score. Consequently,
using prior scores to assess bias can underestimate the bias in gain scores.

Although none of the summary statistics in Table 2aprovide a perfect index for ranking or
comparing the measures on bias or noise, the various summary statistics provide
indications of the relative performance of the measures. In particular, identifying outliers
among the performance measures for any index in Table 2 suggests performance
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measures with either large bias or noise. Combining this evidence with general statistical
theory and previous research offers some conclusions about the relative performance of
the measures.

Indicators of Signal

We combine the first set of statistics from Table 2 into a single table because they all
provide some information about the strength of the signal in the performance measure.
The first column of Table 2a provides the correlation between the performance measures
across the two school years. This correlation provides an indication of the consistency of
information that the various measures will provide about teachers. There is considerable
variation from 0.04 for raw gain scores to almost 0.6 for multivariate ANCOVA on raw
scores with shrinkage. This indicates that gain scores have considerable noise relative to
the consistent information they provide about teachers. Regression residuals also have a
large amount noise relative to the consistent information. Multivariate mixed models,
fixed effects with shrinkage and ANCOVA with shrinkage all have high levels of
consistent information relative to the noise. Shrinkage increases the correlation by
reducing the noise relative to the consistent information about teachers.

Table 2a about here

Consistent information about a teacher can be composed of both accurate information
about the teacher or it can be error that is stable across time. For example, if a
performance measure conflates differences in student inputs with true teacher effects and
student inputs are correlated over time, (i.e., the teacher teaches the same types of
students year after year), then this could inflate the correlation coefficient compared to a
measure with equal noise and signal but no bias. Consequently a performance measure
with greater overall error might actually have a higher cross year correlation than a
measure with less error. The correlation between the 2006 07 and 2005 06 average prior
mean z scores for teachers’ classes is about 0.85. Hence, measures that conflate student
inputs with true performance could have very high cross year correlation even if they
have large overall errors. However, the cross year correlation does provide an indication
of stability over time in the estimates and clearly compensation systems based on
estimates with very low correlation across years (such as gain scores) would be unlikely
to be productive.

The next column in Table 2a provides the correlation between the performance measures
and the LMT. Given that the LMT and each performance measure estimates a teacher’s
ability to promote student learning, we would expect moderately high correlation.
Moreover, differences between performance measures and LMT might provide
information about the contributions of different dimensions of teacher effectiveness on
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student outcomes. The correlations range from about 0.03 for gain scores up to 0.34 for
ANCOVA methods on z scores with shrinkage. Estimates based on multivariate mixed
models are also among the methods with the highest correlation with LMT. Again, this
demonstrates limited relative signal for the gain score method. Given that both the
performance measures and LMT have measurement error a correlation of 0.34 suggests a
strong correlation in the signal from these alternative measures of teacher performance.
However, student assignments make students’ inputs correlated with teacher signal as
measured by LMT. Thus the LMT might be correlated with both the bias and the signal in
a teacher performance measure. Given other summary statistics which suggest large bias
in the ANCOVA method, we expect the high correlation with LMT in part reflects the
contribution of bias to the performance measure.

The next three columns in Table 2a provide information for calibrating the contribution of
teachers to student outcomes. These columns provide a means of calibrating the size of
teachers’ contributions to student learning. Large values indicate variation in teacher
performance is somewhat stable across time, since we are using the estimate from the
prior cohort, and that teachers are a substantial source of the variability in student scores.
Because of possible bias and correlation between true teacher performance and their
students’ potential to learn, the correlation without controlling for prior scores can be
misleading. The effect of controlling for prior scores on the incremental R2 for teacher
effects provides some evidence of the potential contribution of bias in the estimate. Large
decreases in the incremental R2 suggest a performance measure has a large bias that could
distort inferences about teachers.

The first of these columns presents the incremental increase to the R2 resulting from
adding the 2005 06 teacher effects estimates to a student level model for 2006 07
mathematics scores that already included grade level means. The next column contains
the incremental increase to the R2 resulting from adding the 2005 06 teacher effects
estimates to a student level model for students’ 2006 07 mathematics score model that
included grade level means and student prior scores and the third column is the
incremental increase to the R2 from adding estimated teacher effects to a model that
already included grade level means, prior scores and school fixed effects. In general, the
estimates all suggest teachers account for about an additional 2 to 3 percent of the
variance in scores after controlling for prior achievement. Multivariate ANCOVA, mixed
models and fixed effects all provide similar estimates. ANCOVA methods also provide a
similar estimate, but the large drop in the incremental R2 between models with and
without prior scores for regression residual, ANCOVA, and lookup tables, suggests these
estimates might have more significant bias than the other methods (see further discussion
on bias below). Failure to control for student background variables with these methods
could lead to significant overstatement of the contributions of teachers to student
achievement.
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Although not shown in the table, we also estimated the incremental R2 for adding
estimated teacher effects from 2005 06 to a classroom level model for 2006 07 average
scores that included average prior scores. Average prior scores accounted for about 85
percent of the variance in classroom mean scores. Across measures prior year teacher
effects tended to account for about 10 percent of the variance in classroom average scores.
Estimated teacher effects often account for about 2/3 of the variance not explained by
student inputs.

The final column in Table 2a presents the share of the variance among 2006 07 teacher
performance measures that is between rather than within schools. This statistic
provides very little useful information for evaluating the statistical properties of the
measures but it does provide information about how effective teachers are distributed
among schools. There is considerable variability of estimators for teachers from the same
school. Given that noise is within schools and not between them, this statistic might
underestimate the schools’ share of variance for true teacher performance. However,
even if 50 percent of the variance in the estimated performance measures is noise, schools
would still only account for about 20 percent of the variance among teachers.

Indicators of Bias

The summary statistics or indices presented in Table 2b were chosen to provide
information about the relative contribution of bias to each performance measure. The first
column presents the most commonly used indicator of bias, the correlation between the
measure and student prior achievement. In our case we use the average of all students’
prior year z scores as a measure of prior achievement. High values are generally
considered an indicator of strong bias relative to signal and noise, indicative of the
potential for bias to strongly distort performance measures and compensation. Although
this correlation can also reflect the correlation between true teacher effects and student
inputs (e.g., even an unbiased estimate with little noise would have modest correlation
with students’ prior achievement), very high values relative to other measures clearly
identify performance measures with relatively large bias. In particular, the various
ANCOVA based methods all have high correlation with students’ prior achievement and
we know that the noise in these estimates must be comparable or larger than that of
similar methods such as regression residuals or multivariate ANCOVA methods which
have substantially smaller correlation with average prior achievement.

