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Abstract. Recently developed scanning magnetic microscopes measure the mag-
netic field in a plane above a thin-plate magnetization distribution. These instru-
ments have broad applications in geoscience and materials science, but are limited
by the requirement that the sample magnetization must be retrieved from measured
field data, which is a generically nonunique inverse problem. This problem leads
to an analysis of the kernel of the related magnetization operators, which also has
relevance to the “equivalent source problem” in the case of measurements taken
from just one side of the magnetization. We characterize the kernel of the operator
relating planar magnetization distributions to planar magnetic field maps in various
function and distribution spaces (e.g., sums of derivatives of Lp (Lebesgue spaces)
or bounded mean oscillation (BMO) functions). For this purpose, we present a
generalization of the Hodge decomposition in terms of Riesz transforms and utilize
it to characterize sources that do not produce magnetic field either above or below
the sample, or that are magnetically silent (i.e., no magnetic field anywhere outside
the sample). For example, we show that a thin-plate magnetization is silent (i.e.,
in the kernel) when its normal component is zero and its tangential component
is divergence-free. In addition, we show that compactly supported magnetizations
(i.e., magnetizations that are zero outside of a bounded set in the source plane)
that do not produce magnetic fields either above or below the sample are neces-
sarily silent. In particular, neither a nontrivial planar magnetization with fixed
direction (unidimensional) compact support nor a bidimensional planar magnetiza-
tion (i.e., a sum of two unidimensional magnetizations) that is nontangential can be
silent. We prove that any planar magnetization distribution is equivalent to a uni-
dimensional one. We also discuss the advantages of mapping the field on both sides
of a magnetization, whenever experimentally feasible. Examples of source recovery
are given along with a brief discussion of the Fourier-based inversion techniques
that are utilized.
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1. Introduction

The Earth’s geomagnetic field is generated by convection of the liquid metallic
core, a mechanism known as geodynamo. The geomagnetic field may be recorded as
remanent magnetization (the large-scale, semi-permanent alignment of electron spins
in matter) in geologic materials containing ferromagnetic minerals. This remanent
magnetization provides records of the intensity and orientation of the ancient mag-
netic field. It can also be used to study processes other than those of geomagnetism,
including characterizing past motions of tectonic plates and as a relative chronometer
through the identification of geomagnetic reversals (periods when the Earth’s north
and south magnetic poles are interchanged) in rock sequences [17]. Rocks from Mars,
the Moon, and asteroids are also known to contain remanent magnetization which
indicates the past presence of core dynamos on these bodies [1, 7, 25]. Magnetization
in meteorites may even record magnetic fields produced by the young sun and the
protoplanetary disk (the primordial nebula of gas and dust around the young sun),
which may have played a key role in solar system formation [25].

Until recently, nearly all paleomagnetic techniques were only capable of analyzing
bulk samples (typically several centimeters in diameter). In particular, the vast ma-
jority of magnetometers currently in use in the geosciences infer the net magnetic
moment of a rock sample from a set of measurements of the three components of the
sample’s external magnetic field taken at a fixed distance. These data can be used to
uniquely measure the net moment of the sample (the integral of the magnetization
distribution over the sample’s volume) provided that the sample’s geometry satisfies
certain constraints [5]. While this approach has historically provided a wealth of geo-
logical information, much could be gained by retrieving the magnetization distribution
within the sample. Such data could be used to directly correlate magnetization with
mineralogy and textures in rock samples, which would provide powerful information
on the origin and age of the magnetization. This goal has recently motivated the de-
velopment of scanning magnetic microscopy methods that can extend paleomagnetic
measurements to submillimeter scales.

Typical scanning magnetic microscopes map only a single component of the mag-
netic field measured in a planar grid at a fixed distance above a planar sample [11].
However, geoscientists are ultimately interested in determining the magnetization dis-
tribution within a sample because it is this quantity, rather than the field it produces,
that provides a direct record of the ancient field intensity and direction. This inverse
problem can be regarded as an equivalent source problem (cf. [4, Sec. 12.1.2]) with
added constraints such as properties of the support or direction of the magnetization.
In particular, reconstructing physically relevant magnetizations is of special interest.
A key difficulty is that, in general, infinitely many magnetization patterns can pro-
duce the same magnetic field data observed outside the magnetized region. Thus, in
order to retrieve a magnetization from magnetic field measurements, an ill-posed in-
verse problem [18] must be solved for which the characterization of magnetically silent
sources is of utmost importance (cf. [12] and [3] for related investigations that focus
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instead on the reconstruction of current distributions in conducting materials from
magnetic field data). Analyzing these silent sources is critical for determining the
intrinsic limitations of this inverse problem and for devising regularization schemes
needed for effective inversion algorithms.

In this paper, we use tools from modern harmonic analysis (e.g., Riesz transforms,
Fourier multipliers and their distributional spaces) to provide a full characterization
of silent sources for the planar equivalent source problem. We will especially empha-
size the fundamental role that Riesz transforms play in this problem. A significant
contribution of this work is to introduce a generalization of the classical Helmholtz-
Hodge decomposition, which we call the Hardy-Hodge decomposition, as a key tool
for characterizing silent sources.

Here we set up a framework for the recovery of infinitely thin planar magnetiza-
tion distributions whose field is measured by a scanning magnetic microscope. Such
distributions are relevant for typical geologic magnetic microscopy studies, which in-
volve the analysis of rock thin sections that are usually much thinner (three orders of
magnitude smaller) than their horizontal dimensions and whose fields are measured
at distances exceeding 4-5 times their thicknesses [26]. This geometry means that the
planar magnetization distribution is an accurate model for the sample. Therefore,
we are particularly interested in characterizing planar silent sources with compact
support.

Unidirectional magnetization distributions, by which we mean magnetizations that
have fixed direction but variable nonnegative magnitude, are of significant interest.
These distributions occur naturally owing to the process of remanence acquisition in
rocks formed in the presence of a uniform external magnetic field. It is not uncommon,
however, to find a second component superimposed on a unidirectional magnetization
component as a result of partial remagnetization by secondary processes like weath-
ering or application of hand magnets. We term a magnetization bidirectional if it can
be expressed as the sum of two unidirectional components.

More generally, we will investigate unidimensional and bidimensional magnetiza-
tions. By the former, we mean a magnetization of the form Q(x)u, where u =
(u1, u2, u3) is a fixed vector in R3 and Q is a scalar valued function (possibly tak-
ing positive as well as negative values) for x in the support of the magnetization.
Similarly, we call a magnetization bidimensional if it can be expressed as the sum
of two unidimensional components. Clearly, any unidirectional (resp. bidirectional)
magnetization is a unidimensional (resp. bidimensional) magnetization.

The outline of this paper is as follows. After the introduction of the basic formulas
in Section 2.1, we focus in the remainder of Section 2 on the case of planar magneti-
zations whose components lie in Lp(R2), 1 < p < ∞. In Theorem 2.1, the operator
relating a planar magnetization distribution to its magnetic potential is expressed in
terms of Poisson and Riesz transforms from which we deduce the limiting values of the
potential from above and below the source plane. The Hardy-Hodge decomposition
for (Lp(R2))3 is presented in Theorem 2.2 and is the main tool for characterizing the
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kernel of the planar magnetization operator (cf. Theorem 2.3); thereby we describe
all equivalent magnetizations. In particular, we show that a thin plate magnetization
is ”silent from both sides” (i.e., the magnetic field vanishes above and below the sam-
ple) if its normal component is zero and its tangential component is divergence-free;
moreover, the same conclusion holds for compactly supported magnetizations that are
”silent from above” (i.e., observed to produce no field above the sample). In Corol-
lary 2.5, we show that a unidimensional nontrivial magnetization that is compactly
supported cannot be silent. The same is true for bidimensional magnetizations that
are nontangential (cf. Corollary 2.7). Furthermore, we show that any magnetization
is equivalent to a unidimensional one (cf. Theorem 2.6). For p = 2, the orthogo-
nality of the Hardy-Hodge decomposition provides the equivalent magnetization with
minimal L2(R2) (cf. Theorem 2.3 (i)).

In Section 3, we prove analogs of the results in Section 2 for other relevant spaces
of magnetization distributions. The boundary cases p = 1 and p =∞ of Lp(R2) lead
us to the spaces H1(R2) and BMO(R2). To extend our analysis to all compactly sup-
ported distributions we consider the spaces W−∞,p(R2), 1 < p < ∞, and BMO−∞.
These spaces allow us to consider all compactly supported distributional silent sources
as well as certain distributions with unbounded support. In Corollaries 3.4 and 3.5
we characterize unidimensional and bidimensional silent sources in these spaces. In
the case of BMO−∞, we find that unidimensional (and nontangential bidimensional)
silent sources must be certain ‘ridge’ functions.

Finally, in Section 4, we briefly discuss Fourier-based inversion techniques and
present some examples of source recovery. In a companion paper [15], we provide
further details concerning such inversions.

2. Magnetic Potentials and Magnetizations

2.1. Basic Relations. We first informally review the case of a quasi-static R3-valued
magnetization M supported on some subset of R3. In this case, the constitutive
relation between the magnetic-flux density B and the magnetic field H (cf. [10,
Section 5.9.C]) is given by

(1) B = µ0(H + M),

where µ0 = 4π × 10−7Hm−1 is the magnetic constant (or vacuum permeability).
Maxwell’s equations, in the absence of any external current density J, give ∇×H = 0
and ∇·B = 0. Since ∇×H = 0, the Helmholtz-Hodge decomposition (see Section 2.3)
implies that H = −∇φ for some scalar function φ (called the magnetic scalar potential
for H), which gives

(2) B = µ0(−∇φ+ M),

and on taking the divergence we obtain the Poisson equation

(3) ∆φ = ∇ ·M,
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where ∆ := ∇ · ∇ is the usual Laplacian. In the most general setting, we shall
consider (3) in the distributional sense, where the components of M lie in D′(R3);
that is, the dual of the space D(R3) of compactly supported, infinitely differentiable
functions on R3.

Recalling that the Coulomb potential 1/(4π|r|) is a fundamental solution of −∆
(i.e., a Green’s function), where r is the position vector in R3, we infer that φ is, up
to an additive constant, the Riesz potential in R3 of −∇ ·M. We assume without
loss of generality that this constant is zero; that is,

(4) φ(r) = − 1

4π

∫∫∫
(∇ ·M)(r′)

|r− r′|
dr′.

If M is compactly supported or decays sufficiently fast at infinity, then (using ∇(1/|r|) =
−r/|r|3) we may write φ(r) = Γ(M)(r), where

(5) Γ(M)(r) :=
1

4π

∫∫∫
M(r′) · (r− r′)

|r− r′|3
dr′,

since the right-hand sides of (4) and (5) are well-defined and agree for any r not in
the support of M. Hereafter, we shall consider only spaces of distributions M for
which (5) is well-defined for all r not in the support of M.

