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MINIMAL N-POINT DIAMETERS AND f-BEST-PACKING
CONSTANTS IN R¢

A. V. BONDARENKO%, D. P. HARDIN, AND E. B. SAFF

ABSTRACT. In terms of the minimal N-point diameter D4(N) for R%, we deter-
mine, for a class of continuous real-valued functions f on [0, +oc0], the N-point
f-best-packing constant min{f(||z — y||) : =,y € R?}, where the minimum is
taken over point sets of cardinality N. We also show that

NYIATYE o< Dy(N) < NVIATYE N> 2
where Ay is the maximal sphere packing density in R?. Further, we provide
asymptotic estimates for the f-best-packing constants as N — oco.

Let f be a non-negative function on [0, 00) and wy = {z1,z2,...,2n} a collec-
tion of N distinct points in Euclidean space R%. Set

5 () = min f(le = yl),

7Y
where || - || denotes the Euclidean norm. In this article we investigate the N-point
f-best-packing constant
(1) 6a(N; f):= sup 65%(f) = sup min f([lz—yl),
wn CR? wn CR? m’giwzv
#wn=N #wn=N v

where #A denotes the cardinality of a set A. A collection of N points wi C R? is
said to be an N-point f-best-packing configuration if 5;}?\[ (f) = 0a(N; f).

The classical best-packing problem is the problem of finding a configuration of
N points on a given compact set A with the largest minimal pairwise distance.
Formulated for the Euclidean space R? this becomes the asymptotic problem of
finding the largest density of an infinite collection of non-overlapping equal balls in
R (see e.g. [3], [7]). We denote this mazximal sphere packing density in R? by Ag;
eg. Ay =1, Ay =7/\/12 (cf. [9]) and Az = 7//18 (cf. [10]).

As a natural extension, the asymptotics of certain weighted best-packing prob-
lems on compact sets are investigated in [5]. Here we consider such problems for a
certain class A of functions f defined on all of R? for fixed N (see Theorem 1) as
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well as provide asymptotic results (as N — o0o) in Corollaries 2 and 3. For example,
for Gaussian weighted best-packing on R?, i.e, f(t) = texp(—t?), our results yield
in particular for N = 7 that d5(7; f) = 27/3((1/3) log 2)'/? and, furthermore,

Ay (%71)/2 N 1/2 1 N 1/2

An important role in our investigation is played by the quantity

(3) Dy(N) = min {mawj e — 2| }

z1,...,o Ny ERD mink;gg ||J?k — .Z'gH

which is called the minimal N-point diameter for R%. That the minimum of the
ratio in (3) is attained may be seen using a scaling argument. Clearly, Di(N) =
N —1 for each N > 2. For d = 2, the exact values of Do(N) are known (cf. [1],[2])
for N up to 8, and asymptotically there holds

(4) Dy(N) = (N/A9)Y2 +0(1) as N — oc.

Furthermore, it is shown by A. Schiirmann in [12] that for NV sufficiently large,
optimal configurations for Do(N) are (somewhat surprisingly) always non-lattice
packings, as conjectured by P. Erdos.

In comparison with (4) whose proof relies on results of [9] that are special for
the plane, we show in Theorem 2 that for all d > 1 we have

NYIATYT _9 < Dy(N) < NVIA7YE (N > 2).

Our first theorem applies to the class A of functions f € C([0,00)) such that
f(0) =0, f(t) > 0 for t > 0, limy_, f(t) = 0, and such that there exist positive
numbers e, M (e < M) with the properties that f is strictly increasing on [0, €] and
is strictly decreasing on [M,00). We may assume, without loss of generality, that,
for f € A, the parameters € and M in the above definition further satisfy
(5) fle) = f(M) = min f(t).

Lemma 1. Suppose | € A with parameters ¢ and M that satisfy (5). If a« > M /e,
then there is a unique positive solution t = 7(«) to the equation

(6) f(t) = f(at).
Furthermore, T(a) € (Mo, €).