Table 2b about here

The large bias in the ANCOVA methods is likely to arise from two sources. First the use
of a single prior score to adjust for student background is insufficient to account for
student inputs resulting in errors that are positively correlated with high potential for
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achievement. The estimates based on raw scores have additional error because of the
nonlinearity in the bivariate relationship between current and prior scores. The errors are
smaller for regression residual methods possibly because the adjustments are greater or
possibly because of the greater noise in the estimates. Lookup tables do not assume
linearity and have somewhat lower correlation with prior scores than the ANCOVA
methods. Multivariate ANCOVA methods with raw scores have high correlation with
prior achievement measures because of the violation of the assumed linearity. Gain
scores have negative correlation because of the spurious negative correlation between
gain scores and prior scores. This negative correlation is inflated by the z score
transformation which forces a negative correlation between prior scores and change in
scores by forcing the variance across years to be roughly constant. A similar negative
correlation with the noise could be the source of the negative correlation between fixed
effects with z scores and the prior achievement measures resulting from the negative
correlation created by the z score transformation.

As a means of separating the two potential sources of correlation between performance
measures and prior achievement, we fit a linear regression model with teacher
performance as the outcome variable and percent minority (as a control for inputs) and
LMT as predictors. The next two columns of Table 2b present the standardized estimated
coefficients for this model for each estimator. By controlling for LMT, we remove some
(hopefully much) of the correlation between true teacher performance and student
potential for high achievement, so that the coefficient on minority status again indicates
the existence of systematic errors. Again regression residuals and ANCOVA method
show clear signs of bias. The coefficient on LMT provides a measure on the strength of
the true teacher performance signal in the estimator. Gain score methods perform
substantially worse than all the other methods on this metric, in part because of the
relatively high level of noise in gain scores.

As a means of understanding the potential impact of systematic errors in the estimated
performance measure we created two indices. To calculate these indices, we first
transformed both the performance measure and the LMT to rank based z scores and then
we differenced these values for every teacher. This difference serves as an estimate of
discrepancy between a teacher’s performance measured by the performance measure and
his or her performance measured by a common standard of the LMT. We used z score
transforms to measure this discrepancy because the performance measures and the LMT
are not all on same scale. We then estimated the correlation between the discrepancy (the
difference between the transformed performance measure and LMT) and the average
mean prior z score for the teacher’s students and the percent of minority students in the
teacher’s classes. The measures provide an indication of whether errors in the
performance measure tend to favor teachers teaching certain students more than others.
Strong correlations would tend to suggest estimates with large bias. Again the measures
indicate poor performance for regression residuals, ANCOVA, and gain score methods.
Fixed effects with z scores methods also perform poorly on this metric. This results form



This paper has not been formally reviewed and should not be cited or distributed without the authors permission 26

the weak negative (positive) correlation between teacher performance measures for these
methods and prior achievement (minority status). However, it is not clear how to
interpret this correlation.

Indicators of Noise

The two columns in Table 2c provide a measure of the relative noise of each performance
measure. The first column contains the proportion of teachers with small classes (less
than 10 students) ranked in the extreme (top or bottom deciles) of the performance
measures for the entire sample of teachers. The second column contains the proportion of
teachers with large classes (20 or more students) ranked in the extreme (top or bottom
deciles) of the performance measures for the entire sample of teachers (the estimator
combines performance measures from 2005 06 and 2006 07). Performance measures with
large amounts of noise relative to other sources of variability should place a greater
proportion of teachers with small classes in the extreme deciles of the sample and
relatively fewer teachers with large classes in the extremes of the distribution. As with
other measures of the relative contributions of noise to the various performance measures,
gain scores appear to be the noisiest estimates and regression residual based measures
perform poorly on this metric with over 50 percent of teachers with small classes in the
extreme tails of the sample (when no shrinkage is used). Regression residuals, lookup
tables, ANCOVA, and multivariate ANCOVA also perform poorly on this metric. In
general shrinkage substantially reduces the noise and the proportion of teachers with
small classes with performance measures in the tails of the distribution. The proportion
of teachers with small classes in the extreme is particularly small for multivariate mixed
model based measures and fixed effects on z score based measures with shrinkage. This
might be an indication that these methods over shrink teachers with small classes or it
might indicate that teachers with small classes are less likely to be in the extremes of the
distribution.

Implications for Differences in Performance Measures

Although we cannot provide a few statistics to completely rank the relative performance
of the alternative measures, we can conclude that some measures appear to perform better
than others. To understand the implications of these differences in performance we
choose four measures to investigate further:

Gain scores on scale scores without shrinkage
ANCOVA on scale scores without shrinkage
Multivariate mixed models fit to z scores (naturally include shrinkage)
Fixed effects models fit to z scores with shrinkage

These four methods cover the domain space of the measures in many dimensions. Gain
scores and ANCOVA are simple to implement, transparent, and widely used. In practice
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many people equate these methods with value added modeling. Simple gain scores are
more widely used by practitioners and many economic applications have used simple
ANCOVA like approaches (for example, Aaronson, Barrow, and Sander, 2003, Kane,
Rockoff, and Staiger, 2006). Both these methods are relatively poor performing on one or
more of the indices in Table 2 – the gain score measures appear to have most noise
relative to other sources of variability in the estimator and the ANCOVA measures appear
to have the largest noise component.

Both these methods are highly correlated with other easy to implement and transparent
methods like the lookup table and regression residual methods. For example, the
correlation between lookup table measures and the ANCOVA method measures is .96 for
estimates without shrinkage and .94 for estimates with shrinkage. Performance measures
based on regression residuals also are highly correlated with ANCOVA measures (.97 and
.96 for estimates with and without shrinkage respectively).

Multivariate mixed models and fixed effects represent the opposite end of the complexity
spectrum. Both methods are advocated by methodologists because of their better
theoretical properties, but they have not been embraced by practitioners because they are
harder to implement and harder to understand. In particular, they are often dismissed as
potential performance measures in the context of pay for performance because they are
deemed too complex and likely to alienate rather than motivate teachers.