We shall single out the third component of r ∈ R3 by writing r = (x, z), where
x ∈ R2. Hereafter we assume that the support of the magnetization is contained in
the z = 0 plane, and refer to this as the thin plate case. More precisely, we assume
that M is a tensor product distribution in (D′(R3))3 of the form

M(x, z) = (m1(x),m2(x),m3(x))⊗ δ0(z)

=: m(x)⊗ δ0(z) =: (mT (x),m3(x))⊗ δ0(z),
(6)

where mT = (m1,m2) and m3 are distributions corresponding, respectively, to the
tangential and normal components of m. Since everything will now depend on the
distribution m ∈ (D′(R2))

3
, we put

(7) Λ(m) := Γ(M),

where M and m are related as in (6). Then, computing the integral by Fubini’s rule
for distributions, (5) becomes

(8) Λ(m)(x, z) =
1

4π

∫∫ (
mT (x′) · (x− x′)

(|x− x′|2 + z2)3/2
+

m3(x
′)z

(|x− x′|2 + z2)3/2

)
dx′,

for all (x, z) such that either z 6= 0 or x is not in the support of m.

2.2. Potentials as Poisson integrals. In this section, our first goal is to describe
the behavior of Λ(m)(x, z), as a function of x, when z → 0+ (the case when z → 0− is
similar). Using a representation for this limit that involves Riesz transforms, we then
determine necessary and sufficient conditions for a magnetization m to be a silent
source; that is, for Λ(m)(x, z) to be identically zero for z above and below the thin
plate (see Theorem 2.3).
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Throughout this section, we consider the model case where m ∈ (Lp(R2))3 for
p ∈ (1,∞); that is, each component of m belongs to the familiar Lebesgue space of
real-valued measurable functions f with norm

‖f‖Lp(R2) :=

(∫∫
|f(x)|p dx

)1/p

<∞.

In Section 3 we extend our analysis from (Lp(R2))3 to more general classes of distri-
butions m which include all compactly supported distributions.

We begin with an analysis of the right-hand side of (8) as z → 0+. Notice that
the term for the second integrand is half the familiar Poisson transform Pz ∗m3(x)
of m3, where ∗ denotes convolution and the Poisson kernel at height z for the upper
half-space R2 ×R+ is given by

(9) Pz(x) :=
1

2π

z

(|x|2 + z2)3/2
.

By well-known properties of the Poisson kernel (an approximate identity for convolu-
tion), the limit of this term is m3/2, both pointwise a.e. (even nontangentially) and
in Lp-norm [22, Ch. III, Thm. 1].

The term corresponding to the first integrand in (8) is half the (dot-product) con-
volution of mT with the kernel

(10) Hz(x) :=
1

2π

x

(|x|2 + z2)3/2

and its boundary behavior is not as immediately clear. To elucidate this behavior, we
express mT ∗Hz in terms of the Riesz transforms of the components of m composed
with a Poisson transform (see (12) below). Recall that for f ∈ Lp(R2), p ∈ (1,∞),
the Riesz transforms of f , denoted by R1(f) and R2(f), are defined by

(11) Rj(f)(x) := lim
ε→0

1

2π

∫∫
R2\B(x,ε)

f(x′)
(xj − x′j)
|x− x′|3

dx′, j = 1, 2,

with B(x, ε) indicating the disc with center x = (x1, x2) and radius ε. Then (cf. [22,
Ch. II, Sec. 4.2, Thm. 3]) the limit (11) exists a.e. when f ∈ Lp(R2), the transform
Rj continuously maps Lp(R2) into itself, and (cf. [22, Ch. III, Secs. 4.3-4.4])

(12) mT ∗Hz = Pz ∗
(
R1(m1) +R2(m2)

)
.

Relation (12) could have been surmised as follows. Both sides are harmonic in the
upper half-space; furthermore, (2π)−1x/|x|3 is the pointwise limit of Hz as z → 0+

and allowing an interchange of limits we see that the boundary values on the plane
z = 0 of both sides of (12) are the same. From the above discussion we have

Theorem 2.1. Let p ∈ (1,∞) and suppose m = (mT ,m3) = (m1,m2,m3) ∈
(Lp(R2))

3
. Then the function Λ(m)(x, z) defined by (8) is harmonic for (x, z) ∈ R3
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with z 6= 0. At such points it also has the following representation in terms of the
Riesz and Poisson transforms:

(13) Λ(m)(x, z) =
1

2
P|z| ∗

(
R1(m1) +R2(m2) +

z

|z|
m3

)
(x).

Moreover, the limiting relation

(14) lim
z→0±

Λ(m)(x, z) =
1

2
(R1(m1)(x) +R2(m2)(x)±m3(x))

holds pointwise a.e. and in Lp(R2)-norm.

In the Fourier domain the operator Rj has multiplier −iκj/|κ| (cf. [8, Prop.
4.1.14]); that is,

(15) R̂jf(κ) = −i κj
|κ|

f̂(κ) κ = (κ1, κ2) ∈ R2,

whenever f ∈ D(R2) where

(16) f̂(κ) :=

∫∫
f(x)e−2πix·κ dx,

is the Fourier transform of f .
We recall the following basic identities for the Riesz transforms Ri : Lp(R2) →

Lp(R2):

(17) R1R2 = R2R1 and R2
1 +R2

2 = −Id,

where RiRj denotes the composition of Ri and Rj, R
2
j is the composition of Rj with

itself, and Id denotes the identity operator on Lp(R2). It follows immediately from
(15) that the identities hold when restricted to D(R2) and so must hold on all of
Lp(R2) by density and the continuity of the Riesz transforms.

2.3. The Hardy-Hodge decomposition. We say that two magnetizations in (Lp(R2))3

are equivalent from above (resp. below) if they produce the same potential in the up-
per (resp. lower) half-space via (8). We say that a magnetization is silent from
above (resp. below) if it is equivalent from above (resp. below) to the null magne-
tization. Since the Poisson transform has a trivial kernel in Lp(R2), Theorem 2.1
implies that m ∈ (Lp(R2))3 is silent from above if and only if Λ(m)(·, z) = 0 for some
z > 0 if and only if R1(m1) + R2(m2) + m3 = 0 and silent from below if and only if
R1(m1)+R2(m2)−m3 = 0. Hence, m is silent if and only if R1(m1)+R2(m2) = 0 and
m3 = 0. We introduce a refinement of the classical Helmholtz-Hodge decomposition
that allows us to write a 3-dimensional vector field on R2 uniquely as a sum of three
terms that are, respectively, silent from above, silent from below, and silent. We call
this decomposition the Hardy-Hodge decomposition and remark that it appears not
to have been previously considered. The Hardy-Hodge decomposition works more
generally for Rn+1-valued vector fields on Rn, but we shall stick to n = 2.
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Let us first recall the classical Helmholtz-Hodge decomposition of two-dimensional
vector fields on R2. If h = (h1, h2) ∈ (D′(R2))

2
is a 2-dimensional vector of distribu-

tions on R2, then ∇ ·h := ∂x1h1 +∂x2h2 and ∇×h := ∂x1h2−∂x2h1. For p ∈ (1,∞),
let

Sole(Lp(R2)) := {f = (f1, f2) : f ∈ (Lp(R2))2, ∇ · f = 0}
and

Irrt(Lp(R2)) := {g = (g1, g2) : g ∈ (Lp(R2))2, ∇× g = 0}.
That is, Sole(Lp(R2)) is comprised of “solenoidal” vector fields (with components in
Lp(R2)), while Irrt(Lp(R2)) consists of “irrotational” vector fields.

Every g ∈ Irrt(Lq(R2)) is the gradient of some R-valued distribution, that is,
there exists d ∈ D(R2) such that g = (∂xd, ∂yd) [21, Ch. II, Sec. 6, Thm. VI].
By construction d has first partial derivatives in Lp(R2), hence its restriction to any
bounded open set Ω lies in the Sobolev space W 1,p(Ω) comprised of functions in Lp(Ω)
whose first distributional derivatives again lie in Lp(Ω) (this follows by regularization
from the Poincaré inequality). However, d may not be in W 1,p(R2) because it needs
not lie in Lp(R2) (although its derivatives do). Such d form the so-called homogeneous
Sobolev space of exponent p, denoted by Ẇ 1,p(R2). We refer the reader to [2], [27,
Ch. 2-3] and [22, Ch. V-VI] for standard facts on Sobolev spaces.

Next, for any two-dimensional vector field g = (g1, g2), we let J((g1, g2)) :=
(−g2, g1). The map J is an isometry from Irrt(Lq(R2)) onto Sole(Lp(R2)) such
that J2 = −id, and so each f ∈ Sole(Lp(R2)) is of the form (−∂yd, ∂xd) for some

d ∈ Ẇ 1,p(R2).
Now, the Helmholtz-Hodge decomposition states that, for p ∈ (1,∞),

(18) (Lp(R2))2 = Sole(Lp(R2))⊕ Irrt(Lp(R2)),

is a topological direct sum as we next briefly review (cf. [9, Sec. 10.6]). Given

h = (h1, h2) ∈ (Lp(R2))
2
, let g and f be given by

(19) g := − (R1(h), R2(h)) with h :=
2∑
j=1

Rj(hj), and f := h− g.

Then h = f + g by construction, and using (15) it is easily checked by density
that g ∈ Irrt(Lp(R2)) and f ∈ Sole(Lp(R2)). The sum in (18) is direct, for if h ∈
Sole(Lp(R2)) ∩ Irrt(Lp(R2)) then it is the gradient of a harmonic distribution (thus
in fact of a harmonic function) with Lp-summable derivatives, which must therefore
be constant. The sum is also topological, because the projections h→ f and h→ g
are continuous by (19) and the Lp-boundedness of Riesz transforms.

We further recall that when p, q are conjugate exponents, the spaces Sole(Lp(R2))
and Irrt(Lq(R2)) are orthogonal under the pairing

〈g, f〉 :=

∫∫
g(x) · f(x) dx;

in particular (18) is an orthogonal sum when p = 2.
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We now state and prove an analog of the Helmholtz-Hodge decomposition for func-
tions f ∈ (Lp(R2)))3. For this purpose we define

H+
p = H+

(
Lp(R2)

)
:= {(R1(f), R2(f), f) : f ∈ Lp(R2)},

H−p = H−
(
Lp(R2)

)
:= {(−R1(f),−R2(f), f) : f ∈ Lp(R2)},

Sp = S
(
Lp(R2)

)
:= {(s1, s2, 0) : (s1, s2) ∈ Sole(Lp(R2))}.

(20)

Theorem 2.2 (Hardy-Hodge Decomposition). Let p ∈ (1,∞). Then we have the
following topological direct sum:

(21) (Lp(R2))3 = H+
p ⊕H−p ⊕ Sp.

More specifically, each f = (f1, f2, f3) ∈ (Lp(R2))3 can be written as

(22) f = PH+
p

(f) + PH−p (f) + PSp(f),

where

(23) PH+
p

(f) =
(
R1(f

+), R2(f
+), f+

)
, f+ :=

−R1(f1)−R2(f2) + f3

2
,

(24) PH−p (f) =
(
−R1(f

−),−R2(f
−), f−

)
, f− :=

R1(f1) +R2(f2) + f3

2
,

(25) PSp(f) =
(
−R2(d), R1(d), 0

)
, d := R2(f1)−R1(f2).

Proof. As mentioned below Equation (19), using (15) it is easily checked that PSp(f) ∈
Sp for any f ∈ D(R2) and, by density, for any f ∈ (Lp(R2)))3.

