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Borel equivalence relations

Definition

Let (X, i) be a standard probability space. We say that an
equivalence relation R on X is a countable Borel equivalence
relation on X if R is a Borel subset of X x X and equivalence
classes of R are countable.

Definition

Let R be a countable Borel equivalence relation on a standard
probability space (X, x). The full group [RA] is defined as the
group of all Borel automorphisms ¢ € Aut(X, i) such that
graph(¢) C R on a subset of full measure.

w is invariant (respectively, quasi-invariant) if ;. (respectively,
equivalence class of ) is preserved under the action of [R] on
(X, n). A quasi-invariant probability measure . is called
R-ergodic if every R-invariant Borel set is either null or co-null.



Liouville measures

Let a countable discrete group G act on a set X. A probability
measure on G is called non-degenerate if its support generates
G as a semigroup. Let i be a symmetric non-degenerate
probability measure on G. A function f: X — Ris called

p~harmonic, if the equality

f(x) = f(@)u(g)

9eqG

holds for every x € X. An action is called p-Liouville if every
bounded p-harmonic function is constant. We will say the
action G ~ X is Liouville, if it is p-Liouville for some symmetric
non-degenerate probability measure . on G.



Theorem (Kaimanovich-Vershik)

A discrete group G is amenable if and only if the left
multiplication action of G on itself is Liouville.

Generalization to locally compact second countable groups was
obtained by Rosenblatt, and second-countable topological
groups by Schneider and Thom.

If the left multiplication action of G on itself is u-Liouville, then
any transitive action of G is also p-Liouville.



Theorem (Chaudkhari, J, Schneider, ’22)

Assume that R is a countable Borel equivalence relation on
(X, u) such that i is R-quasi-invariant and non-atomic. If G is a
countable dense subgroup of [R], then the following statements
are equivalent:

1. R is p-amenable.

2. There exists a symmetric non-degenerate measure v on

G, such that the action of G on almost every orbit in X is
v-Liouville.



Theorem (Kesten, ’59)

LetT be a finitely generated discrete group and let 1. be a
finitely supported symmetric generating measure on T . Let p be
the spectral radius of the y-random walk onT. ThenT is
amenable if and only if p = 1.

Schneider and Thom: Fglner criterion and Kaimanovich-Vershik
theorem for topological groups.

What assumptions on topological group would guarantee that
lim sup, o, P(Xp € U)'/7 =12



Theorem
For a topological group G the following properties are
equivalent.

1. G is amenable.

2. Every continuous affine action of G on a non-empty
compact subset of a locally convex topological vector
space has a fixed point.

3. For every non-empty compact space X and any action of
G on X there exists a G-invariant Borel probability
measure on X.



A topological group G has small invariant neighborhoods (or
G is a SIN group) if for every neighborhood U € U/(G) we have

NgecgUg™" € U(G)

Theorem (Chaudkhari, J, Schneider, ’22)

Assume that G is a Hausdorff, amenable and SIN group, and v
is a symmetric probability measure with at most countable
support on G. Then, for any neighborhood U of the identity, a
lazy v-random walk X, started at the identity satisfies

lim P(X, € U/ =1

n—oo



Gis SIN implies U is invariant under conjugation and U = U~".

Schenider, Thom '17: there exists o : G — Sym(G) such that
the action of the group generated by a(G) is amenable, and for
any g, h € G there exists u(g, h) € U such that

a(9)(h) = u(g, h)gh.

Notice that invariance of U under taking inverses and
conjugation implies that in this case for any g, h € G, there
exists u/(g, h) € U such that a(g)~"(h) = u'(g, h)g~'h.



Let S = supp(v). Let I' be the subgroup of Sym(G) generated
by a(S). Consider a symmetric random walk on G induced by
the random walk on I defined by the probability measure
supported on «(S) (treated as a multiset) which assigns to the
elements of this multiset the weights equal to the v-weights of
corresponding elements of S. Denote the resulting probability
measure on the multiset a(S) by /, and for s € SU S~ we
denote by as the element a(s) if s € S or the element a(s~')~"
ifse S,



If for some tuple (S, ...,S1) € (SUS™')" and some x € G one

has
Qs, 00, O...0as(X) =X,

we can conclude that there are uy, ..., u, € U such that
UnSnUn—1Sp—1 ... U181 = fdg,

which implies that

n

Xn - SnSn_1 e S‘] = H(ui_1)si+1“sn S Un.

i=1

Thus, the invariance of U under taking inverses and
conjugation implies that

sup P(V/)n(X,X) < [Pl,n(Xn € Un)
xeG



Since the action of I' on G admits an invariant mean, for any
e > 0 and any finite subset E of I', G admits an (E, ¢)-Falner
set. Such a set can always be selected from the same orbit of
the action of I on G. Therefore, the infimum of isoperimetric
constants of »'-random walks on I'-orbits on G is equal to 0.