Multivariate mixed effects models model the joint vector of a student’s scores and
implicitly use regression adjustment to account for student prior achievement. As the
number of tests becomes large, these methods can yield nearly unbiased estimates of
teacher performance even when students in different classes have different potential for
high achievement. According to the indices in Table 2, multivariate mixed model
measures appear to have small noise but some bias that is clearly relatively smaller than
the bias in ANCOVA, regression residuals and lookup tables.

Multivariate ANCOVA methods are similar to multivariate mixed models in that they use
regression on multiple prior scores to account for variation in student potential for high
achievement. However, whereas the multivariate mixed models use implicit regression to
adjust for prior achievement, multivariate ANCOVA uses explicit regression. In our
implementation, the multivariate ANCOVA models use more prior scores than in the
mixed models, and the multivariate ANCOVA models allow the model to depend on the
observed data pattern. Such adjustments are possible with the multivariate mixed models
but they increase the computational burden of the model. Moreover, limited exploratory
modeling with the current data indicated that including additional test scores did not
have a measurable effect on the estimates of teacher performance. In other datasets, we
also found that mixed model estimates of teacher effects were robust to more complex
models for missing data (Lockwood and McCaffrey, 2005). Hence the additional
flexibility in the multivariate ANCOVA methods compared to our current formulation of



This paper has not been formally reviewed and should not be cited or distributed without the authors permission 28

multivariate mixed models is probably of little consequence. Another difference in the
methods is the explicit modeling of prior teacher effects in the mixed models. However,
even with all the differences between the methods the correlation between performance
measures based on multivariate ANCOVA on z scores with shrinkage and the estimates
based on the variable persistence model is 0.95.

Similarly the variable persistent model provides very similar estimates to those from the
layered or complete persistence model (correlation coefficient of 0.98). Hence, the
performance measures based on the variable persistence model provide a good proxy for
other multivariate estimators using regression like approaches to control for student prior
achievement.

Fixed effects methods also use the full vectors of longitudinal data when estimating
teacher performance but do so in a distinctly different manner than the mixed models.
Fixed effects methods use the differences between each student’s achievement in a given
year and his or her average achievement across years to isolate teachers’ contributions to
student learning. Fixed effect methods also are challenging to compute especially for
large samples with large numbers of teachers and students and special care is require to
account for the over identification of the model that includes effects for all students and
teachers. The model must be parameterized to enforce a sum to zero constraint on the
estimated teacher performance measures. If this parameterization is used then estimates
are stable across time and appear interpretable. If this parameterization is not used the
estimates are not interpretable and can behave erratically across time. Enforcing this sum
to zero constraint is particularly challenging when the sample contains large numbers of
teachers and students.

Our empirical analyses suggest that fixed effects on z scores have little bias and small
relative noise – for example the cross year correlation between the performance measures
from 2005 06 and 2006 07 is large. Fixed effects on z scores yield estimates that are
negatively correlated with the LMT conditional on student prior achievement. It is not
clear if this demonstrates a problem with the performance measure – the only other
performance measure to demonstrate this property was gain scores with z scores which
clearly has a negative bias between prior achievement and the student’s potential for high
achievement resulting from differencing z scores. However, numerous empirical
analyses could not confirm a similar bias for fixed effects.5

5 Gain scores difference of adjacent scores and fixed effects subtract the mean of prior achievement;
this could reduce the negative correlation between prior achievement and the differences used in
estimating teacher effects. Moreover we found strong positive correlation between gain scores and
minority status, even within class but we did not find such correlation between differences in
current year and average performance. The negative coefficient for LMT in the model for fixed
effects based performance measures might represent limitations of the LMT measure. It focuses on
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Any bias in the performance measures based on fixed effects with z scores seems likely to
be small by the various measures in Table 2c and the relative noise in the estimate also
appears to be small. Hence fixed effects methods serve as an alternative to the other
multivariate methods and also provide estimated performance measures with desirable
statistical properties.

These four estimators (gain scores, ANCOVA, mixed models and fixed effects) therefore
give us examples of measures with some of the worst statistical properties but which are
simple to implement and measures with clearly better properties but which are complex
to estimate and comprehend for teachers and others. On the basis of our comparisons so
far, it is not clear what implications the differences among the measures might have for
evaluating teachers. To explore the potential implications, we compare each of the
performance measures to all of others (6 pairwise comparisons overall) by comparing the
teachers whose performance each method finds as significantly better than average (zero)
using standard teacher by teacher t tests (e.g., the teacher is significantly better than
average if the lower limit of a 95% confidence interval exceeds zero6). Although the
performance measures can be used in many other ways (see the discussion below for
alternative decision rules), this comparison is concrete and provides straightforward data
on the measures. It is clear from our findings and other explorations we conducted that
the results would be similar if we used alternative classification schemes and that these
results also provide a general picture of how the performance measures differentially
value teachers teaching different types of students.

Table 3 provides a summary of the teachers whose performance is classified as
significantly better than average by each of the four selected performance measures. The
table presents the percentage of teachers in different groups that receive this classification
and the Kappa statistic (Fleiss, 1981) as a measure of agreement in the classification across
the two school years. The Kappa statistic equals the percent of agreement in classification
adjusted for chance agreement.

Some general patterns are clear from the table. First the bias identified in the ANCOVA
methods results in more teachers whose performance is classified as significantly better
than average with this method than with any of the others. As would be expected given
the bias, the ANCOVA strongly favors teachers teaching higher achieving students. Only
6 percent of teachers teaching classes with average prior achievement less than one
standard deviation below the mean of all classes receive this designation, whereas 70

algebraic skills that might not capture positive teacher performance for teachers teaching lower
achieving students such as minority or special education students.

6 For the multivariate mixed models estimates the test is formally based on a credible interval since
they use the posterior mean and standard deviation.
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percent of teachers teaching classes with the highest average prior achievement receive
this designation. Substantially more teachers in the group teaching the highest performing
students are designated above average with the ANCOVA method than with any of the
other performance measures. It appears that the ANCOVA method identifies additional
teachers of high performing students as performing above average that other methods do
not. A related consequence of the bias in this measure is the high proportion of teachers
who teach only advanced classes being designated as above average performers. This is a
small group of teachers but nearly all of them would be designated as superior by this
method whereas other methods might identify as few as 13 percent of these teachers as
superior. Because teachers’ course assignments are stable across time, ANCOVA would
consistently favor teachers of advanced classes and higher achieving students across years
(Kappa is 0.55).