Let f ∈ (Lp(R2)))3 be fixed. Using (17) one may readily verify that (22) holds
with PH+

p
(f), PH−p (f), and PSp(f) given as in (23),(24), and (25) showing that the

decomposition in (21) exists as a sum. On the other hand, we obtain formula (23)
by observing in view of (17) that the map (v1, v2, v3) 7→ −R1(v1) − R2(v2) + v3

annihilates H−p and Sp while giving twice the third component of H+
p . Formula

(24) follows similarly by considering the map (v1, v2, v3) 7→ R1(v1) + R2(v2) + v3.
Formula (25) then follows from a short computation. This establishes uniqueness of
the decomposition, and the latter is topological because the coordinate projections
are continuous by (23),(24), and (25). �

Let us stress that H+
p is the limit as z → 0+, in the sense of distributions, of a

sequence of vector fields x 7→ ∇U(x, z), where U is harmonic in the upper half-space.
In fact, relation (12), applied with mT = (f, 0) and then mT = (0, f), shows for
z > 0 that Pz ∗ (R1(f), R2(f))t is the gradient with respect to x at (x, z) of minus
the renormalized Riesz potential of f :

(26) Jf (x, z) :=
1

2π

∫∫
f(x′)

(
1

(|x− x′|2 + z2)1/2
− 1

(|x′|2 + 1)1/2

)
dx′,
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where the O(|x′|−2)-behavior of the kernel for large |x′| ensures that the integral has
a meaning for f ∈ Lp(R2). Since the derivative of −Jf with respect to z is Pz ∗ f ,
we get that Pz ∗ (R1(f), R2(f), f)t is the full gradient of −Jf at (x, z), as desired.
Likewise, H−(E) is the limit as z → 0−, in the sense of distributions, of a sequence
of vector fields x 7→ ∇W (x, z), where W is harmonic in the lower half-space.

By analogy with dimension one and holomorphic Hardy spaces, we call PH+
p

(f) the

projection of f onto harmonic gradients, and PH−p (f) the projection of f onto anti-

harmonic gradients. The term PSp(f), which has no analog in dimension one where
every function is a gradient, is the projection of f on divergence-free tangential vector
fields.

Observe that (21) is an orthogonal decomposition if p = 2. Indeed, we know by
orthogonality of the Helmholtz-Hodge decomposition that S2 is orthogonal to both
H+

2 and H−2 . That the latter are orthogonal to each other is immediately seen from
(17) and (15).

2.4. Equivalent magnetizations and silent source characterization. The Hardy-
Hodge decomposition is particularly useful when analyzing the kernel of the operator
m 7→ φ, which is of fundamental importance to the inverse magnetization problem.

2.4.1. Equivalent magnetizations.

Theorem 2.3. Let p ∈ (1,∞) and m ∈ (Lp(R2))3.

i) The magnetization PH−p (m) (resp. PH+
p

(m)) is equivalent to m from above

(resp. below); in the case p = 2, then PH−p (m) (resp. PH+
p

(m)) is the magne-

tization of minimal (L2(R2))3-norm that is equivalent to m from above (resp.
below).

ii) The magnetization m is silent from above (resp. below) if and only if PH−p (m) =

0 (resp. PH+
p

(m) = 0).

iii) The magnetization m is silent from above and below if and only if it belongs
to Sp; that is, if and only if mT is divergence-free and m3 = 0.

iv) If supp m 6= R2, then m is silent from above if and only if it is silent from
below; that is, if and only if mT is divergence-free and m3 = 0 (i.e.,m ∈ Sp).

Remarks:

• From (6), it follows that ∇ ·M(x, z) = ∇ ·mT (x) ⊗ δ0(z) + m3(x) ⊗ δ′0(z),
and thus one direction of assertion (iii) is apparent. What is not apparent is
that every silent source must have a divergence free tangential component and
a vanishing normal component.
• Assertion (iv) implies in particular that if f ∈ C2(R2) and has compact sup-

port, then m := (∂yf,−∂xf, 0) is a silent source. In Figure 1 we provide
an example with f(x, y) = φ(x)φ(y), where φ(t) := (1/2)(1 − cos(2πt)) for
t ∈ [0, 1] and is zero otherwise.
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Proof. Items (i)–(iii) follow from Theorems 2.1 and 2.2, and the orthogonality of the
Hardy-Hodge decomposition in L2.

To prove (iv), assume at first that m = (m1,m2,m3) is silent from above. Then
PH−p (m) = 0 by assertion (ii); that is, R1(m1) + R2(m2) + m3 = 0 in view of (24).

Consequently, using (23), the Hardy-Hodge decomposition reduces to

(27) m = (R1(m3), R2(m3),m3) + (d1, d2, 0),

where d := (d1, d2) is divergence free. As remarked after the proof of Theorem 2.2, the
Poisson extension Pz ∗ (R1(h), R2(h), h)(x) is minus the gradient of the renormalized
Riesz potential Jm3 at (x, z). Now, by our hypothesis there is a nonempty open
set U ⊂ R2 disjoint from supp m. By inspection on (26) the function −Jm3 , which
is harmonic in the upper half-space by construction, extends harmonically across U
to the lower half-space. Moreover, by (27), d is a gradient on U and since it is
divergence free it must be the gradient of a harmonic function of two variables, say

W (x) there. Putting W̃ (x, z) := W (x), we thus define a harmonic function on the

cylinder C := U × R, and the function H := −Jm3 + W̃ is harmonic on C. On U ,
the gradient ∇H is identically zero because it is equal to m by (27). Clearly, the
tangential derivatives of H of all orders also vanish on U , and since H is harmonic
on C it then follows that the second normal derivative is zero on U . Replacing H by
∂H/∂z we obtain inductively that the normal derivatives of H of all orders vanish on
U . Since H is harmonic on C it is also real-analytic there; hence it must be identically
zero on C.

Because ∂W̃/∂z = 0 by construction, it follows that ∂H/∂z = −∂Jm3/∂z = 0 on
C. But for z > 0 the latter quantity is just Pz ∗ m3. Thus, the Poisson integral of
m3 is zero on C ∩ {z > 0}; hence it is identically zero in the upper half-space by real
analyticity. Consequently m3 = limz→0+ Pz ∗m3 is the zero distribution.

From assertion (iii) and (27), we now conclude that m is silent from below, m3 = 0,
and mT is divergence free. �

Projection onto harmonic or anti-harmonic gradients is a nonlocal operator as it
involves Riesz transforms. This fact, which accounts for much of the complexity of
inverse magnetization problems in the thin plate case, is conveniently expressed in
the following form.

Corollary 2.4. Let p ∈ (1,∞) and m ∈ (Lp(R2))3. If m 6∈ Sp, then

(28) supp m ∪ suppPH−p (m) = R2.

Proof. We can assume that supp m 6= R2. By Theorem 2.3 part i), we know that
n := m − PH−p (m) is silent from above. If (28) does not hold, then the support of

n is a strict subset of R2 and so n ∈ Sp by 2.3 part (iv); that is, PH+
p

(m) = 0 in

the Hardy-Hodge decomposition. Thus m is silent from below by Theorem 2.3 part
ii) and since supp m 6= R2 we get from Theorem 2.3 part iv) that in fact m ∈ Sp, a
contradiction. �
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Figure 1. Example of a silent source magnetization defined by m(x, y) =
(ψ(x)ψ′(y),−ψ′(x)ψ(y), 0) where ψ(t) := (1/2)(1 − cos(2πt)) for t ∈ [0, 1]
and is zero otherwise. Parts A and B show the magnetization m1(x, y) =
(ψ(x)ψ′(y), 0, 0) and resulting vertical component of the magnetic field mea-
sured at height z = 0.1 mm. Parts C and D show the magnetization
m2(x, y) = (0,−ψ′(x)ψ(y), 0) and resulting vertical component of the mag-
netic field measured at height z = 0.1 mm. Parts E and F illustrate the silent
source magnetization m = m1 +m2 and resulting null vertical component of
the magnetic field measured at height z = 0.1 mm. Each image corresponds
to an area of 1 mm × 1 mm.
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2.4.2. Unidimensional and bidimensional magnetizations. We call a magnetization m
unidimensional if m = Qu for some fixed u ∈ R3 and some scalar valued distribution
Q. The sum of two unidimensional magnetizations we call bidimensional. As men-
tioned in the introduction, such magnetizations occur naturally for materials formed
in a uniform external magnetic field. In such cases, Q will typically be assumed to be
positive. However, in this paper we do not address issues related to such a positivity
assumption.

A unidimensional magnetization with components in Lp is determined uniquely
by its direction and the field it generates on one side of the {z = 0} plane. More
precisely, we have the following result which is also valid for any compactly supported
unidimensional magnetization, see Corollary 3.7.

Corollary 2.5. Suppose m(x) = Q(x)u, where u = (u1, u2, u3) is a nonzero vector
in R3 and Q is in Lp(R2) for some 1 < p < ∞. Then m is silent from above (resp.
below) if and only if Q = 0 (and therefore m = 0).

Proof. Put u = (u1, u2, u3)
t and assume m is silent from above. By Theorem 2.3 point

(ii) and relation (24), this means u1R1(Q)+u2R2(Q)+u3Q = 0. The same is then true
of its Poisson transform, and since for z > 0 we saw that Pz ∗ (R1(Q), R2(Q), Q)t =
−∇JQ (cf. (26)), we deduce that the harmonic function JQ in the upper half-pane is
constant on lines parallel to u.

If u3 6= 0 these lines are transversal to {z = 0}, in which case it is immediate by
continuation along them that JQ extends to a harmonic function on the whole of R3.
Moreover, choosing coordinates (x̃1, ỹ2, x̃3) in R3 such that u points in the vertical
direction, we get a harmonic function J̃Q(x̃1, x̃2) of two variables only, whose gradient
lies in Lp(R2). By Lemma 5.1 in Appendix such a function is constant, and so is JQ.
We conclude that ∇JQ = 0 hence Q = 0.

Assume now that u3 = 0, i.e., that u = (u1, u2, 0) is parallel to the plane {z = 0}.
Then JQ is constant along horizontal lines parallel to u and so is its normal derivative
Pz ∗Q. Passing to the limit when z → 0+, we find that the distributional derivative
of Q in the direction (u1, u2) is zero. In this case, assuming without loss of generality
that u1 = 1 and u2 = 0 (performing if necessary a rotation in the plane {z = 0}
and a suitable renormalization of Q), we find that Q as a distribution must be of the
form 1x1 ⊗ r(x2) for some distribution r on R, [21, Ch. IV, Sec. 5]. However, such a
distribution cannot lie in Lp unless it is identically zero. �

It is remarkable that any magnetization is equivalent from one side to a unidi-
mensional magnetization whose direction may be chosen almost arbitrarily. This is
asserted in Theorem 2.6 below which should be compared with the discussion in [4]
(for the case of planar distributions).

Theorem 2.6. Let u = (u1, u2, u3) ∈ R3 be such that u3 6= 0. For any magnetization
m ∈ (Lp(R2))3, 1 < p <∞, there is a unique Q ∈ Lp(R2) such that Qu is equivalent
to m from above.