Proof. Consider g(t) := f(at) — f(t) for t > 0. Since M/a < e, f(at) is decreasing
for t € [M/a, 00). Furthermore, since f is increasing on [0, £], it easily follows that
g is (strictly) decreasing on [M/a, ] and that

g(M/a) = f(M) — f(M/a) = f(e) = f(M/a) > 0.
We also have
g(e) = flag) = fe) < f(M) = f(e) =0
since f is decreasing on [M,o00) and ae > M. Hence, g has exactly one zero in
(M/a,€), or equivalently, (6) has exactly one solution ¢t = 7(a) € (M/a,€).

If t > M, then f(at) < f(t) since f is increasing on [M,00). If ¢ < ¢ < M, then
f@) > f(M) > f(at) since at > ae > M. Therefore, there are no values of t > ¢
that satisfy (6). A similar analysis shows that (6) has no solutions in (0, M/«] and
so t = 7(a) is the unique solution of (6) for ¢ > 0.
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Our first main result is the following:

Theorem 1. Let f € A with parameters e and M that satisfy (5). Let Ny be such
that Dg(N) > M/e for N > Ny and tny = 7(Dg(N)) denote the unique value of
t > 0 such that

(7) f(t) = f(Da(N)1).
Then
(8) 6a(N; f) = f(tn), N> No.

Moreover, a collection of N(> Ny) distinct points wy = {xx}N_, C R? is an N-
point f-best-packing configuration if and only if
(9) min ||z —y|| =ty and diam(wy) = txDa(N).

T,YEWN
TEY

Proof. Let N > Ny and let wy = {xk}szl be a collection of N points in R? such
that min;»; ||z; — ;|| = ty and diam(wy) = txnDg(N). Then
(10) tn < lwe —ajll <tvDa(N), (i #j)-

By Lemma 1, we have tn < € and tyDg(N) > M. From (5), the definition of ¢y
and the monotonicity properties of f we have

tn) = i t
M) = o T, vy T
which, together with (10) implies that f(||x; — x;|) > f(tn) for all ¢,j (¢ # j).
Since ||x; — x;|| = tn for some pair 4,5 (i # j), we have

5 (£) = min ([l = ;1) = £(t)

and so 04(N; f) > f(tw).

Let @x = {yr | k = 1,..., N} denote an arbitrary N-point configuration in R?
and let ¢ := min,4; ||ly; — y;||. Since f is increasing on [0,¢] and ty < e, we have
85N (f) < fltn) if £ < ty, ie. the configuration Gy is not optimal. On the other
hand, if ¢ > ¢x, then diam (&y) > Dg(N)t > Dg(N)ty and so there must be
some i, j such that ||y; — y;|| > Da(N)t. Hence, §;~ (f) < f(Da(N)tn) = f(tn)
with equality if and only if both ¢ = ¢y and diam wi = Dg(N)ty. Therefore,
04(N; f) = f(tn) and a configuration is optimal if and only if the conditions (9)
hold. (]

For the sake of illustration, consider the function f, , € A defined by f, 4(t) = ¢?
if0<t<1and fpq(t) =t"9if t > 1 where p,q > 0 satisfy 1/p+1/¢ = 1. The
unique solution of (6) is 7(a) = a~%/®+9 for a > 1. Then f, ,(7(a)) = 1/a and,
by Theorem 1,

(11) a(N: fpq) = 1/Dg(N) =  max {

x17...,xN€Rd

ming g ||ze — @4 }
maxiy; [lz; — ;]| |
On letting p — 1 and ¢ — 00, fp 4 tends to fi oo where fi oo (t) =t for 0 <¢ <1 and
f1,00(t) = 0 for ¢ > 1 for which the equality in (11) is apparent from the definitions
of these quantities.

For the case d = 1, we have D1(N) = N — 1 and any configuration of N points
that attains D1(N) in (3) for N > 2 must be of the form {ck+b|k=0,...,N —1}
for any fixed constants b and ¢ # 0. We thus obtain the following.
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Corollary 1. Let f € A and d = 1. Let Ty = 7(N — 1) be the unique solution
of equation (6) with « = N —1 > M/e. Then 61(N; f) = f(tn) and any f-best-
packing configuration is of the form {txk+b|k=0,...,N — 1} for some constant
b.