Performance measures based on gain scores behave in a manner opposite to those based
on the ANCOVA measure. The relatively large noise results in a very low Kappa (0.24)
and large proportions of teachers with small classes being classified as above average
performers. The tendency of gain scores to be negatively correlated with students’ prior
achievement results in roughly equal percentages of teachers being classified as above
average performers regardless of their students’ prior achievement. Also the proportion
of special education teachers classified as superior performers is high (17 percent)
compared to all the other measures.

Performance measures based on fixed effects for z scores with shrinkage identify similar
types of teachers as above average performers as gain scores. However, the fixed effects
measure is more stable across years with a Kappa of 0.50. Performance measures based
on mixed models tend to favor teachers of students with high prior achievement but not
to the extent that the ANCOVA method does. Moreover, it does not falsely identify the
large number of teachers that ANCOVA does. For example, the performance of only 40
percent of teachers teaching students with the highest prior achievement is designated as
significantly better than average compared to ANCOVA. However, 63 percent of teachers
teaching only advanced classes are designated as superior performers.

Direct comparisons of the methods reflect these overall trends. As shown in Table 4,
performance measures based on fixed effects generally favor teachers of lower achieving
students than the measures based on mixed models or ANCOVA as shown by the
differences among the teachers where the two methods disagree. No such differences
exist with gain scores and fixed effects. However, fixed effect and mixed model methods
are highly correlated and disagree on just 10 percent of teachers when the data from the
two school years are combined. Moreover the differences between these two methods are
not persistent. Very few of the teachers where the methods disagree in 2005 06 have the
same disagreement 2006 07. At the margins the two methods favor slightly different
teachers but due to noise and true year to year variability in performance the individual
teachers at the margins are not the same every year. Thus a system with fixed effects will
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tend to favor teachers of lower performing classes but it will not treat individual teachers
differently than a system based on the mixed model performance measures.

Fixed effects and ANCOVA methods disagree on 20 percent of cases and the
discrepancies between the two measures persist across years. Over 40 percent of the
teachers classified as above average by the ANCOVA measures but not the fixed effects
measures had the same difference in classifications in both school years. Hence, using
ANCOVA based measures would tend to systematically favor individual teachers of low
risk students compared to students of high risk students as well as creating a system that
favored such teachers.

The differences between mixed model measures and ANCOVA measures are similar to
but less dramatic than the differences between fixed effect measures and ANCOVA
measures. The differences between mixed model measures and gains score measures are
similar to the differences between mixed models measures and fixed effect measures. The
differences between gain score measures and ANCOVA measures are also similar to the
differences between fixed effect measures and ANCOVA measures.

It is difficult to determine if the difference between fixed effects and mixed models reflects
bias in the fixed effect based measure or the mixed models based measure. As discussed
previously, some of the measures in Table 2 suggest mixed model measures might be
biased in favor of teachers teaching students with higher prior achievement.
Alternatively, fixed effect measures show patterns that are similar gain score measures,
which we suspect are biased in favor of teaching students at risk for low achievement.
Table 4 shows that when the two measures differ the fixed effects methods tend to
identify teachers with lower LMT scores as above average performers than the mixed
model measures. This might indicate a bias in the fixed effects method or as noted above
it might indicate a limitation in the LMT measure. Hence, we cannot clearly conclude that
either method is necessarily superior to the other. However, we can conclude that the
methods provide very similar inferences and would lead to a similar bonus decision
under most rules. A system based on fixed effects measures would tend to be more
favorable to teachers of students at risk for low performance and should tend to err for
the better if not the best performing teachers in this group. A system based on mixed
model measures would tend to be more favorable to teachers of students at low risk for
low performance and again would tend to over reward teachers near but not at the top of
performers in this group. It would also tend to under reward high performing teachers
teaching at risk students. Given the struggle to staff schools with high poverty and high
minority populations with the best teachers, as a policy choice fixed effects measures are
preferred if we cannot rule out potential bias in each approach because fixed effects
methods should be less likely to discourage good teachers from teaching at risk students.
However, as discussed in the next section, choices about bonus systems are complex and
involve many factors and many potential tradeoffs.
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5. AWARDING TEACHER BONUSES

The goal of a compensation system is not to create performance measures but to use those
performance measures to compensate teachers. This requires creating a decision rule for
awarding bonuses on the basis of performance measures. Again, many choices need to be
made when creating a decision rule for assigning awards. To date there has been little
specific consideration of what those choices are or what criteria can be used to make these
choices. In this section we discuss a framework for considering those choices and explore
implications for teachers of using alternative rules with performance measures with
different levels of noise and bias.

Performance based compensation systems are proposed as a means of motivating
teachers to higher levels of performance and enticing better teachers to join and remain in
the profession (Springer and Podgursky, 2007, Buddin et al, 2007). Various aspects of a
compensation system might influence teacher behavior. Standard results (cite) suggest
that the expected bonus for a given level of effort will influence teachers’ decisions about
the level of investment in their performance and changes in the expected value of the
bonus for a change in performance and effort will influence teachers’ decisions about
whether to increase or decrease their efforts.7 However, other factors such as the
uncertainty in the bonus amount, uncertainty about the relationship between effort and
performance, and perceptions of fairness of the system and the performance measure
might also contribute to teachers’ decisions. Noise and bias in the performance measure
might affect any of these factors. The decision rule might also affect the distribution of
possible bonuses and can interact with the features of the performance measure.

Figure 1 demonstrates the complex relationship between performance measures and eight
decision rules in determining the expected compensation for teachers. The decision rules
are:

1. Receive the full bonus if the performance measure exceeds a threshold (in this case
the 80th percentile of an assumed reference distribution for true teacher
performance—a standard normal distribution with variance equal to the
(estimated) variability in true teacher performance);

7 Increasing the expected bonus by simply increasing the bonus amount given any decision rule
will not discriminate among the alternative rules for awarding compensation and would need to
be weighed against the overall cost the system can bear, which we do not know. Hence, we
assume that the maximum bonus value is 1 under any system and study choices among alternative
award procedures under this constraint.
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2. Receive the full bonus if the lower limit of the confidence interval for the
performance measure exceeds the threshold;

3. Receive the full bonus if the lower limit of the confidence interval for the
performance measure exceeds zero, where the performance of the average teacher
equals zero;

4. The bonus equals the posterior probability that the performance measure exceeds
the threshold, with an noninformative prior;

5. Receive the full bonus if the shrunken performance measure exceeds the
threshold;

6. Receive the full bonus if the lower limit of the confidence interval for the shrunken
performance measure exceeds the threshold;

7. Receive the full bonus if the lower limit of the confidence interval for the shrunken
performance measure exceeds zero; and

8. The bonus equals the posterior probability that the performance measure exceeds
the threshold, with an informative prior for the performance (in this case the prior
that corresponds to using the shrinkage estimator).