Of course, a similar statement holds regarding equivalence from below.
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Proof. By Theorem 2.3 part (i), Qu is equivalent to m = (m1,m2,m3) from above if
and only if PH−p (Qu) = PH−p (m), that is, if and only if

(29) u1R1(Q) + u2R2(Q) + u3Q = R1(m1) +R2(m2) +m3 =: h.

We first consider the case p = 2. Taking Fourier transforms in (29) and using (15),
it follows that (29) holds if and only if

(30) Q̂(κ) =
ĥ(κ)

u3 − iuT · κ/|κ|
,

where we remark that the denominator has modulus at least |u3|, showing the right-
hand side of the above equation is in L2(R2). Hence there is Q solving (29).

Let now p ∈ (1,∞). Being smooth away from the origin, bounded, and homoge-
neous of degree 0, the function 1/(u3−iuT ·κ/|κ|) is a multiplier of Lp by Hörmander’s
theorem [22, Ch. IV, Sec. 3.2, Cor. to Thm. 3.2]. This means that the map h 7→ Q,
initially defined by (30) on L2(R2) ∩ Lp(R2) via Plancherel’s theorem, extends by
density to a continuous map from Lp(R2) into itself. Therefore, by continuity of
Riesz transforms, a solution Q to (29) exists in this case too.

Uniqueness of Q follows from Corollary 2.5. �

Unlike unidimensional magnetizations, bidimensional magnetizations are not deter-
mined by their two directions and the field they generate on one side of the {z = 0}
plane. This follows easily from Theorem 2.6 as applied to unidimensional m. Still, as
the next corollary shows, a nontangential bidimensional magnetization with compo-
nents in Lp is determined by its directions and the field it generates from above and
below. (This result extends to bidimensional compactly supported magnetizations as
shown in Corollary 3.7.)

Corollary 2.7. Suppose m(x) = Q(x)u + R(x)v where u = (u1, u2, u3) and v =
(v1, v2, v3) are nonzero vectors in R3 while Q, R are in Lp(R2) for some 1 < p <∞.

(a) If u3 or v3 is nonzero, then Λ(m) ≡ 0 (i.e., m is silent) if and only if m = 0.
(b) If u3 = v3 = 0, then Λ(m) ≡ 0 if and only if mT (x) = Q(x)(u1, u2) +

R(x)(v1, v2) is divergence free.

Proof. If either u3 = 0 and v3 6= 0 or u3 6= 0 and v3 = 0, we get from Theorem 2.3
that either Q or R is zero and we are back to the situation of Corollary 2.5. If u3, v3

are both nonzero, we may assume they are equal (by possibly renormalizing Q) and
then Q = −R by Theorem 2.3, so we are back to the situation of Corollary 2.5 upon
replacing u by u−v. This proves (a). Assertion (b) rephrases Theorem 2.3 (iii). �

Remark: case (b) of Corollary 2.7 further splits as follows. Either (u1, u2) and
(v1, v2) are linearly dependent, in which case m is unidimensional and so m = 0
by Corollary 2.5, or else we may introduce new coordinates (x̃, ỹ) in R2 such that
x = u1x̃ + v1ỹ, y = u2x̃ + v2ỹ, and put Q̃(x̃, ỹ) = Q(x, y), R̃(x̃, ỹ) = R(x, y). Then
Q(x)(u1, u2) +R(x)(v1, v2) is divergence free if and only if Q̃x̃ = −R̃ỹ, that is, if and

only if (−R̃, Q̃) is the gradient of some d ∈ Ẇ 1,p(R2). Conversely, any bidimensional
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silent tangential magnetization arises in this manner from some d ∈ Ẇ 1,p(R2) via a
linear change of variables in the plane.

2.5. Compactly supported magnetizations. Although it is useful, and in fact
necessary for the purpose of analysis, to consider magnetizations with arbitrary sup-
port, compactly supported magnetizations are of special importance as they are those
arising in physical applications.

Since their support is not the whole of R2 by definition, Theorem 2.3 point (iv)
implies that “equivalent from above” is the same as “equivalent from below” among
compactly supported magnetizations. This has a number of practical implications
on identifiability. For instance, we have the following result that should be held in
contrast with Theorem 2.6.

Proposition 2.8. Let m(x) = Q(x)u be a compactly supported unidimensional mag-
netization with Q ∈ Lp(R2), 1 < p <∞, and u = (u1, u2, u3) ∈ R3, u3 6= 0. Then, m
is equivalent (from above or below) to no other compactly supported unidimensional
magnetization.

Proof. Let m′ be a compactly supported unidimensional magnetization which is equiv-
alent to m. Then m−m′ is a compactly supported bidimensional magnetization which
is silent. Since u3 6= 0, Corollary 2.7 implies it is the zero magnetization. �

Note that Proposition 2.8 is no longer true if u3 6= 0, as follows from the remark
after Corollary 2.7.

Below we characterize equivalent magnetizations with fixed compact support. It is
useful at this point to remember from (20) the definition of Sp.

Proposition 2.9. Let m ∈ (Lp(R2))3 be supported on a compact set K ⊂ R2, with
1 < p < ∞. The space of all magnetizations supported on K which are equivalent
to m (either from above or below) is comprised of all sums m + s, where s ∈ Sp is
supported on K. Such magnetizations are in fact equivalent to m from above and
below.

Proof. Theorem 2.3 part (iv) characterizes silent magnetizations from above or below,
whose support is a strict subset of R2, as being tangential and divergence free. Thus,
m′ is equivalent to m (from above or below) and supported on K if and only if m′−m
is tangential, divergence free, and supported on K. �

Proposition 2.9 calls for a more detailed description of those s ∈ Sp that are sup-
ported on K. In particular, it will be of interest to determine s ∈ Sp so that m + s
has minimal L2 norm. This topic will treated in a sequel to this paper.

In the next section we consider magnetizations m in larger spaces of distributions
than (Lp(R2))3 in order to characterize silent sources in as general a sense as possible.
Specifically, we want to include compactly supported distributions such as Dirac deltas
(and hence magnetic dipoles) and also distributions with unbounded support since
these can be associated with artifacts arising in the practical computations. The
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main technical issues to resolve are concerned with the fact that the Riesz transforms
involve singular kernels and that the kernels for the Poisson and Riesz transforms
have unbounded support and cannot be applied to arbitrary distributions.

3. The spaces (W−∞,p)3, 1 < p <∞, (H∞,1)3, and (BMO−∞)3

As seen in the previous section, the occurrence of Riesz transforms in the equations
relating magnetization to the magnetic field naturally leads one to consider function
spaces that are stable under such transforms, and Lp is the prototype of such a
space when 1 < p < ∞. Unfortunately, the Lp theory developed in Section 2 does
not extend to magnetizations in L1 and L∞ (i.e., integrable and bounded functions,
respectively), but it does to classical technical substitutes for these spaces; i.e., the
real Hardy space H1 and the space BMO of functions with bounded mean oscillation
(see definitions below). In fact H1 is smaller than L1 and BMO is bigger than
L∞, hence we may view H1 as an approximation of L1 from below and BMO as
an approximation of L∞ from above. We cannot ignore BMO and work exclusively
in L∞ because if the initial magnetization lies in L∞, almost all the quantities we
introduce to compute relevant features thereof (like silence, equivalence, and so on)
will generally lie in BMO and no longer in L∞. There is firm ground to consider
bounded magnetizations with unbounded support; e.g., the need to handle ridge
distributions that appear as artifacts in Fourier based approaches to recovery. In
contrast, it is tempting to forget about H1. However, since BMO is dual to the
latter, it is technically very cumbersome if not impossible to work with BMO and
not introduce H1.

Reasons to introduce the space W−∞,p are different; they stem from the fact that a
magnetization as simple as a dipole is mathematically not a function but a distribu-
tion, and therefore falls outside the scope of Lp theory. To remedy this, it is natural
to include in our considerations magnetizations that are (distributional) derivatives
of Lp functions to obtain a wider class that contains all distributions with compact
support, in particular any finite collection of dipoles. The resulting class of magneti-
zations will be exactly W−∞,p. Likewise, the space BMO−∞ is considered to include
magnetizations that are derivatives of bounded functions.

To extend the above analysis for Lp(R2) to a space of distributions E ⊂ D′(R2)
we need that E admits Poisson and Riesz transforms that can be convolved with Hz

for z 6= 0 and for which equation (12) holds. In addition, we want such a space
to contain all compactly supported distributions (or mean zero compactly supported
distributions). By duality, this is tantamount to finding a space F of C∞-smooth test
functions densely containing D(R2) and meeting similar requirements.

3.1. The spaces (W−∞,p)3 for 1 < p < ∞. For p ∈ (1,∞) let q ∈ (1,∞) be
the conjugate to p and let W∞,q = W∞,q(R2) denote the Sobolev class comprised
of functions in Lq(R2) whose distributional derivatives of any order also belong to
Lq(R2). It follows from Sobolev’s embedding theorem [22, Ch. V, Sec. 2.2., Thm.
2] that W∞,q consists of C∞-smooth functions, and if W∞,q is endowed with the
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topology of Lq-convergence of functions and all their partial derivatives it becomes
a locally convex complete topological vector space with countable basis [21, Ch. VI,
Sec. 8]. The natural injection D(R2)→ W∞,q is continuous with dense image, hence
the dual W−∞,p of W∞,q is a space of distributions. Actually W−∞,p contains all
distributions with compact support, as every element of W−∞,p is a finite sum of
distributional derivatives of Lp-functions 1 [21, Ch. VI, Sec. 8, Thm. XXV].

We next establish that W∞,q has the required properties with respect to Riesz and
Poisson transforms. First note thatRj(f) is C∞-smooth when f ∈ S(R2), the space of
Schwartz functions (i.e., C∞-smooth functions that decays faster than the reciprocal
of any polynomial as well as their derivatives of all orders), as follows from (15) upon
differentiating the Fourier inversion formula under the integral sign (recall Schwartz
functions are mapped into Schwartz functions by Fourier transform). Further, Rj

preserves C∞-smooth functions in Lq, 1 < q < ∞, for if g is such a function we can
write g = g1 + g2 where g1 vanishes in a neighborhood of x0 ∈ R2 while g2 ∈ D(R2),
and near x0 smoothness of Rjg is equivalent to smoothness of Rjg2 as follows from
(11) by inspection.

Secondly,

(31)

∫∫
Ri(f)g = −

∫∫
fRi(g), f ∈ Lq, g ∈ Lp,

in other words the adjoint of Rj is −Rj. Indeed, from (15) and the isometric character
of the Fourier transform, we see that it is true if f, g ∈ L2 and the case of arbitrary
p, q ∈ (1,∞) follows by density.