For example if f(t) = texp(—t?), 3 > 0, we can take e = M = 3~/8 and we
deduce that for d =1 and N > 2,

. [Jig“%? DJ N
and

log(N — 1) 1/8 C1(N-1)°—
S{(N: f)= | —=>— 2 N — 1)~ VI@W-1)"—1]
with an optimal configuration wy = {tnk}r . (For N = 2, we find 6,(2; f) =
B~1/8 exp(—1/B) with an optimal configuration being {0, 31/7}.)

We remark that for the Gaussian weighted problem mentioned earlier, the com-
putation of d5(7; f) follows easily from Theorem 1 and the fact that Dy(7) = 2.

Next we present estimates for the minimal N-point diameter.
Theorem 2. Foralld> 1 and N > 2,
(12) NYVIATHE 9 < Dy(N) < NV4ATY?,

Proof. We say that a set of points in R? is 2-separated if the distance between any
two points in the set is greater than or equal to 2. For a compact set K C R?, let
M (K) denote the maximum number of points that can be placed in K under the
constraint that the distance between any two points is greater than or equal to 2,
i.e., M(K) is the maximum cardinality of any 2-separated subset of K.

For a compact set K in R?, we let K denote the 2-neighborhood of K defined by

K :={y € K |dist(y, K) < 2},

and, for t € R?, we let K +t denote the translate of K by t.

For p > 1, let X, denote a 2-separated collection of M (B(0, p)) points in B(0, p),
where B(0, p) denotes the open ball centered at 0 with radius p. Then it is known
(cf. [6]) that M(B(0,p)) = p?A4+o(p?) as p — oo and, furthermore, for any fixed
a > 0, that
(13) #(X, N B(0,p—a)) = p*Ag+o(p?) as p — o,

where #A denotes the cardinality of a set A.

Let K be a compact convex set in R? that contains the origin 0 and let Y’ denote a
2-separated collection of M (K) points in K. If t € H%d is such that |t| < p—diamK,
then K +¢ is contained in B(0, p) and X, = (X, \ K +) U (Y +1) is a 2-separated
configuration in B(0, p) of #X, — # (Xp N (K + t)) + M (K) points, from which it
follows that
(14) # (X, N (K +1) = M(K).

Let p, denote the discrete measure p, = . X, 0., where 0, denotes the unit

atomic mass at * € R? and let A% denote Lebesgue measure on R?. As before,
suppose K is a compact convex set in R? that contains 0 and let yx denote the
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characteristic function of K. We next consider the following convolution integral
which, by Tonelli’s theorem, can be written as

o, ¥ DN = [ 05,08 = )12
(15) )X Xp B(0,p

_ /X A(B(0,p) N (K — x))dp, ().

P

If |z| + diam(K) < p, then K — 2 C B(0, p) and so we have

MK, 0 B0, — diamk)) < [ (X, 0 (K = )duy (@)aN(0)
B(0,p)

< N(E)#(X).-

(16)

For N > 1, letting Ry := Nl/dAgl/d and choosing K = B(0, Ry), the first

inequality in (16) shows that
#(X, N B0, p = 2Ry )N (B0, o)) < N (B0, p)) max #(B(—t, ) 1 X,),

and so, using (13), we obtain as p — oo

#(XPﬂB(O7p_2RN)))‘d(B(O’RN)) d
— > =

mzax#(B( t,Ry)NX,) > (B O, ) RNAg+o(1).
Taking p — oo it then follows that M (B(0, Ry)) > N and thus we have
< diamB(O7 RN)
- 2

Next we derive the lower estimate for Dy(N). For N > 2, let Ky denote the
convex hull of a 2-separated configuration of N points such that diam(Ky) =
2D4(N). Using the second inequality in (16) with A = K and the inequality (14),
we obtain

(K y)

(17) Dy(N) = Ry = NYIa M4,

X 1 -
# s / # (Xp N(Ky — t)) dN(t)
P~ JB(0,p—diam(Ky))
A (B(0, p — diam(K y))
p? '
Recalling the isodiametric inequality ([13], see also [4]) that A(A) < B4(diam(A)/2)?
for any bounded measurable set A C R? and using (13) and taking p — oo, we have

(18)
> M(Kn)

. _ d
(W) Ag > M(Ky) > N.