Figure 1 shows the expected bonus for three hypothetical unbiased performance measures
based on the ratio of the noise to the true variability of teachers; noise levels are one
percent (solid line), 10 percent (dashed line), and 25 percent (dotted line). We might
consider these different performance measures with different noise levels or the same
performance measure for teachers with differing class sizes. If we knew the true
performance, the expected bonus would be a step function at true performance equals
0.84.

For performance measures with little noise, the expected compensation resembles that
which would occur if we knew true performance. As the noise increases, expected bonus
decreases for teachers who are truly above the threshold and increases for those who are
below it. Thus, if the threshold was chosen to have a desired effect on performance, then
noise in the performance will weaken that effect by over or under compensating
teachers.

Different decision rules have substantial effects on the expected bonus. When the
measure is noisy, requiring the teacher to be significantly greater than the threshold shifts
the location of the error away from teachers who do not truly exceed the threshold to
exclusively those teachers who do. This reflects the fact that requiring teachers to be
significantly above the threshold is the classification rule that minimizes errors from
rewarding of teachers who are not truly above the of threshold (Type I errors in standard
hypothesis testing) for a given level of failure to reward teachers who are truly above the
threshold (Type II) errors. Using a 95 percent confidence interval when making
decisions, corresponds to valuing the cost of a Type I error 19 times more than the cost of
making a Type II error. Consequently, systems that use this rule make almost no Type I
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errors. Rewarding teachers when the performance measure alone exceeds the threshold
(i.e., decision rule 1) is optimal if Type I and Type II errors are equally costly.

Using shrinkage also places greater value on Type I errors. The shift in the bonus curves
is less pronounced than using confidence interval methods, but the method clearly
reduces the number of Type I errors a cost of greater Type II errors. Systems often focus
on teachers who are significantly greater than average (zero in this case). If this is a proxy
for identifying teachers who truly exceed a threshold above the average, then the
approach introduces Type I errors and reduces Type II errors relative to other methods
that explicitly control for noise in the estimated performance measures (shrinkage
estimates and requiring the estimates to be significantly above the threshold).

It is not obvious how these two types of errors in classifying teachers or rewarding
compensation should be valued. We are unaware of research that addresses the economic
and psychological responses to different types of errors in this context. Repeatedly
failing to award a teacher who is truly exceptional might be discouraging and lead him or
her to leave teaching or apply less effort. Conversely, repeatedly rewarding poor
performing teachers might make them complacent and fail to motivate them to improve
or leave the profession. How strong each signal will be is unknown at this time.
However, we do know that more teachers are at risk for Type I errors since only a small
fraction of teachers’ performances truly exceed the threshold.

Paying teachers continuously on the basis of the probability that their performance truly
exceeds the threshold is the payout that minimizes the average squared difference
between true compensation and the compensation we would award if we knew true
performance. Hence it surprising that this method does not appear superior in terms of
expected bonuses to just rewarding teachers if their performance measure exceeds the
threshold. However, if we look at the variability in possible bonus awards (Figure 2), this
measure greatly reduces the uncertainty compared to all the other methods. This method
reduces uncertainty by removing the discreteness in the payouts; with this method a
small error in the performance measure can never lead to a complete loss in the bonus.
However, removing the uncertainty might remove the incentive for teachers to improve
performance because every year they receive a relatively stable bonus. With other
decision rules the only way to reduce uncertainty and retain a high bonus is to greatly
improve performance.

The discussion s to this point has assumed unbiased performance measures. Bias will not
change the results but will change the location within the distribution of performance
where the results apply, effectively treating the true performance plus bias as the true
performance in terms of various errors. Of particular concern, bias makes errors in the
bonuses differential among teachers of equal quality but teaching different types of
students. Figure 3 demonstrates this effect. We assumed that, conditional on the
teachers’ LMT scores, the relationship between percent minority students and ANCOVA
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based performance measures on raw scores without shrinkage described the bias in the
estimate as the function of the percent minority students in the teacher’s classes. We then
used this model to calculate the expected bonus across all teachers at different levels of
percent minority classes ranging form zero to one. Figure 3 displays the results. The
expected bonus drops precipitously as the percent of minority students in the classes
increases, dropping by nearly 50 percentage points as classes increase from zero to 100
percent minority students. Clearly, if receiving a bonus is motivational, teachers with
large percentages of minority students in their classes will lack motivation. Also, at such
low expected values of the bonus, there would be little uncertainty in the bonus as well.
Hence large bias could be very disruptive to a performance based pay system.

The results presented here do not clearly suggest one method for awarding bonuses.
They identify different types of errors that need to be evaluated and considered in the
context of awarding compensation to teachers. We need to understand the effects of
overpaying rather than underpaying teachers. We also need to understand the relative
value of certainty versus higher expected payout. We also need to understand how
teachers will use bonus awards and data on performance to evaluate their expected
bonuses under alternative investments in their teaching.

6. CONCLUSIONS

This paper discusses the complex process of rewarding teacher bonuses on the basis of
student achievement data from administrative databases. The first stage of the process
involves preparing the administrative data to support the estimation of teacher
performance measures. The teachers to be included in the sample must be identified.
These must be teachers for whom the evaluated subjects (i.e., mathematics or reading)
and grade levels constitute a sufficiently large portion of their job responsibility to be
used in determining pay. Also, the teachers in the sample must be appropriate to function
as the reference group for evaluating other teachers’ performance. Most value added
estimates of teacher performance implicitly estimate a teacher’s performance relative to
the average of the pool of teachers included in the analysis sample. Hence, a decision to
include a teacher or group of teachers (e.g., special education teachers) establishes the
reference for measuring the performance of all teachers in the group.

The students whose performance for which each teacher will be held accountable must
also determined. In particular, the decision must be made as to the number of days a
student must be in a teacher’s classroom for his or her learning to be reasonably
attributable to the teacher. Identifying students who do not “count” toward performance
might result in negative incentives where teachers focus attention away from these
students toward other students. The greater the number of days in a classroom required
for a student to be used in performance measurement, the greater the risk for negative
incentives and negative consequences for a student. Alternatively, using students with
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very little time in the classroom might undermine the credibility of the performance
measurement system and any cutoffs must find a balance between these competing
demands.