Thirdly, if f ∈ Lq is C∞ smooth with first partial derivatives in Lq, 1 < q < ∞,
then Rj commutes with taking these partial derivatives. To see this, observe from
(15) that it holds for Schwartz functions, and if f is as indicated pick ϕ ∈ D(R2) to
write
(32)∫∫

Ri(∂xj
f)(x)ϕ(x) dx = −

∫∫
∂xj

f(x)Ri(ϕ)(x) dx =

∫∫
f(x) ∂xj

(Ri(ϕ)) (x) dx

(33)

=

∫∫
f(x)Ri(∂xj

ϕ)(x) dx = −
∫∫

Ri(f)(x) ∂xj
ϕ(x) dx =

∫∫
∂xj

(Ri(f)) (x)ϕ(x) dx,

where integration by parts is possible in (32) because fRi(ϕ) ∈ L1 and in (33) because
ϕ has compact support. Since ϕ ∈ D(R2) was arbitrary, we get that Ri(∂xj

f) =
∂xj

(Ri(f)), as desired.
It is clear from what precedes that Rj maps W∞,q continuously into itself. We may

thus define for m ∈ W−∞,p its Riesz transform Rj(m) as the distribution in W−∞,p

given by
〈Rj(m), f〉 := −〈m,Rj(f)〉, f ∈ W∞,q.

1Recall that distributions with compact support are finite sums of derivatives of compactly sup-
ported continuous functions [21, Ch. III, Sec. 7, Thm. XXVI].
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We remark that this is the unique linear extension of Rj from Lp to W−∞,p that
commutes with differentiation.

In addition Ph∗ acts on W∞,q since it commutes with differentiation, hence we can
define the Poisson transform Ph ∗m of m ∈ W−∞,p in the usual manner by

〈Ph ∗m, f〉 := 〈m, P̌h ∗ f〉 = 〈m,Ph ∗ f〉, f ∈ W∞,q,

where ǧ(x) := g(−x) and we used that Ph is even. More generally, if m ∈ W−∞,p

and r is a positive number such that 1/p + 1/r − 1 ≥ 0, convolution of m with a
member of W∞,r is well-defined in W∞,q1 whenever 1/q1 := 1/p + 1/r − 1 [21, Ch.
VI, Sec. 8, Eqn. (VI.8.4)]. In particular we see that in fact Ph ∗m ∈ W∞,p and that

d ∗Hh ∈ W∞,q1 for all q1 ∈ (p,∞) if d ∈ (W−∞,p)
2
, where Hh was defined in (10).

It is not difficult to show that W∞,p-functions are bounded [21, Ch. VI, Sec. 8],
hence W∞,q ⊂ W∞,q1 if q ≤ q1. In particular both sides of (12) exist in W∞,q1 when

mT ∈ (W−∞,p)
2
, at least if p < q1 < ∞. We prove that they coincide (so that in

fact both sides belong to W∞,p) by verifying that they define the same distribution.

Indeed, pick ϕ = (ϕ1, ϕ2) ∈ (D(R2))
2

and observe from the definitions, since Hh is
odd, that

〈Hh∗mT , ϕ〉 = −〈mT , Hh∗ϕ〉, 〈Ph∗((R1, R2)·mT ) , ϕ〉 = −〈mT , (R1, R2) (Ph ∗ ϕ)〉,

where (R1, R2) · (ψ1, ψ2) is understood to be R1(ψ1) + R2(ψ2). Since Poisson and
Riesz transforms commute on D(R2) by (15) and the fact that Ph∗ also arises from a
multiplier in the Fourier domain (this multiplier is e−2π|κ|h [22, Ch. II, Sec. 2.1]), we
are left to show that (12) holds with ϕ instead of mT . But, as previously pointed out,

this holds at the Lp-level already, thereby establishing (12) when mT ∈ (W−∞,p)
2
.

The arguments that led us to (13) now apply again to show that the latter holds

if m ∈ (W−∞,p)
3
, and (14) likewise holds when the limit is understood in W−∞,p.

Equation (13) entails that Λ(m) is a harmonic function of (x, h) in the upper half
space, since members of W−∞,p are finite sums of derivatives of Lp-functions and all
partial derivatives of Ph(x) are harmonic there.

3.2. The spaces H∞,1 and BMO−∞. Although ∪1<p<∞ (W−∞,p)
3

is a fairly large
class already, it does not contain all bounded magnetizations, not even constant ones
(whose potential should be zero in view of (4)). To include them requires p =∞ and
thus q = 1 in the above analysis. There is no difficulty in defining W∞,1 and W−∞,∞

the same way as W∞,q and W−∞,p [21, Ch. VI, Sec. 8], and all the properties related
to Poisson transforms that we need are still valid. However, we face the problem that
Rj, which is still well defined on W∞,1 (the latter is included in Lq for all q > 1),
no longer maps this space into itself. In fact, for f ∈ L1, the Riesz transforms Rj(f)
exists a.e. [22, Ch. II, Sec. 4.5, Thm. 4] but may not lie in L1. To circumvent this
problem, we shall shrink the space of test functions and obtain a quotient space of
distributions modulo constants as new framework.



THIN PLATE MAGNETIZATIONS 19

Recall that the subspace H1 = H1(R2) of L1 comprised of functions whose Riesz
transforms again belong to L1 is a Banach space with norm

‖f‖H1 := ‖f‖L1 + ‖R1(f)‖L1 + ‖R2(f)‖L1 ,

known as the real Hardy space of index 1 [22, Ch. VII, Sec. 3.2, Cor. 1], and that
Rj continuously maps H1 into itself [22, Ch. VII, Sec. 3.4, Thm. 9]. Also useful is
the so-called maximal function characterization of H1 [8, Ch. 6, Cor. 6.4.8], asserting
that if ψ is a Schwartz function with nonzero mean and if for each t > 0 we set
ψt(x) := ψ(x/t)/t2, then there are constants C1, C2 depending on ψ such that

(34) C1‖f‖H1 ≤
∥∥∥∥sup
t>0
|ψt ∗ f |

∥∥∥∥
L1

≤ C2‖f‖H1 .

The space H1 densely contains bounded functions with zero mean (these are particular
“atoms” [23, Ch. III, Sec. 2.1.1]), in particular it contains the subspace D0(R

2) ⊂
D(R2) of C∞-smooth compactly supported functions with zero mean.

Since Rj commutes with translations, it is easily checked that Poisson transforms
continuously map H1 into itself, and if f ∈ H1 then Ph ∗ f tends to f both in H1

and pointwise a.e. as h → 0+. Moreover Poisson transforms still commute with
Riesz transforms on H1 because we know it is so on the dense subspace of bounded
compactly supported functions with zero mean (those lie in Lp for p > 1).

The left hand side of (12) still makes sense when mT ∈ (h1)2, for we can write for
each A > 0

(35) (mT ∗Hz) (x) =

∫∫
|x′|<A

mT (x−x′)Hz(x
′) dx′+

∫∫
|x′|≥A

mT (x−x′)Hz(x
′) dx′

where the first integral is the convolution of two L1 functions while the second is
the integral of the L1-function x′ 7→ mT (x − x′) against a bounded function. Since
translation of the argument is uniformly continuous in h1 (for it is uniformly contin-
uous in L1 and it commutes with Riesz transforms), we deduce from (35) by density
of compactly supported functions with zero mean in h1 that (12) holds good when
mT ∈ (h1)2 too.

We also recall BMO = BMO(R2), the space of functions with bounded mean
oscillation consisting of locally integrable h such that
(36)

‖h‖BMO := sup
B⊂R2

1

|B|

∫∫
B

|h(x)−mB(h)| dx < +∞, mB(h) :=
1

|B|

∫∫
B

h(x) dx,

where the supremum is taken over all balls B ⊂ R2 and |B| indicates the volume of
B. It is easy to see that ‖h‖BMO = 0 if and only if h is constant, and that ‖ ‖BMO is
a complete norm on the quotient space BMO/R. Clearly L∞ ⊂ BMO.

We now define as a new test space the Hardy Sobolev class H∞,1 = H∞,1(R2) ⊂
W∞,1 consisting of functions lying in H1 together with their partial derivatives of any
order. We endow H∞,1 with the topology of H1 convergence of functions and all their
derivatives. Clearly D0 ⊂ H∞,1.
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By what we said before Poisson transforms act continuously on H∞,1, and so do the
Riesz tranforms since they preserve C∞-smoothness in H1 for the same reason they
do in Lq, q > 1. Moreover (12) holds for mT ∈ (H∞,1)

2
because we know it holds in

(h1)2 already.
Let S = S(R2) denote the space of Schwartz functions and S0 ⊂ S the subspace

of functions with zero mean. It follows from Lemma 5.3 in Appendix that S0 ⊂ h1,
hence also S0 ⊂ h∞,1 (derivatives trivially have zero mean). In [22, Ch.VII, Secs.
3.3.1 &3.3.3] it is shown that each f ∈ H1 can be approximated there by a sequence
{fk} ⊂ S0, and examination of the proof reveals that the partial derivatives of fk also
approximate the partial derivatives of f in H1 when the latter belong to that space.
Moreover, if we equip S with its usual topology defined by the seminorms

(37) Nn,m(f) := sup
α1+α2≤n

sup
x∈R2

∣∣(1 + |x|)m∂α1
x1
∂α2
x2
f(x)

∣∣ ,
it can be proved using (34) (see Lemma 5.3) that it is finer than the topology induced
on S0 by H∞,1. Altogether we get that the natural injection S0 → H∞,1 is continuous
with dense image. As the natural injection D(R2) → S is itself continuous with
dense image [21, Ch. VII, Sec. 3 Thm. III & Sec. 4] hence also the natural injection
D0(R

2) → S0, we conclude that the natural injection D0(R
2) → H∞,1 is in turn

continuous with dense image.
Since D0(R

2) has codimension 1 in D(R2) and is annihilated by constant distri-
butions, we deduce from what precedes that the dual of H∞,1 is a quotient space of
distributions by the constants.

To identify the latter, recall [8, thm. 7.2.2] that the quotient space BMO/R is
dual to H1 under the pairing

(38) 〈h, g〉 =

∫∫
h(x)g(x) dx, h ∈ BMO, g ∈ H1.

More precisely, for fixed h, the integral in the right hand side of (38) converges
absolutely when g is bounded and compactly supported with zero mean, and the
linear form thus obtained has norm comparable to ‖h‖BMO hence it extends to the
whole of H1 by continuity. Note that (38) indeed only depends on the coset of h in
BMO/R, since H1-functions have zero mean.

The H1-BMO duality allows one to naturally define the Riesz transforms onBMO/R
(thus also on BMO) by the formula

(39) 〈Rj(h), f〉 := −〈h,Rj(f)〉, f ∈ H1, h ∈ BMO.

A more concrete definition of Rj(h) for h ∈ BMO may in fact be obtained upon
additively renormalizing (11), replacing for instance the right hand side with

(40) lim
ε→0

1

2π

∫∫
x′∈R2, |x−x′|>ε

h(x′)

(
xj − x′j
|x− x′|3

+
x′j

(1 + |x′|2)3/2

)
dx′, j = 1, 2.
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The existence of the above integral for fixed ε depends on the fact that if h ∈ BMO,
then to each δ, r > 0, there is a constant C(δ) such that [8, prop. 7.1.5]

(41) rδ
∫∫ |h(x)−mB(x0,r)(h)|

(r + |x− x0|)2+δ
dx ≤ C(δ) ‖h‖BMO, x0 ∈ R2,

where B(x0, r) indicates the ball of center x0 with radius r.
Now, if we let W∞,1

0 ⊂ W∞,1 indicate the subspace of functions with zero mean,

the map J(f) := (f,R1(f), R2(f)) identifies H∞,1 with a closed subspace of
(
W∞,1

0

)3
.

