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Matrix algebras:

1 A separable II1 factor N is said to be AFD (or hyperfinite) if it is the union of matrix
algebras: N ∼=

⋃
Mn(C).

2 Theorem (Murray and von Neumann ’43): unique separable II1 factor upto
∗-isomorphism.

3 Powers ’67: continuum many non isomorphic hyperfinite type III factors!

4 Connes ’76: hyperfiniteness is equivalent to injectivity (amenability for group von
Neumann algebras: Schwartz ’63).
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Tracial Ultraproducts:

Let Ni (i ∈ N) be separable II1 factors and let ω ∈ βN \ N. Denote the ultraproduct by∏
i→ω

Ni =
{(xi )i∈N | supi ∥xi∥ < ∞}

{(xi )i∈N | limi→ω ∥xi∥2 = 0} .

(see also Ocneanu, Udea, Ando-Haagerup and other works in the type III setting which is
more subtle!)
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Ultraproducts in service of operator algebraists:

1 Roots: Kaplansky and Wright in early 1950’s. Sakai in 60’s studied asymptotical
models of II1 factors.

2 Flexibility: Dixmier-Lance ’69, Zeller-Meier ’69, McDuff ’69 , Connes ’76:
importance of property Gamma in the study of II1 factors.

3 Structure: Popa ’81 any ultrapower of a II1 is prime and has no Cartan.

4 Positions and dynamics of separable subalgebras: Jung ’07 (orbits module inner
conjugation), Brown ’11 (convex structure), Popa ’15 (free independence), A-KE ’21
(ucp conjugation), KE’22 (diagonal embedding).
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The matrix ultraproduct:

M =
∏
i→ω

Mi (C)

Problem 1: The Uniqueness Problem

Let f : N → N strictly increasing.

M ∼=
∏
i→ω

Mf (i)(C) =: Mf ?

Problem 2: The Connes Embedding Problem

Does every separable II1 factor embed into M.

Problem 3: The Pseudocompactness Problem

Classify II1 factors N such that Nω ∼= M.
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Theorem (von Neumann ’42):

For any ϵ > 0 there is δ > 0 and a sequence of matrices Ai ∈ Mi (C) such that if
B ∈ Mn(C)sa with ∥[B,An]∥2 < δ then ∥B − τ(B)∥2 < ϵ.

Corollary:

Let N be any II1 factor with property Gamma. Then Nω ≇ Mf for any f .

Srivatsav K E (IPAM) Matrices of high finite order May 2023 10 / 24



Theorem (von Neumann ’42):

For any ϵ > 0 there is δ > 0 and a sequence of matrices Ai ∈ Mi (C) such that if
B ∈ Mn(C)sa with ∥[B,An]∥2 < δ then ∥B − τ(B)∥2 < ϵ.

Corollary:

Let N be any II1 factor with property Gamma. Then Nω ≇ Mf for any f .

Srivatsav K E (IPAM) Matrices of high finite order May 2023 10 / 24



Srivatsav K E (IPAM) Matrices of high finite order May 2023 11 / 24



Question (Farah-Hart-Sherman ’10, Hart ’14):

Does there exist a separable non Gamma factor N that is not pseudocompact.

Theorem (C-I-KE ’22):

There exists a separable non Gamma factor N that is not pseudocompact. Moreover,
Nω ≇ L(F2)

ω giving the first two explicit examples of non-elementary equivalent non
Gamma factors.

Srivatsav K E (IPAM) Matrices of high finite order May 2023 12 / 24



Question (Farah-Hart-Sherman ’10, Hart ’14):

Does there exist a separable non Gamma factor N that is not pseudocompact.

Theorem (C-I-KE ’22):

There exists a separable non Gamma factor N that is not pseudocompact. Moreover,
Nω ≇ L(F2)

ω giving the first two explicit examples of non-elementary equivalent non
Gamma factors.

Srivatsav K E (IPAM) Matrices of high finite order May 2023 12 / 24



Srivatsav K E (IPAM) Matrices of high finite order May 2023 13 / 24



Voiculescu’s microstate space

Let (M, τ) be a diffuse tracial von Neumann algebra, and X ⊂ Msa finite such that
∥x∥ ≤ R for all x ∈ X . For each weak∗ neighborhood O of ℓX and n ∈ N, we define

Γ
(n)
R (X ;O) = {A ∈ Mn(C)|X |

sa : | ℓA ∈ O, ∥Ax∥ ≤ R}.