Another challenge is modeling the data from students linked to multiple teachers for the
same subject during the school year. In our case study, we could not determine if
enrollment of a student in multiple courses at the same school implied the student was
enrolled in the courses sequentially or simultaneously. This indeterminacy makes
assigning the proportion of instruction provided by each teacher difficult. We suspect
that many administrative data systems will not provide accurate data on course
enrollment throughout the school year and more detailed data may be required to
support estimating teacher performance.

We looked at numerous methods for estimating teacher performance. Each of the
estimates is potentially biased so that teachers of equal quality but teaching different
types of students will systematically have different estimates of performance, (e.g., a
performance measure will tend to be too high for teachers of students who have high
prior achievement). Moreover, we cannot rule out the possibility that every performance
measure is either biased or incomplete. Hence, while we expect that the measures are
biased, we cannot estimate the contribution of bias to the variability in any measure.
Similarly, all the measures contain sampling error or noise, but we cannot fully
characterize the size of the noise in comparable ways across methods because of the
potential differences in bias and alternative scalings of performance that exist across the
measures.

However, by comparing measures on several indices, it is clear to us that some
performance measures are outliers on one or more indices in ways that are consistent with
the measure having relatively large bias or noise. For example, there is a strong
correlation between students’ prior achievement or student demographics and the
ANCOVA based performance measures. Similar results hold for related methods that
also use a single prior score to predict student performance and deviations for this
predicted performance to measure teachers. On the basis of this empirical result and
statistical theory, it is clear these methods for estimating performance measures yield
relatively large bias and tend to favor teachers teaching students who are at low risk for
low achievement.

Gain score methods tend to produce relatively noisier estimates than other methods, as
demonstrated by the substantially larger percentage of teachers with small classes whose
performance is ranked in the top or bottom deciles of the distribution using this method
compared to others. Estimates with relatively greater noise will tend to exaggerate the
impact of differential class sizes on the noise in estimated performance. Hence, the
finding that over 50 percent of teachers with classes of less than 10 children rank in the
top or bottom deciles of the distribution, whereas about 20 percent or fewer teachers of
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small classes rank in the extremes for many measures, strongly suggests the presence of
large noise in the gain scores methods without shrinkage.

Gain scores are negatively correlated with students’ prior achievement and demographic
variables generally associated with higher scores, even within classes. As a result, the
performance measure based on gain scores on raw and z scores appears to show bias that
favors teachers of students at greater risk for low achievement. That is, for two teachers
of true equal performance level, the teacher teaching students with low prior performance
or with a greater percentage of minority students would tend to score higher on gain
score performance measures. This feature of the performance measure tends to decrease
the overall variability of estimated performance measures for this method compared to
what they would be if bias did not exist. Bias in other methods that favors teachers in low
risk classes tends to inflate variability relative to how they would perform without bias.

Multivariate mixed model methods and fixed effects methods with shrinkage tend to
provide estimates that appear to have relatively less noise and relatively less bias.
Performance measures from both methods tend to have strong cross year correlation
within teacher, weak correlation with students’ prior achievement, and relatively few
teachers with small classes ranked in the extremes of the sample. The two methods have
strong positive correlation (0.86) and agree on the classification of teachers as performing
significantly above average or not on nearly 90 percent of teachers. However, the
multivariate mixed models do appear somewhat to favor teachers teaching students with
higher prior performance and fixed effects based on z scores does appear to have a small
bias toward teachers of classes with greater risk for low achievement. The bias in the
fixed effects method is demonstrated in part by a negative partial correlation with the
LMT, controlling for the classroom average prior achievement, and the fact that when this
method identifies teachers as above average and the mixed model method does not, those
teachers tend to teach classes with greater percent minority students and the teachers
score lower on the LMT than others. However, the LMT as implemented might not fully
measure teaching skills related to more basic mathematics and might have a bias of its
own. Hence, the size of the bias in fixed effects and mixed models is somewhat difficult
to fully determine; however, the empirical evidence suggests it is likely to be small for
both measures.

Noise and bias can distort decision rules for awarding bonuses. Using performance
measures with greater noise to award bonuses can reduce the expected bonuses for the
truly best performing teachers and increase the expected bonuses for the truly worst
performing teachers. Using performance measures with bias to award bonuses makes the
expected bonuses for teachers of equal quality who teach in different contexts very
different. For example, using ANCOVA based measures based on raw scale scores
without shrinkage would result in bonuses for 57 percent of the teachers teaching the
classes of students with the highest average prior scores. Using fixed effects based
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measures with z scores and shrinkage would result in just 20 percent of these teachers
receiving a bonus.

Alternative decision rules correspond to valuing different types of errors differentially.
Methods that require estimates to be significantly over a threshold or use shrinkage
correspond to valuing errors that mistakenly reward low performing teachers as
significantly more costly than errors that mistakenly fail to reward high performing
teachers. Using statistical significance testing at the 0.05 level to determine if a teacher’s
performance exceeds a threshold and he or she receives a bonus is appropriate if
incorrectly rewarding undeserving teachers is 19 times more costly than failing to reward
deserving teachers. However, it is unclear how teachers respond to rewards, so there
seems to be little reason to value these two types of error so differently. If a threshold is
chosen for a truly meaningful purpose, there is probably little current support for only
rewarding teachers if their performance is significantly greater than the threshold using
the traditional 0.05 level of significance.

Creating a performance based pay system is challenging. Administrative data required to
create estimates must be cleaned and processed before the performance measures can be
estimated. Various alternative performance measures and rules assigning bonuses on the
basis of those measures exist. Different measures and rules will lead to different teachers
consistently receiving additional compensation. The choices that can be made during the
process can directly affect whether or not some teachers receive bonuses. However, little
is known about how these differences will affect teachers’ behaviors and the overall
quality of the teacher labor force.