Therefore, by the Hahn-Banach theorem, each continuous linear form Ψ on H∞,1 is
of the form Ψ(f) = 〈G, J(f)〉 for some G ∈ (W−∞,∞)

3
. Because each component of

G is a finite sum of derivatives of L∞-functions [21, Ch. VI, Sec. 8, Thm. XXV] and
the latter space is mapped into BMO by Rj, we conclude from (39) that Ψ is a finite
sum of derivatives of BMO-functions. Conversely any such sum defines a continuous
linear form on H∞,1 by H1-BMO duality hence the dual of H∞,1, that we denote by
BMO−∞ = BMO−∞(R2) consists of finite sums of derivatives of BMO-functions
modulo constants.

The discussion after Theorem 2.2 requires some adjustement. For f ∈ h1, it is still
true that Pz ∗ (R1(f), R2(f), f) is the gradient of a harmonic function in the upper
half-space, but to describe it we no longer normalize the Riesz potential as in (26).
Instead, we use the same splitting as in (35) to show that the ordinary Riesz potential

(42) Lf (x, z) :=
1

2π

∫∫
f(x− x′)

1

(|x′|2 + z2)1/2
dx′p

exists for fixed x. Next, we recall that S0 is dense in h1, and when g ∈ S0 we know
that Lg is harmonic in {z > 0} with gradient −Pz∗(R1(g), R2(g), g). Since translation
of the argument is uniformly continuous in h1, we conclude that Lg converges to Lf
locally uniformly in {z > 0} if g tends to f in h1. In particular Lf is harmonic and
∇Lf is the limit of ∇Lg, namely −Pz ∗ (R1(f), R2(f), f) as desired.

The case where f ∈ BMO rests on a different normalization: this time we set

T (x, t, z) :=
1

(|x− t|2 + z2)1/2
− 1

(|t|2 + 1)1/2
− x · t

(|t|2 + 1)3/2
,

and subsequently we let

(43) Kf (x, z) :=
1

2π

∫∫
f(t)T (x, t, z) dt.

Observe that theO(1/|t|3) behaviour of T for large |t| and (41) together imply thatKf

is well defined. Differentiating under the integral sign, we infer that Kf is harmonic
in {z > 0} with gradient

∇Kf (x, z) =
1

2π

∫∫
f(t)

(
− x− t

(|x− t|2 + z2)3/2
− t

(|t|2 + 1)3/2
, − z

(|x− t|2 + z2)3/2

)t
dt.
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The third component of ∇Kf is −Pz ∗ f . To evaluate the other two, observe from
(41) that ∫∫ ∣∣f(t)

∣∣ ∣∣∣∣ x− t

(|x− t|2 + z2)3/2
+

t

(|t|2 + 1)3/2

∣∣∣∣ dt < +∞

locally uniformly with respect to x. Therefore, if we integrate for fixed z > 0 the
R2-valued function

ψ(x) :=
1

2π

∫∫
f(t)

(
− x− t

(|x− t|2 + z2)3/2
− t

(|t|2 + 1)3/2

)
dt

against some ϕ ∈ D0, we may use Fubini’s theorem to obtain

〈ψ, ϕ〉 = 〈f,Hz ∗ ϕ〉 = 〈f, Pz ∗ (R1(ϕ), R2(ϕ))〉 = −〈Pz ∗ (R1(f), R2(f)), ϕ〉,

where we used (12) for mT ∈ (H1)
2

and (39) together with the fact that Poisson and
Riesz transforms commute on h1, hence also on BMO by duality.

Thus, by density of D0 in h1, we get ψ = −Pz ∗(R1(f), R2(f), f)+(C1, C2) for some
constants C1, C2. By inspection Cj = P1 ∗Rj(f)(0), hence −Pz ∗ (R1(f), R2(f), f) is
indeed the gradient of the harmonic function

(44) H(x, z) := Kf − x1P1 ∗R1(f)(0)− x2P1 ∗R2(f)(0), z > 0.

When f ∈ BMO−∞, it is a finite sum of derivatives of BMO-functions (modulo
constants):

f =
N∑
j=1

∂nj+mj

∂x
nj

1 ∂x
mj

2

fj, fj ∈ BMO.

Subsequently, using that Poisson tranforms commute with differentiation, we find
that −Pz ∗ (R1(f), R2(f), f) is the gradient of the harmonic function

(45) Hf (x, z) :=
N∑
j=1

∂nj+mj

∂x
nj

1 ∂x
mj

2

Hfj
(x, z), z > 0.

It is now straightforward if m ∈ BMO−∞ to obtain (13), as well as (14) in the
distributional sense, following the steps we used when m ∈ W−∞,p, 1 < p <∞.

3.3. Results for magnetizations m in (W−∞,p)3, 1 < p <∞, (H1)3, or (BMO−∞)3.
From the above discussions, we obtain the following theorem generalizing Theo-
rem 2.1.

Theorem 3.1. Let E be either W−∞,p, H1, or BMO−∞ and suppose m = (mT ,m3) =
(m1,m2,m3) ∈ (E)3. Then the function Λ(m)(x, z) defined by (8) is harmonic for
(x, z) ∈ R3 with z 6= 0. At such points it also has the following representation in
terms of the Riesz and Poisson transforms:

(46) Λ(m)(x, z) =
1

2
P|z| ∗

(
R1(m1) +R2(m2) +

z

|z|
m3

)
(x).
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Moreover, the limiting relation

(47) lim
z→0±

Λ(m)(x, z) =
1

2
(R1(m1)(x) +R2(m2)(x)±m3(x))

holds in E.

Remark: The convergence in (47) will of course be stronger for smoother m. For
instance if m ∈ Lq for some q ∈ (1,∞), or if m ∈ H1, then the convergence holds
both pointwise a.e. (even nontangentially) and in norm [22, Ch. VII, Sec. 3.2], while
if m belongs to BMO we get both pointwise a.e. and weak-* convergence.

The invariance of W∞,q(R2) under Rj now induces of a Hodge subdecomposition:

(48) W∞,q ×W∞,q = Sole(W∞,q)⊕ Irrt(W∞,q)

where Sole(W∞,q) := W∞,q ∩∇(Lq) and Irrt(W∞,q) := W∞,q ∩ Irrt(Lq).
From (19) we see that g = (g1, g2) belongs to Irrt(W∞,q) if, and only if it is of

the form (R1(h), R2(h)) for some h ∈ (W∞,q). In particular, by continuity of Riesz
transforms, the subspace of those pairs (R1(ϕ), R2(ϕ)) with ϕ ∈ D(R2) is dense in
Irrt(W∞,q). If we set

Iϕ(x) :=
1

2π

∫∫
ϕ(x′)

|x− x′|
dx′,

we get from the Hardy-Littlewood-Sobolev theorem on fractional integration [22, Ch.
V, Sec. 1.2, Thm. 1] that Iϕ ∈ Lα for each α ∈ (2,∞). Moreover it follows from [22,
Ch. V, Sec. 2.2] that

−(R1(ϕ), R2(ϕ)) = (∂x1Iϕ, ∂x2Iϕ)

in the sense of distributions, hence also in the strong sense since all derivatives of Iϕ
are smooth. Let ψn ∈ D(R2) be a sequence of nonnegative functions with uniformly
bounded derivatives such that ψn(x) = 1 for |x| ≤ n and ψn(x) = 0 for |x| ≥ n + 1.
Using that Iϕ = O(1/|x|) for large |x| (because ϕ has compact support), it is easy
to check from the Leibnitz rule and Hölder’s inequality that each partial derivative
∂n1
x1
∂n2
x2

(ψnIϕ) with n1 +n2 ≥ 1 converges in Lq to the corresponding partial derivative
of Iϕ as n → ∞. Hence the space of pairs (∂x1(ψ), ∂x2(ψ)), with ψ ∈ D(R2), is in
turn dense in Irrt(W∞,q).

Now, if we put

Sole(W−∞,p) := {f = (f1, f2) : fj ∈ W−∞,p, ∇ · f = 0},
it follows by definition that f ∈ W−∞,p lies in Sole(W−∞,p) if, and only if

0 = −〈∇ · f , ψ〉 = 〈f1, ∂x1ψ〉+ 〈f2, ∂x2ψ〉 = 〈f · ∇ψ〉, ψ ∈ D(R2),

and by what precedes this is if and only if f annihilates Irrt(W∞,q).
Next, upon rewriting the second half of (19) with the help of (17) as

gf =
(
R2

(
R1(h2)−R2(h1)

)
,−R1

(
R1(h2)−R2(h1)

))
,



24 L. BARATCHART†, D. P. HARDIN†, E. A. LIMA∗, E. B. SAFF†, AND B. P. WEISS∗

we find reasoning as before that pairs of the form (∂x2ψ,−∂x1ψ) with ψ ∈ D(R2) are
dense in Sole(W∞,q). Thus if we let

Irrt(W−∞,p) := {g = (g1, g2) : gj ∈ W−∞,p, ∇× g = 0},
we find by definition that g ∈ W−∞,p lies in Irrt(W−∞,p) if, and only if

0 = −〈∇× g, ψ〉 = 〈g2, ∂x1ψ〉 − 〈g1, ∂x2ψ〉 = 〈g · (−∂x2ψ, ∂x1ψ)〉, ψ ∈ D(R2),

which is if and only if g annihilates Sole(W∞,q).
By duality, (48) now gives us a Hodge decomposition:

(49) W−∞,p ×W−∞,p = Sole(W−∞,p)⊕ Irrt(W−∞,p),

where the first (resp. second) summand in the right hand side of (49) is the annihilator
of the second (resp. first) summand in the right hand side of (48). In particular
the sum in (49) is direct, for an element in the intersection of the two summands
annihilates every member of W∞,q(R2) ×W∞,q(R2) by (48), therefore it is the zero
distribution.

The same reasoning yields Hodge decompositions:

(50) H1(R2)× H1(R2) = Sole(H1)⊕ Irrt(H1),

(51) H∞,1(R2)× H∞,1(R2) = Sole(H∞,1)⊕ Irrt(H∞,1),

and

(52) BMO−∞(R2)×BMO−∞(R2) = Sole(BMO−∞)⊕ Irrt(BMO−∞),

where the notations are self-explanatory; the only modification to the previous rea-
soning is that, in order to show pairs of the form (∂x2ψ,−∂x1ψ) with ψ ∈ D0(R

2)
are dense in Sole(H∞,1), we use the H1-extension of the Hardy-Littlewood-Sobolev
theorem [24, Sec. 6, Thm G] and the fact that Iϕ(x) is O(1/|x|2) for large |x| when
ϕ ∈ D0(R

2).
We next generalize the Hardy-Hodge decomposition presented in Theorem 2.2. If
E is any of the spaces Lq (1 < q < ∞), W∞,q, W−∞,p (1 < p < ∞), H1, H∞,1, or
BMO−∞, then we define

H+(E) := {f = (R1(f), R2(f), f) : f ∈ E}

H−(E) := {f = (−R1(f),−R2(f), f) : f ∈ E}
and

Sole∗(E) := {g = (g1, g2, 0) : (g1, g2) ∈ Sole(E)}.
From the above discussion it now follows that the arguments leading to Theorems
2.2 and 2.3, Corollary 2.4 and Proposition 2.9 hold when Lp(R2) is replaced by one
of the spaces (W−∞,p)3, 1 < p <∞, h1, or (BMO−∞)3. Thus, we have:

Theorem 3.2. Let E be one of the spaces E = W−∞,p, 1 < p < ∞, E = H1, or
E = BMO−∞. Then Theorems 2.2, 2.3, Corollary 2.4 and Proposition 2.9, hold with
Lp(R2) replaced by E.
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We remark that in the case E = BMO−∞ in Theorem 3.2, equality is in the sense
of BMO−∞, that is, equality of distributions up to a constant. For example, in part
(iii) of the analog of Theorem 2.3 for the case E = BMO−∞, the condition “m3 = 0”
now means “m3 is constant” (when viewed as a distribution).