Jung and Hayes’ 1-bounded entropy invariant

1 Asymptotic normalized logarithm of the orbital packing number of Voiculescu’s
microstate space.

2 M is strongly 1-bounded if h(M) < ∞. Example: hyperfinite vNa’s.

3 Voiculescu, Hayes: h(L(F2)
ω) = ∞

4 Jekel ’22: h(Mf ) = ∞.

Crucial property:

If N1,N2 ⊂ M and N1 ∩ N2 is diffuse then h(N1 ∨ N2) ≤ h(N1) + h(N2).

Srivatsav K E (IPAM) Matrices of high finite order May 2023 14 / 24



Voiculescu’s microstate space

Let (M, τ) be a diffuse tracial von Neumann algebra, and X ⊂ Msa finite such that
∥x∥ ≤ R for all x ∈ X . For each weak∗ neighborhood O of ℓX and n ∈ N, we define

Γ
(n)
R (X ;O) = {A ∈ Mn(C)|X |

sa : | ℓA ∈ O, ∥Ax∥ ≤ R}.

Jung and Hayes’ 1-bounded entropy invariant

1 Asymptotic normalized logarithm of the orbital packing number of Voiculescu’s
microstate space.

2 M is strongly 1-bounded if h(M) < ∞. Example: hyperfinite vNa’s.

3 Voiculescu, Hayes: h(L(F2)
ω) = ∞

4 Jekel ’22: h(Mf ) = ∞.

Crucial property:

If N1,N2 ⊂ M and N1 ∩ N2 is diffuse then h(N1 ∨ N2) ≤ h(N1) + h(N2).

Srivatsav K E (IPAM) Matrices of high finite order May 2023 14 / 24



Voiculescu’s microstate space

Let (M, τ) be a diffuse tracial von Neumann algebra, and X ⊂ Msa finite such that
∥x∥ ≤ R for all x ∈ X . For each weak∗ neighborhood O of ℓX and n ∈ N, we define

Γ
(n)
R (X ;O) = {A ∈ Mn(C)|X |

sa : | ℓA ∈ O, ∥Ax∥ ≤ R}.

Jung and Hayes’ 1-bounded entropy invariant

1 Asymptotic normalized logarithm of the orbital packing number of Voiculescu’s
microstate space.

2 M is strongly 1-bounded if h(M) < ∞. Example: hyperfinite vNa’s.

3 Voiculescu, Hayes: h(L(F2)
ω) = ∞

4 Jekel ’22: h(Mf ) = ∞.

Crucial property:

If N1,N2 ⊂ M and N1 ∩ N2 is diffuse then h(N1 ∨ N2) ≤ h(N1) + h(N2).

Srivatsav K E (IPAM) Matrices of high finite order May 2023 14 / 24



Voiculescu’s microstate space

Let (M, τ) be a diffuse tracial von Neumann algebra, and X ⊂ Msa finite such that
∥x∥ ≤ R for all x ∈ X . For each weak∗ neighborhood O of ℓX and n ∈ N, we define

Γ
(n)
R (X ;O) = {A ∈ Mn(C)|X |

sa : | ℓA ∈ O, ∥Ax∥ ≤ R}.

Jung and Hayes’ 1-bounded entropy invariant

1 Asymptotic normalized logarithm of the orbital packing number of Voiculescu’s
microstate space.

2 M is strongly 1-bounded if h(M) < ∞. Example: hyperfinite vNa’s.

3 Voiculescu, Hayes: h(L(F2)
ω) = ∞

4 Jekel ’22: h(Mf ) = ∞.

Crucial property:

If N1,N2 ⊂ M and N1 ∩ N2 is diffuse then h(N1 ∨ N2) ≤ h(N1) + h(N2).

Srivatsav K E (IPAM) Matrices of high finite order May 2023 14 / 24



Voiculescu’s microstate space

Let (M, τ) be a diffuse tracial von Neumann algebra, and X ⊂ Msa finite such that
∥x∥ ≤ R for all x ∈ X . For each weak∗ neighborhood O of ℓX and n ∈ N, we define

Γ
(n)
R (X ;O) = {A ∈ Mn(C)|X |

sa : | ℓA ∈ O, ∥Ax∥ ≤ R}.

Jung and Hayes’ 1-bounded entropy invariant

1 Asymptotic normalized logarithm of the orbital packing number of Voiculescu’s
microstate space.

2 M is strongly 1-bounded if h(M) < ∞. Example: hyperfinite vNa’s.

3 Voiculescu, Hayes: h(L(F2)
ω) = ∞

4 Jekel ’22: h(Mf ) = ∞.

Crucial property:

If N1,N2 ⊂ M and N1 ∩ N2 is diffuse then h(N1 ∨ N2) ≤ h(N1) + h(N2).