Mohar’s isoperimetric inequality implies that the supremum of
the spectral radii of - random walks on '-orbits on G is equal
to 1, hence sup,.g Py (X, X) decays subexponentially, and

lim P(X, e UN)V/"=1.

n—oo



Bad news: the reverse does not hold.

A topological group G is called bounded if, for every
neighborhood U of e € G, there exist a finite subset F C G and
a natural number n such that G = FU".

It is well known, that G is bounded if and only if every
right-uniformly continuous real-valued function on G is
bounded.

We will say that G is power-bounded if, for every neighborhood
U of e € G, there exists a natural number n such that G = U".



Let X be a compact Hausdorff space with a regular Borel
probability measure ;. Amap f: X — Y into a topological
space Y is called u-almost continuous if, for every e > 0, there
exists a closed subset A C X with (X \ A) < e such that

fla: A— Y is continuous. If the target space is metrizable, then
pu-almost continuity is equivalent to u-measurability.

Consider the Lebesgue probability measure A on the closed
real interval [0, 1]. Given a topological group G, we define
L°(G) to be the set of all (A\-equivalence classes of) A\-almost
continuous maps from [0, 1] to G. Equipped with the group
structure inherited from G and the topology of convergence in
measure, L°(G) is a topological group. The sets of the form

N(U,e) := {f e L°%(G) | \({x € [0,1] | f(x) ¢ U}) < €}
(e >0, U C Gopen with e € U)

constitute a neighborhood basis at the neutral element of
L°(G).



Let G be a topological group.

(1) The topological group L°(G) is power-bounded. Let U be
any identity neighborhood in L°(G). Then we find some
ne N\ {0} as well as an open identity neighborhood V in
G such that N(V, 1) C U. We claim that L°(G) = U". To
see this, let f € L°(G). Foreach i€ {0,...,n—1},
consider the element f; € L9(G) defined by

filtizn,ivty/ny = Fliizn,ie1)/n)s fillo \ji/n (i+1)/n) = €
and note that f; € N(V, 1). Hence, as desired,

f=Ff...-fyy e (N(V,1))"C U"

(2) The topological group L°(G) is (extremely) amenable if and
only if G is amenable (Pestov, Schneider, 2017).

(3) If Gis Polish, then so is L(G) due to (Moore, '76). Since G
is topologically isomorphic to a closed subgroup of L9(G),
the converse holds as well.

(4) ltis straightforward to verify that L°( G) is SIN if and only if
Gis SIN.



Conclusion: L°(F,) is a power-bounded, non-amenable, SIN,
Polish group. Hence, the condition

lim P(X, € UM/ =1

n—oo

does not imply amenability of a topological group.



Good news: characterizes amenability for locally compact
groups

If G is an amenable locally compact group and ) is its left Haar
measure, and v is a symmetric measure with countable support
with v(id) > 1/2, then the norm of the Markov operator M, on
L2(G, \) is equal to 1, and it is equal to the

limsup("(V))'/"
n—oo
for any compact neighborhood V of the identity. On the other
hand, since non-amenability of a locally compact group is
witnessed by its compactly generated subgroups, we have that
a non-amenable locally compact group fails the condition
(Quint’s Lecture notes).



Lamplighter action in the measurable settings.
Define measure M, on the subsets of R as follows. For any
Borel AC R

M (A) = /x |Ax|du(x),where Ay ={y € X : (x,y) € A}

The sets A with M;(A) < oo form a group C with respect to the
symmetric difference operation. C is equipped with a distance
derived from the distance between indicator functions in

L'(R, M)). Now take [R] (or any G which is dense in [R]) and
consider its action on X x X defined by

9(x,y) = (x,gy).

This construction induces an action of [R] on C by isometries.
This action defines C x [R] as a topological group.



Proposition
Assume that R is an ergodic amenable countable Borel
equivalence relation on a non-atomic standard probability
space (X, u). Let [R] be endowed with the uniform topology,
and C with the topology induced by the distance in L' (R, M)).
Then the following statements are true.
1. C x [R] with the product topology is a topological group.
2. C x [R] with the product topology is amenable.

3. C x [R] does not have SIN property



Applications to inverted orbits.

Definition

Let G be a discrete group acting on a set X. For a sequence
h={hy, ho, ..., hy} of elements of G (one may think of its
elements as of the increments defining the trajectory of a
random walk) and a point x € X an inverted orbit of x under his
the set {x, hpx, hphp_1X, ..., hphp_1 ... hyx}. We will
sometimes use the notation Op(x) for the inverted orbit of a
point x under the action of h.



Theorem

If R is amenable, then an affirmative answer to Topological
Kesten for C(G) x G or C x [R] implies that

/X P(10n(x)] < en)dpu(x)

decays subexponentially for each e > 0.



Thank you!
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