We next consider E-analogs of Corollaries 2.5 and 2.7 characterizing unidimensional
and bidimensional silent sources. The cases where E = h1 and E = BMO/R ⊂
BMO−∞ complement our treatment of Lp, 1 < p < ∞, given in Section 2. Indeed,
h1 appears as a substitute for L1 in the present context while BMO is a substitute
for L∞. In fact, these spaces are the closest substitutes since we need stability under
Riesz transforms.

Corollary 3.3. Corollaries 2.5 and 2.7 remain valid if Q,R ∈ h1.

Proof. The proofs are the same except that we use LQ from (42) instead of JQ. �

The situation Q,R ∈ BMO is different and illustrates well the theory just devel-
oped. It shows in particular that nonzero bounded silent-from-above unidimensional
magnetizations exist, but they assume a very special (yet classical) form:

Corollary 3.4. Suppose m(x) = Q(x)u, where u = (u1, u2, u3) is a nonzero vector
in R3 and Q is in BMO(R2). Then m is silent from above (resp. below) if and only
if either m is constant (i.e., Q is constant) or u3 = 0 and m is a “unidimensional
ridge” function of the form m(x) = uh(x · v), where v ∈ R2 is orthogonal to (u1, u2)
and h ∈ BMO(R). In such a case, m is silent both from above and below.

Proof. That a constant or ridge magnetization as indicated is silent (from above and
below) follows from Theorem 2.3 point iii).

The proof of the converse proceeds along the lines of of Corollary 2.5. The case
where u3 6= 0 is argued the same way, replacing JQ by HQ defined in (44) and
using Lemma 5.2 instead of Lemma 5.1, to the effect that HQ is affine. Therefore
∇HQ = Pz ∗ (R1(Q), R2(Q), Q) is constant, in particular Q is constant and so is m.

When u3 = 0, we assume again without loss of generality that u = (1, 0, 0) and we
conclude in the same way that Q = 1x1 ⊗ r(x2) for some distribution r on R. The
latter is easily seen to be a BMO function, say h. Hence m = (1, 0, 0)th(x2) is a
ridge function as announced. �

Corollary 3.5. Suppose m(x) = Q(x)u + R(x)v where u = (u1, u2, u3) and v =
(v1, v2, v3) are nonzero vectors in R3 while Q and R are in BMO(R2).

(a) If u3 or v3 is nonzero, then Λ(m) ≡ 0 (i.e., m is silent) if and only if m is a
unidimensional ridge function as defined in Corollary 3.4.

(b) If u3 = v3 = 0, then Λ(m) ≡ 0 if and only if mT (x) = Q(x)(u1, u2) +
R(x)(v1, v2) is divergence free.

comprised

Proof. The proof is similar to that of Corollary 2.7, granted Corollary 3.4. �
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We turn to generalizations of Theorem 2.6.

Theorem 3.6. Theorem 2.6 holds with Lp(R2) replaced by h1(R2). The existence
part continues to hold in W−∞,p, 1 < p <∞, and BMO−∞.

Proof. The solvability of equation (29) for Q ∈ Lp(R2) when m ∈ (Lp(R2))3 entails
that it is solvable for Q ∈ W∞,q(R2) when m ∈ (W∞,q(R2))3, since transformations
arising from a Fourier multiplier commute with derivations. Subsequently, by duality,
(29) is still solvable for Q ∈ W−∞,p(R2) when m ∈ (W−∞,p(R2))3. Moreover, using
the h1-version of Hörmander’s theorem [22, Ch. VII, Thm. 9], the proof of Theorem
2.6 shows that equation (29) is solvable for Q ∈ H1(R2) when m ∈ (h1(R2))3, and
argueing as before this remains true when h1 gets replaced by h∞,1 and BMO−∞.
Uniqueness in the case of h1 comes from Corollary 3.3. �

Note that, in view of Corollary 3.4, neither Corollary 2.5 nor the uniqueness part
of Theorem 2.6 can hold when m ∈ BMO−∞. When Q,R lie in W−∞,p, 1 < p <∞,
a proof of Corollaries 2.5 and 2.7 would require generalizing Lemmas 5.1 and 5.2
which is beyond the scope of this paper. Thus, the study of magnetizations in these
classes that are silent from above will be left for future investigations. However, the
weak version below is of interest because of the practical importance of compactly
supported magnetizations.

Corollary 3.7. Corollaries 2.5, 2.7 and Proposition 2.8 remain valid if Q,R are
arbitrary distributions with compact support.

Proof. A distribution with compact support lies in W−∞,p for any p ∈ (1,∞). Hence
by Theorem 3.2, such a distribution is silent from above if and only if it is silent,
that is, if and only if it lies in Sole∗. In particular Qu3 = 0 if Qu is silent, thus in
the proof of Corollary 2.5 only the case u3 = 0 needs to be analyzed further. The
result follows then from the fact that no distribution of the form 1x1⊗ r(x2) can have
compact support.

The proofs of Corollary 2.7 and Proposition 2.8 are unchanged. �

4. Fourier Transform Reconstructions

Recall from (16) our convention for the Fourier transform f̂ of a function f defined
on R2:

f̂(κ) :=

∫∫
f(x)e−2πix·κ dx, x = (x1, x2), κ = (κ1, κ2).

The integral is absolutely convergent for f ∈ L1(R2), and if f ∈ Lp(R2) for some
p ∈ (1, 2] then it may be interpreted as the limit in Lp(R2) of the integral over the
ball B(0, r) ⊂ R2 as r →∞.

Because of the convolution structure of Λ, it is natural to recast (8) in the Fourier
domain (cf. [6], [16], and [20]). In particular, (53) below corresponds to [6, Eq. (11)].
In the following, we shall consider the Fourier transform of functions g(x, z) defined
on R2 × R with respect to x. Such a transform shall be denoted by ĝ(κ, z) for fixed
z ∈ R and Fourier variable κ ∈ R2.
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Proposition 4.1. Suppose that m ∈ Lp(R2) for some p ∈ (1, 2] or that mT ∈ (H1)2

and m3 ∈ L1(R2). Then for z 6= 0 and letting φ := Λ(m), we have

(53) φ̂(κ, z) =
e−2π|z||κ|

2
(− z

|z|
m̂3(κ) + i(

κ

|κ|
· m̂T (κ))),

where (53) holds for almost every κ ∈ R2 if m ∈ Lp(R2), 1 < p ≤ 2, and for every
κ ∈ R2 in case mT ∈ (H1)2 and m3 ∈ L1(R2).

Proof. Equation follows at once from (13), (15), the remark after Theorem 3.1, and
the fact that Pz∗ arises from the multiplier e−2π|κ|z in the Fourier domain [22, Ch. II,
Sec. 2.1] (note that m̂T (0) = 0 if mT ∈ (H1)2 since H1-functions have zero mean). �

In a typical scanning microscope setup, the normal component B3 of the magnetic
field B is measured in a horizontal plane z = h for some h 6= 0. From (2) we
have B(x, z) = −µ0∇φ(x, z) for z 6= 0. Writing φ = Λ(m) and taking the Fourier
transform, we have (with φz denoting ∂φ/∂z)

B̂(κ, h) = µ0

[
(2πiκ)φ̂(κ, h)− φ̂z(κ, h)k

]
= (2πi)µ0

[
κ− i h

|h|
|κ|k

]
φ̂(κ, h),

(54)

where k denotes unit vector in the z-direction and the second equality follows by
interchanging differentiation with respect to z with the Fourier transform with respect
to (x, y) in (53). Thus, φ(x, h) can be obtained from B3(x, h) using

(55) φ̂(κ, h) = (2πµ0|κ|)−1 h

|h|
B̂3(κ, h).

We divide the reconstruction of m from B3 into the following steps: (a) estimate
φ on the plane z = h from samples of B3 on this plane using (55); (b) estimate
the boundary values φ(·, 0+) and/or φ(·, 0−) through downward continuation; and (c)
estimate m from the boundary values φ(·, 0+) and/or φ(·, 0−). Steps (a) and (b) for
determining φ(·, 0+) from B3(·, z) lead to the equation

(56) B̂3(κ, z) = 2πµ0|κ|φ̂(κ, z) = 2πµ0|κ|e−2π|z||κ|φ̂(κ, 0+) = V (κ)φ̂(κ, 0+),

where V (κ) := 2πµ0|κ|e−2π|z||κ|, which allows the determination of φ̂(κ, 0+) from

B̂3(κ, z) provided κ 6= 0 although not in a stable manner, i.e., the inversion of (56)
is ill-posed. Without special assumptions such as unidimensionality, step (c) can

only solve for m̂3(κ) and κ · m̂T (κ) given φ(κ, 0+) = Λ̂(m)(κ, 0+) and φ(κ, 0−) =

Λ̂(m)(κ, 0−). However, in certain cases, such as unidimensional magnetizations, we
can perform the inversion of step (c) as we discuss in the next section.
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Figure 2. Inversion of experimental magnetic data from a synthetic sam-
ple measured with SQUID microscope. (A) Optical photograph of the syn-
thetic sample comprised of a piece of paper with Vanderbilt University’s
‘Star V’ logo printed on it. (B) Map of the z component of the remanent
magnetic field produced by the sample, which was magnetized in the -z di-
rection. (C) Estimated unidimensional magnetization distribution, which
is essentially unidirectional, matching principal characteristics of the true
magnetization.

4.1. Reconstructing unidimensional magnetizations. Here we consider the prob-
lem of reconstructing m ∈ (L2(R2))3 in the case of a unidimensional magnetization
when its direction u is known. That is, m is of the form

(57) m(x) = Q(x)u = Q(x)(uT , u3),
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Figure 3. Inversion of the magnetic field produced by a simulated
piecewise-continuous magnetization distribution in the shape of the Mas-
sachusetts Institute of Technology’s logo. (A) Intensity plot of the synthetic
magnetization distribution. (B) Simulated map of the z component of the
magnetic field. (C) Estimated unidimensional magnetization distribution.
(D) Solution obtained by means of an improved Wiener deconvolution algo-
rithm, with only a minor impact on accuracy and spatial resolution.

for some u ∈ R3 and Q ∈ L2(R2). From (57), we have mT = QuT and m3 = Qu3,
and so Proposition 4.1 gives for κ 6= (0, 0),

φ̂(κ, 0+) = lim
z→0+

[
e−2π|z||κ|

2
(− z

|z|
u3Q̂(κ) + i(

κ

|κ|
· uT Q̂(κ)))

]
=

1

2

[
−u3 + i

κ

|κ|
· uT

]
Q̂(κ) = Cu(κ)Q̂(κ),
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where

Cu(κ) :=
1

2

[
−u3 + i

κ

|κ|
· uT

]
.