To determine the best choices to yield truly efficient systems, we need to conduct research
that provides information about how teachers will respond to bonus systems. We need to
determine how teachers with various true levels of performance and teaching in different
contexts will respond to different expected levels of bonus and different levels of
uncertainty in the bonus. We need to study how these responses interact with other
features of performance measures and bonus decision rules. For example, will teachers’
decisions on how to respond to the payout distribution depend on how statistically
complex the performance measures are or how transparent the calculations are? Will the
responses of teachers depend on how the distribution of bonuses varies across teachers of
different types of students? Will teachers be less likely to make changes in behavior in
response to a system that consistently tends to reward teachers of minority students with
less money? Because we clearly understand the potential payout of a bonus system based
on each alternative performance measure and bonus decision rule, we can identify the
features that could influence performance and elicit teachers’ likely responses to those
features. This information can then become the basis for designing future systems.
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APPENDIX – STATISTICAL DETAILS

This appendix provides additional statistical details on the z score transformation and the
performance estimators.

Rank based z score transformation

For the base year, 2003 04 then rank based z score equals the raw scale score transformed
to the percentile of the empirical distribution function and then transformed to the
corresponding quantile of the standard normal distribution by subject and grade level.
For a given subject and grade level let y denote raw score and r(y) denote the rank of that
score among all other scores for that subject and grade level, then the z score transform of
y is

z = (r(y)/(n+1)), (A.1)

where is the inverse of the standard normal cumulative distribution function and n is
the number of students with test scores for the given subject and grade level. The
resulting z scores have mean zero and standard deviation one. For years other than the
baseline we allow the mean and standard deviation of the z scores to drift. We assume
that each raw score is a monotonic nonlinear transformation (rank preserving) of a
normally distributed variable. We assume that the nonlinear transformation is constant
across year but that the distribution of underlying normal variables can change across
year. Given that all the data is assumed normally distributed, we can assume that if the y
in year 1 corresponds to the pth percentile then its value in the underlying normal
distribution is zp where zp is the corresponding quantile of the standard normal
distribution. For a score of y2 at the pth percentile of the distribution of scores in year 2,
any year other than the baseline, has corresponding normal value of zp 2 + 2, where 2

and 2 are the mean and standard deviation for the underlying normal distribution for
the year. This value corresponds to zp’ of the p’ quantile of the standard. Because we
assume the nonlinear function relating the normal variates to the scale scores is constant,
the scale score y2 should correspond to the p’ percentile of the baseline population. Hence
using the function A.1 on y2 will yield zp’. Because we know the score’s percentile of the
year 2 distribution we can solve for 2 and 2 if we repeat the procedure for multiple
scores from year.

Regression Residuals

The regression models used for the regression residuals included separate intercepts and
slope parameters for prior achievement by grade level to allow for differences in the
overall level of scores by grade level and for the possibility that the relationship between
current and prior achievement might differ by grade levels.
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To obtain the shrinkage estimator we used the regression residuals from fitting the linear
regression models as outcome variables and fit a one way random effects ANOVA model.
The Best Linear Unbiased Predictors from this model yield shrunken estimates. This
procedure ignores the sampling error in the estimated regression coefficients but with
large numbers of students this should have a minimal effect on the estimates. Standard
error estimates for both the shrunk and unshrunk estimators ignore the sampling error in
estimating the model slope and intercept.

ANCOVA
The regression model includes separate intercept and slope parameters by grade level. To
enforce the sum to zero constraint, we subtract the intercept and the slope times the prior
mathematics achievement score from each student’s 2006 07 achievement score to obtain a
residual. We averaged these to obtain the unshrunk performance measure and used these
as outcomes in a random effects one away ANOVA model to obtain the shrunken
estimates. Standard error estimates for both the shrunk and unshrunk estimators ignore
the sampling error in estimating the model slope and intercept.

Lookup tables
To estimate shrunk estimates we used the deviations for the expected scores as outcomes
in a one way random effects ANOVA. Standard error estimates for both the shrunk and
unshrunk estimators ignore the sampling error in estimating expected scores.

Fixed effects
To create shrunken estimates we estimated the variability among true teacher effects
using simple method of moments or meta analytic methods. We estimated the variability
among teachers with 10 or more students and subtracted from this the average of the
squared standard errors for teachers’ raw estimates to obtain the desired variance
component, v2. We restricted to teachers of 10 or more students to improve the stability of
our estimates. The shrinkage factor for each teacher equals v2/( v2 + SE2), where SE
denotes the standard error of the raw estimate for the teacher.
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Table 1. Classification of Performance Measuresa

Method
Scale of Student

Achievement Measure Statistical Adjustments
Deviations from Expectation
Estimated with a Single Score Raw scores

With shrinkage

ANCOVA z scores Without shrinkage
Regression Residuals
Lookup Tables
Gain Score
Average gain scores
Deviations from Expectation
Estimated with Multiple
Scores
Multivariate ANCOVA
Multivariate Mixed Effects
Models
Variable persistence model
Layered (complete
persistence) model
Fixed Effects
Student fixed effects for
achievement scores
aPerformance measures were estimated using complete cross of method, scale of student
achievement measure, and statistical adjustment for all methods except the two
multivariate mixed effects model methods which were applied only to z scores and only
with shrinkage and lookup tables which used only raw scores.
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Table 2a. Summary Statistics for Performance Measures (Indicators of Signal)

Method
Raw or
Shrunk Scale

Cross Year
Correlation

Correlation
with LMT

R2 for Prior
year Teacher
Effect(no
covariates)

R2 for Prior year
Teacher Effect
(controlling for
prior scores)

R2 for Prior
year Teacher

Effect
(controlling for
prior scores
and schools)