Since diam(Ky) = 4 + diam(K x) = 4 4+ 2Dg(N), it follows that
(19) Da(N) > A VNV 2,
O

We remark that for the case d = 2, Bezdek and Fodor [2] have shown that
Dy(N) > N1/2A5_1/2 — 1, N > 2. We also note that at the conclusion of their arti-
cle [1], Bateman and Erdés briefly mention that for N — oo “there are asymptotic
relations of the form %Dd(N ) ~ ¢gNY?? for some unknown constant cq and refer
to a paper of Rankin [11]. However, to the authors’ knowledge, there appears no
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explicit proof of this fact for arbitrary d in [11] or elsewhere.

Theorem 1 together with Equation (4) and Theorem 2 allow us to establish some
asymptotic estimates for the N-point f-best-packing constant 64(N; f) of a fixed
function f € A. For example, from (12) and (11) we have

1/2

= TNV OV, N o,

62(N; fp,q) = 1/Da(N)

and, for d > 2,

0a(N; fpq) = 1/Da(N) = A/ N7 4 o(NV), N — 0.

We will now investigate how well §4(V; f) can be approximated by f(T(Nl/dA(;l/d)),
as N — oo, where 7(«) is the unique solution of (6). For this purpose the following
simple lemma is useful.

Lemma 2. Let f, M, and ¢ be as in Lemma 1 and let A and A+ X both be greater
than M/e. If X < 0, we further assume that A < (A + \)2. Then the following
inequalities hold:

(20) FAT(A) /(A4 X)) < J(A+ ) < 1 (4), A0,

1) FA+N7(A)) < F(r(A+ X)) < F(AT(A)), if A 20,
At(A) . At(A)

@) )< feae) < (F9) iaso o<

(23)  f(AT(A)) < f(T(A+ X)) < F((A+NT(A)), if A <0, e < (A+N)T(A).

Proof. The inequalities follow easily from the facts that 7(t) is decreasing and ¢7(¢)
is increasing for t > M/e. O

This lemma allows us to obtain asymptotic estimates on d4(N; f), d > 2, for
some subclasses of functions f € A. Set A := Nl/dAgl/d, A= Dy(N)— A. Then
by applying Theorem 77 and Lemma 2 we immediately obtain the following.

Corollary 2. Let f € A, d > 2. If at least one of the following two conditions
holds,

(i) th%lJr f(t;_(tg)(m =1, for any g such thatt+g(t) > 0 fort > 0 and g = o(t),
t— 0, or
(ii) tlirgo f(t;r(g(t)) =1, for any g = o(t), t — oo,
then
(24) lim N f) g

N (N )

For the Gaussian weighted best-packing problem in R? mentioned earlier, where
f(t) = texp(—t?), the above corollary readily yields the asymptotic result (2).
Similarly, if d = 2, then (4) implies the following;:
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Corollary 3. Let f € A. If, for some 8 € (0,1), both of the following conditions
hold,

(25) Jim, f(t;“(tg)(t)) =1, for each g(t) = Ot /P, t — 0t
and

(26) Jim f(t;(tg)(t)) — 1, for each g(t) = O(t=#/ =), ¢ = 00,
then

(27) fm — 2N

N—o0 f( (1211//24N1/2))

Proof. If 7(D3(N)) > N~P/2 for some sequence of integers N, then (27) holds
by (4), (20), (22), (25), while if 7(Dy(N)) < N~#/2 for infinitely many N, then (27)
holds by (4), (21), (23), (26). U

The following example illustrates the sharpness of Corollary 3. Let f(z) =
exp{—1/2?} for z € (0,1), and f(z) = exp{—xz} for x > 1. We have

2(N; f) = exp{=D3(N)} = O(exp

ft+g(t)) = O(f(t)), foreach g(t) = O(t3), t—0,

), N — o0,

and

Ft+g()=0(f(t), foreach g(t)=0(1/t),t— oo.
This example shows that Corollary 3 is optimal in the sense that it is not possible to
simultaneously increase the constant 1+ 1/ and reduce the constant —G/(1 — 3).
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