Srivatsav K E (IPAM) Matrices of high finite order May 2023 14 / 24



Voiculescu’s microstate space

Let (M, τ) be a diffuse tracial von Neumann algebra, and X ⊂ Msa finite such that
∥x∥ ≤ R for all x ∈ X . For each weak∗ neighborhood O of ℓX and n ∈ N, we define

Γ
(n)
R (X ;O) = {A ∈ Mn(C)|X |

sa : | ℓA ∈ O, ∥Ax∥ ≤ R}.

Jung and Hayes’ 1-bounded entropy invariant

1 Asymptotic normalized logarithm of the orbital packing number of Voiculescu’s
microstate space.

2 M is strongly 1-bounded if h(M) < ∞. Example: hyperfinite vNa’s.

3 Voiculescu, Hayes: h(L(F2)
ω) = ∞

4 Jekel ’22: h(Mf ) = ∞.

Crucial property:

If N1,N2 ⊂ M and N1 ∩ N2 is diffuse then h(N1 ∨ N2) ≤ h(N1) + h(N2).

Srivatsav K E (IPAM) Matrices of high finite order May 2023 14 / 24



Voiculescu’s microstate space

Let (M, τ) be a diffuse tracial von Neumann algebra, and X ⊂ Msa finite such that
∥x∥ ≤ R for all x ∈ X . For each weak∗ neighborhood O of ℓX and n ∈ N, we define

Γ
(n)
R (X ;O) = {A ∈ Mn(C)|X |

sa : | ℓA ∈ O, ∥Ax∥ ≤ R}.

Jung and Hayes’ 1-bounded entropy invariant

1 Asymptotic normalized logarithm of the orbital packing number of Voiculescu’s
microstate space.

2 M is strongly 1-bounded if h(M) < ∞. Example: hyperfinite vNa’s.

3 Voiculescu, Hayes: h(L(F2)
ω) = ∞

4 Jekel ’22: h(Mf ) = ∞.

Crucial property:

If N1,N2 ⊂ M and N1 ∩ N2 is diffuse then h(N1 ∨ N2) ≤ h(N1) + h(N2).

Srivatsav K E (IPAM) Matrices of high finite order May 2023 14 / 24



Voiculescu’s microstate space

Let (M, τ) be a diffuse tracial von Neumann algebra, and X ⊂ Msa finite such that
∥x∥ ≤ R for all x ∈ X . For each weak∗ neighborhood O of ℓX and n ∈ N, we define

Γ
(n)
R (X ;O) = {A ∈ Mn(C)|X |

sa : | ℓA ∈ O, ∥Ax∥ ≤ R}.

Jung and Hayes’ 1-bounded entropy invariant

1 Asymptotic normalized logarithm of the orbital packing number of Voiculescu’s
microstate space.

2 M is strongly 1-bounded if h(M) < ∞. Example: hyperfinite vNa’s.

3 Voiculescu, Hayes: h(L(F2)
ω) = ∞

4 Jekel ’22: h(Mf ) = ∞.

Crucial property:

If N1,N2 ⊂ M and N1 ∩ N2 is diffuse then h(N1 ∨ N2) ≤ h(N1) + h(N2).

Srivatsav K E (IPAM) Matrices of high finite order May 2023 14 / 24



The invariant: Property G̃amma

For every ϵ > 0, and every u1, u2 ∈ U(M) such that u2
1 = 1, u3

2 = 1 and {u1}′′ ⊥ {u2}′′
there exists Haar unitaries v1, v2 ∈ U(M) satisfying ∥ui , vi∥2 ≤ ϵ for each i = 1, 2 and
∥v1, v2∥2 ≤ ϵ.

Step 1: Lifting

M has Property G̃amma if and only if Mω has Property G̃amma.

Step 2: Propogation of entropy

L(N) does not have Property G̃amma where h(N) > 0.

Step 3: Iterative amalgamated free product construction

There is a full factor that has Property G̃amma.
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Step 3: Iterative amalgamated free product construction

There is a full factor that has Property G̃amma.
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In progress and/or future work:

1 Connes embeddability of our N!

2 Finite index subfactors of matrix ultraproducts.

3 Finding three full factors with non isomorphic ultrapowers!

4 L(F2)
ω ∼= Mf ?
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