Proportion
of variance
between
schools

Regression
Residuals raw raw score 0.17 0.24 0.11 0.02 0.01 0.04
Regression
Residuals shrunk raw score 0.43 0.27 0.13 0.02 0.01 0.08
Regression
Residuals raw z score 0.32 0.29 0.11 0.02 0.01 0.07
Regression
Residuals shrunk z score 0.51 0.30 0.12 0.02 0.02 0.11
ANCOVA raw raw score 0.32 0.30 0.19 0.02 0.01 0.06
ANCOVA shrunk raw score 0.52 0.33 0.21 0.02 0.01 0.11
ANCOVA raw z score 0.45 0.33 0.18 0.02 0.02 0.09
ANCOVA shrunk z score 0.58 0.34 0.19 0.02 0.02 0.14
Lookup
tables raw raw score 0.25 0.24 0.10 0.02 0.01 0.04
Lookup
tables shrunk raw score 0.46 0.28 0.12 0.02 0.01 0.07
Gain Score raw raw score 0.04 0.08 0.03 0.02 0.01 0.02
Gain Score shrunk raw score 0.33 0.12 0.04 0.02 0.01 0.05
Gain Score raw z score 0.16 0.07 0.01 0.02 0.01 0.04
Gain Score shrunk z score 0.39 0.07 0.01 0.02 0.01 0.06
Multivariate
ANCOVA raw raw score 0.39 0.21 0.13 0.03 0.02 0.05
Multivariate
ANCOVA shrunk raw score 0.57 0.26 0.15 0.03 0.02 0.09
Multivariate
ANCOVA raw z score 0.36 0.21 0.09 0.03 0.02 0.07
Multivariate
ANCOVA shrunk z score 0.54 0.25 0.10 0.03 0.02 0.09
Mixed
Models
(Variable
Persistence) shrunk z score 0.51 0.32 0.13 0.03 0.02 0.11
Mixed
Models
(Layered
Model) shrunk z score 0.51 0.31 0.09 0.03 0.02 0.07
Fixed Effects raw raw score 0.28 0.18 0.10 0.03 0.02 0.05
Fixed Effects shrunk raw score 0.51 0.24 0.12 0.03 0.02 0.09
Fixed Effects raw z score 0.36 0.11 0.02 0.03 0.02 0.08
Fixed Effects shrunk z score 0.54 0.17 0.02 0.03 0.02 0.10
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Table 2b. Summary Statistics for Performance Measures (Indicators of Bias)
Systematic Error Index

Method
Raw or
Shrunk Scale

Correlation with
Average Mean
Prior Z score

Standardized
Regression

Coefficient for
Percent Minority

Standardized
Regression

Coefficient for
LMT

With average
mean prior z

score
With percent
minority

Regression
Residuals raw raw score 0.39 0.29 0.18 0.17 0.05
Regression
Residuals shrunk raw score 0.39 0.26 0.21 0.18 0.05
Regression
Residuals raw z score 0.33 0.26 0.22 0.14 0.05
Regression
Residuals shrunk z score 0.31 0.24 0.23 0.12 0.03
ANCOVA raw raw score 0.49 0.35 0.27 0.33 0.16
ANCOVA shrunk raw score 0.51 0.31 0.29 0.31 0.13
ANCOVA raw z score 0.47 0.34 0.26 0.29 0.13
ANCOVA shrunk z score 0.46 0.31 0.28 0.27 0.11
Lookup
tables raw raw score 0.32 0.19 0.19 0.10 0.00
Lookup
tables shrunk raw score 0.29 0.14 0.22 0.09 0.01
Gain Score raw raw score 0.10 0.06 0.02 0.17 0.13
Gain Score shrunk raw score 0.03 0.05 0.06 0.15 0.14
Gain Score raw z score 0.07 0.04 0.03 0.28 0.18
Gain Score shrunk z score 0.12 0.04 0.04 0.27 0.17
Multivariate
ANCOVA raw raw score 0.42 0.28 0.16 0.26 0.04
Multivariate
ANCOVA shrunk raw score 0.45 0.28 0.22 0.27 0.04
Multivariate
ANCOVA raw z score 0.25 0.20 0.15 0.08 0.03
Multivariate
ANCOVA shrunk z score 0.21 0.19 0.19 0.06 0.04
Mixed
Models
(Variable
Persistence) shrunk z score 0.14 0.17 0.27 0.03 0.02
Mixed
Models
(Layered
Model) shrunk z score 0.09 0.09 0.27 0.00 0.05
Fixed Effects raw raw score 0.21 0.16 0.12 0.02 0.03
Fixed Effects shrunk raw score 0.21 0.17 0.20 0.04 0.03
Fixed Effects raw z score 0.11 0.03 0.06 0.31 0.22
Fixed Effects shrunk z score 0.12 0.01 0.13 0.25 0.18
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Table 2c. Summary Statistics for Performance Measures (Indicators of Noise)

Method
Raw or
Shrunk

Scale of
Test

Percent of teachers
with small classes in
extreme decilesa

Percent of teachers
with large classes in
extreme decilesb

Regression
Residuals raw scale score 49.28 10.23
Regression
Residuals shrunk scale score 26.44 17.62
Regression
Residuals raw z score 38.76 20.51
Regression
Residuals shrunk z score 22.44 20.63
ANCOVA raw scale score 44.71 13.02
ANCOVA shrunk scale score 29.81 16.67
ANCOVA raw z score 42.03 13.69
ANCOVA shrunk z score 23.56 18.76
Lookup
tables raw scale score 45.89 11.2
Lookup
tables shrunk scale score 25.24 17.67
Gain Score raw scale score 52.15 10.2
Gain Score shrunk scale score 27.88 18.59
Gain Score raw z score 43.69 12.58
Gain Score shrunk z score 19.32 21.65
Multivariate
ANCOVA raw scale score 43.27 10.98
Multivariate
ANCOVA shrunk scale score 26.44 15.69
Multivariate
ANCOVA raw z score 39.23 13.31
Multivariate
ANCOVA shrunk z score 20.87 20.3
Mixed
Models
(Variable
Persistence) shrunk z score 13.46 22.37
Mixed
Models
(Layered
Model) shrunk z score 12.44 22.2
Fixed Effects raw scale score 46.41 12.19
Fixed Effects shrunk scale score 20.67 20.81
Fixed Effects raw z score 46.41 13.38
Fixed Effects shrunk z score 13.59 23.46
a Small classes have less than 10 students
b Large classes have 20 or more students
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Table 3. Summary of Teachers Whose Performance is Classified as Significantly Better by Four
Selected Performance Measures

ANCOVA Gains
Mixed
Models

Fixed
Effects

Percent Classified Significantly Better than
Average

All Teachers 29% 20% 19% 19%
Teachers by Class Size

Less than 10 students 7 14 4 11
10 to 19 students 12 17 13 15
20 or more students 44 23 27 23

Teachers by Average Student Prior Achievement
Less than one std deviation below mean 6 18 7 15
Between one standard deviation below
and the mean 23 21 18 20
Between the mean and one standard
deviation above 42 19 24 21
More than one standard deviation above
the mean 70 23 40 20

Teachers by Course Taught
Only general education coursesa 36 21 23 22
Only special education courses 5 17 5 12
Only advanced coursesb 88 13 63 13

Kappa Statistic
Cross Year Agreement 0.55 0.24 0.53 0.50

aExcludes teachers who taught special education, algebra or other advanced mathematics courses
b Includes teachers who taught only algebra or other advanced mathematics courses
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