Since

|Cu(κ)|2 = (1/4)

[
u2

3 +
(κ · uT )2

|κ|2

]
≤ (1/4)

[
u2

3 + ‖uT‖2
]
,

we have

(58) (1/2)|u3| ≤ |Cu(κ)| ≤ (1/2)‖u‖.

If u3 6= 0, then we can stably solve for Q using

(59) Q̂(κ) = Cu(κ)−1φ̂(κ, 0+).

We next provide bounds on the error in a unidimensional reconstruction resulting
from errors in the assumed direction and/or from errors in the downward continued
potential φ(·, 0+).

Lemma 4.2. Suppose Q,P ∈ L2(R2), u = (uT , u3), and ũ = (ũT , ũ3) be fixed vectors
in R3. Let m := Qu, m̃ := P ũ, φ0 := Λ(m, 0+) and ψ0 := Λ(m̃, 0+).

Then

(60) ‖Q− P‖2 ≤
‖u− ũ‖
|ũ3|

‖Q‖2 +
2

|ũ3|
‖φ0 − ψ0‖2.

Proof. For κ 6= 0 we have

Q̂(κ)− P̂ (κ) = Cu(κ)−1φ̂0(κ)− Cũ(κ)−1ψ̂0(κ)

=
(
Cu(κ)−1 − Cũ(κ)−1

)
φ̂0(κ) + Cũ(κ)−1

(
φ̂0(κ)− ψ̂0(κ)

)
=
Cũ(κ)− Cu(κ)

Cũ(κ)
Cu(κ)−1φ̂0(κ) + Cũ(κ)−1

(
φ̂0(κ)− ψ̂0(κ)

)
= Cũ(κ)−1

(
C(u−ũ)(κ)Q̂(κ) +

(
φ̂0(κ)− ψ̂0(κ)

))
.

Then, using the above and (58), we obtain

‖Q̂− P̂‖2 ≤ (1/ũ3)(‖ũ− u‖‖Q̂‖2 + 2‖φ̂0 − ψ̂0‖2),

and the result follows from Parseval’s identity. �

Combining steps (a), (b), and (c) as described in the preceding section, we get for
the case of unidimensional magnetizations:

(61) Q̂(κ) = Cu(κ)−1φ̂(κ, 0+) = (Cu(κ)V (κ))−1 B̂3(κ, z),

which is ill-posed and thus requires a regularization procedure. In the companion
paper [15], we explore various regularization schemes as well as issues arising from
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the fact that the measurements are taken on a finite grid of points. In the following
examples, we consider the regularized inversion

(62) φ̂(κ, 0+) ≈ Cu(κ)V (κ)

|Cu(κ)V (κ)|2 + σ(κ)2
B̂3(κ, z),

which is a ‘Wiener’ deconvolution in the case of additive noise and signal-to-noise
power spectrum σ2(κ).

Figure 2 illustrates an inversion based on (62) for a physical sample comprised of
a piece of paper with Vanderbilt University’s ‘Star V’ logo printed on it (see image
(A)) and magnetized in the direction u = (0, 0,−1). The paper was glued to a
nonmagnetic quartz disc to ensure flatness and facilitate scanning. The sample was
magnetized prior to mapping by applying a field pulse of 0.9 T. The z-component of
the magnetic field produced by the remanent magnetization of the sample, illustrated
in image (B), was measured from above by a SQUID microscope in a grid of 294×294
positions with step size of 0.075 mm, covering an area of 22×22 mm2. The sample-to-
sensor distance was approximately 0.27 mm. Image (C) shows an inversion of these
data based on (62) where σ2(κ) is chosen of the form γρ−3(|κ|2 + ρ2)3/2 for positive
parameters γ and ρ chosen experimentally (cf. [15]).

In the case of a tangential unidimensional magnetization (i.e., u3 = 0), the third
step is no longer stable as is clear in the Fourier domain since Cu(κ) vanishes along
the line uT · κ = 0. To illustrate this point, in Figure 3 we show the reconstruction
of such a tangential magnetization for a simulated piecewise-continuous magnetiza-
tion distribution in the shape of the Massachusetts Institute of Technology’s logo.
The synthetic distribution is comprised of a set of rectangular slabs uniformly mag-
netized in the horizontal plane (u1 = cos 20◦, u2 = sin 20◦, u3 = 0). The bottom
part of the letter ‘I’ is magnetized in the antipodal direction (i.e., u1 = − cos 20◦,
u2 = − sin 20◦, u3 = 0). All slabs have the same magnetization strength of 0.08 A.
Image (B) shows the simulated z component of the magnetic field produced by this
distribution computed on a 128 x 128 square grid of positions (0.022 mm step size)
at a sample-to-sensor distance of 0.15 mm. Gaussian white noise was added to sim-
ulate instrument noise, yielding a signal-to-noise ratio of 100:1 or 40 dB. Image (C)
shows the estimated magnetization distribution obtained by inversion in the Fourier
domain of the magnetic data, using the regularization from (62) with σ2(κ) again
chosen of the form γρ−3(|κ|2 + ρ2)3/2. Notice the artifacts along the magnetization
direction associated with noncompactly (’ridge-like’) supported silent sources as de-
scribed in Corollary 3.4. Image (D) shows an inversion obtained by means of an
improved Wiener deconvolution algorithm which tames these artifacts by digitally fil-
tering the magnetic data prior to inversion in order to minimize finite mapping area
effects. (Essentially, this filtering is implemented using spectral windows with better
response characteristics than the rectangular (boxcar) one. See [15] for details.)

We next briefly consider the problem of recovering a unidimensional magnetization
when the direction is unknown but both φ(·, 0+) and φ(·, 0−) are available. In this
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case, we have

(63) u3Q̂(κ) = d(κ) := φ̂(κ, 0+)− φ̂(κ, 0−)

and

(64) i

(
uT ·

κ

|κ|

)
Q̂(κ) = s(κ) := φ̂(κ, 0+) + φ̂(κ, 0−).

If d is not identically zero, then u3 6= 0 and we may recover Q from (63) and then
recover uT/u3 from (64) by, for example in the case that Q ∈ L1(R2) with no noise,

by evaluating (64) for a set of κ such Q̂(κ) 6= 0. If d ≡ 0, then u3 = 0. Assuming

that Q̂(κ) does not vanish along a line through the origin, i.e.,a · κ = 0 for some
fixed a, then we may recover uT since the only line that s(κ) vanishes on will be

given by a = uT . Note that if Q is compactly supported and nonzero, then Q̂ cannot
vanish along a line. Finally, we remark that the bidimensional case with a known
normal direction n (i.e., m(x) · n = 0) that is not vertical (i.e., nT = (n1, n2) 6= 0)
can be solved similarly. Without loss of generality, we may choose vectors u and v
perpendicular to n such that u3 = 1 and v3 = 0. If m(x) = Q(x)u + R(x)v, then

from (63) we have Q̂ = d and from (64) we obtain

R̂(κ) =

(
−i|κ|
κ · uT

)
s(κ)−

(
κ · vT
κ · uT

)
d(κ), (κ · uT 6= 0).
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5. Appendix

In the proof of Corollaries 2.5 and 3.4, we appealed to the following basic facts on
harmonic functions.

Lemma 5.1. A harmonic function on R2 whose gradient lies in (Lp)2 for some
p ∈ [1,∞) is a constant.

Proof. Let g be harmonic with Lp gradient. Then the partial derivatives ∂x1g, ∂x2g
are harmonic and lie in Lp. Let h denote any of them. For x ∈ R2, put B(x, r) for
the disk centered at x of radius r. By the mean value theorem

h(x) =
1

πr2

∫∫
B(x,r)

h(t) dt;

hence by Hölder’s inequality

|h(x)| ≤ 1

πr2
‖h‖Lp(R2)(πr

2)1−1/p.

Letting r → ∞ we get that h = 0 if p > 1. If p = 1, we get that h is bounded,
therefore a constant, and since it is summable h = 0 again, as desired. �

Lemma 5.2. A harmonic function on R2 whose gradient lies in (BMO)2 is affine.
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Proof. Considering the partial derivatives, this is tantamount to showing that a har-
monic function g ∈ BMO must be constant.

To prove this, let B(ξ, r) indicate the disk centered at ξ of radius r and pick x ∈ R2

with |x| = 1. For each a > 1, we get from the mean value property and standard
estimates on BMO-functions [8, ex. 7.1.6] that

(65) |g(ax)− g(0)| = |mB(ax,1)(g)−mB(0,1)(g)| ≤ C log(a+ 1)‖g‖BMO

for some absolute constant C. Thus |g(t)| = o(|t|) as |t| → ∞, hence g is constant. �

The following lemma was used in section 3.2. Recall from (37) the topology of the
Schwartz space S and the notation S0 for the subspace of functions with zero mean.

Lemma 5.3. If f ∈ S0, then

‖f‖h1 ≤ C(N0,0(f) +N0,4(f))

where C is independent of f .

Proof. Let ψ ∈ D be nonnegative with support in {x : |x| < R}. In view of (34), we
must bound the L1-norm of the function

(66) Φ(x) = sup
t>0

∣∣∣∣∫
R2

ψ

(
x− y

t

)
f(y)

dy

t2

∣∣∣∣ , x ∈ R2.

Note that the integral on the right-hand side of (66) bears on the ball B(x, tR) =
{y : |x− y| < tR} whose measure is πt2R2). We consider three cases:

Case 1 If |x| < 1, then trivially∣∣∣∣∫
R2

ψ

(
x− y

t

)
f(y)

dy

t2

∣∣∣∣ ≤ πR2‖ψ‖L∞N0,0(f).

Case 2 If |x| ≥ 1 and t < |x|/2R, B(x, tR) contains only y with |y| > |x|/2. Thus∣∣∣∣∫
R2

ψ

(
x− y

t

)
f(y)

dy

t2

∣∣∣∣ ≤ 8πR2‖ψ‖L∞
N0,3(f)

(2 + |x|)3
.

Case 3 If |x| ≥ 1 and t ≥ |x|/2R, we write since f has zero mean∫
R2

ψ

(
x− y

t

)
f(y)

dy

t2
=

∫
R2

(
ψ

(
x− y

t

)
− ψ

(x

t

))
f(y)

dy

t2

and using the mean value theorem we get∣∣∣∣∫
R2

ψ

(
x− y

t

)
f(y)

dy

t2

∣∣∣∣ ≤ ‖∇ψ‖L∞ ∫
R2

|yf(y)| dy
t3

≤ 8R3

|x|3
‖∇ψ‖L∞N0,4(f)

∫
dy

(1 + |y|)3
.

Altogether, |Φ(x)| ≤ C1N0,0(f) if |x| < 1 and |Φ(x)| ≤ C2N0,4(f)/|x|3 if |x| ≥ 1,
from which the desired result follows. �
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