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Borel equivalence relations

Definition
Let (X , µ) be a standard probability space. We say that an
equivalence relation R on X is a countable Borel equivalence
relation on X if R is a Borel subset of X × X and equivalence
classes of R are countable.

Definition
Let R be a countable Borel equivalence relation on a standard
probability space (X , µ). The full group [R] is defined as the
group of all Borel automorphisms φ ∈ Aut(X , µ) such that
graph(φ) ⊆ R on a subset of full measure.
µ is invariant (respectively, quasi-invariant) if µ (respectively,
equivalence class of µ) is preserved under the action of [R] on
(X , µ). A quasi-invariant probability measure µ is called
R-ergodic if every R-invariant Borel set is either null or co-null.



Liouville measures

Let a countable discrete group G act on a set X . A probability
measure on G is called non-degenerate if its support generates
G as a semigroup. Let µ be a symmetric non-degenerate
probability measure on G. A function f : X → R is called

µ-harmonic, if the equality

f (x) =
∑
g∈G

f (gx)µ(g)

holds for every x ∈ X . An action is called µ-Liouville if every
bounded µ-harmonic function is constant. We will say the
action G y X is Liouville, if it is µ-Liouville for some symmetric
non-degenerate probability measure µ on G.



Theorem (Kaimanovich-Vershik)
A discrete group G is amenable if and only if the left
multiplication action of G on itself is Liouville.

Generalization to locally compact second countable groups was
obtained by Rosenblatt, and second-countable topological
groups by Schneider and Thom.

If the left multiplication action of G on itself is µ-Liouville, then
any transitive action of G is also µ-Liouville.



Theorem (Chaudkhari, J, Schneider, ’22)
Assume that R is a countable Borel equivalence relation on
(X , µ) such that µ is R-quasi-invariant and non-atomic. If G is a
countable dense subgroup of [R], then the following statements
are equivalent:

1. R is µ-amenable.
2. There exists a symmetric non-degenerate measure ν on

G, such that the action of G on almost every orbit in X is
ν-Liouville.



Theorem (Kesten, ’59)
Let Γ be a finitely generated discrete group and let µ be a
finitely supported symmetric generating measure on Γ. Let ρ be
the spectral radius of the µ-random walk on Γ. Then Γ is
amenable if and only if ρ = 1.

Schneider and Thom: Følner criterion and Kaimanovich-Vershik
theorem for topological groups.

What assumptions on topological group would guarantee that
lim supn→∞ P(Xn ∈ U)1/n = 1?



Theorem
For a topological group G the following properties are
equivalent.

1. G is amenable.
2. Every continuous affine action of G on a non-empty

compact subset of a locally convex topological vector
space has a fixed point.

3. For every non-empty compact space X and any action of
G on X there exists a G-invariant Borel probability
measure on X.



A topological group G has small invariant neighborhoods (or
G is a SIN group) if for every neighborhood U ∈ U(G) we have

∩g∈GgUg−1 ∈ U(G)

Theorem (Chaudkhari, J, Schneider, ’22)
Assume that G is a Hausdorff, amenable and SIN group, and ν
is a symmetric probability measure with at most countable
support on G. Then, for any neighborhood U of the identity, a
lazy ν-random walk Xn started at the identity satisfies

lim
n→∞

P(Xn ∈ Un)1/n = 1



G is SIN implies U is invariant under conjugation and U = U−1.

Schenider, Thom ’17: there exists α : G→ Sym(G) such that
the action of the group generated by α(G) is amenable, and for
any g,h ∈ G there exists u(g,h) ∈ U such that
α(g)(h) = u(g,h)gh.

Notice that invariance of U under taking inverses and
conjugation implies that in this case for any g,h ∈ G, there
exists u′(g,h) ∈ U such that α(g)−1(h) = u′(g,h)g−1h.



Let S = supp(ν). Let Γ be the subgroup of Sym(G) generated
by α(S). Consider a symmetric random walk on G induced by
the random walk on Γ defined by the probability measure
supported on α(S) (treated as a multiset) which assigns to the
elements of this multiset the weights equal to the ν-weights of
corresponding elements of S. Denote the resulting probability
measure on the multiset α(S) by ν ′, and for s ∈ S ∪ S−1 we
denote by αs the element α(s) if s ∈ S or the element α(s−1)−1

if s ∈ S−1.



If for some tuple (sn, . . . , s1) ∈ (S ∪ S−1)n and some x ∈ G one
has

αsn ◦ αsn−1 ◦ . . . ◦ αs1(x) = x ,

we can conclude that there are u1, ...,un ∈ U such that

unsnun−1sn−1 . . . u1s1 = idG,

which implies that

Xn = snsn−1 . . . s1 =
n∏

i=1

(u−1
i )si+1..sn ∈ Un.

Thus, the invariance of U under taking inverses and
conjugation implies that

sup
x∈G

P(ν′)n (x , x) ≤ Pνn (Xn ∈ Un).



Since the action of Γ on G admits an invariant mean, for any
ε > 0 and any finite subset E of Γ, G admits an (E , ε)-Følner
set. Such a set can always be selected from the same orbit of
the action of Γ on G. Therefore, the infimum of isoperimetric
constants of ν

′
-random walks on Γ-orbits on G is equal to 0.

Mohar’s isoperimetric inequality implies that the supremum of
the spectral radii of ν

′
- random walks on Γ-orbits on G is equal

to 1, hence supx∈G P(ν′)n (x , x) decays subexponentially, and

lim
n→∞

P(Xn ∈ Un)1/n = 1.



Bad news: the reverse does not hold.

A topological group G is called bounded if, for every
neighborhood U of e ∈ G, there exist a finite subset F ⊆ G and
a natural number n such that G = FUn.

It is well known, that G is bounded if and only if every
right-uniformly continuous real-valued function on G is
bounded.

We will say that G is power-bounded if, for every neighborhood
U of e ∈ G, there exists a natural number n such that G = Un.



Let X be a compact Hausdorff space with a regular Borel
probability measure µ. A map f : X → Y into a topological
space Y is called µ-almost continuous if, for every ε > 0, there
exists a closed subset A ⊆ X with µ(X \ A) ≤ ε such that
f |A : A→ Y is continuous. If the target space is metrizable, then
µ-almost continuity is equivalent to µ-measurability.

Consider the Lebesgue probability measure λ on the closed
real interval [0,1]. Given a topological group G, we define
L0(G) to be the set of all (λ-equivalence classes of) λ-almost
continuous maps from [0,1] to G. Equipped with the group
structure inherited from G and the topology of convergence in
measure, L0(G) is a topological group. The sets of the form

N(U, ε) := {f ∈ L0(G) | λ({x ∈ [0,1] | f (x) /∈ U}) < ε}
(ε > 0, U ⊆ G open with e ∈ U)

constitute a neighborhood basis at the neutral element of
L0(G).



Let G be a topological group.
(1) The topological group L0(G) is power-bounded. Let U be

any identity neighborhood in L0(G). Then we find some
n ∈ N \ {0} as well as an open identity neighborhood V in
G such that N

(
V , 1

n

)
⊆ U. We claim that L0(G) = Un. To

see this, let f ∈ L0(G). For each i ∈ {0, . . . ,n − 1},
consider the element fi ∈ L0(G) defined by

fi |[i/n,(i+1)/n) = f |[i/n,(i+1)/n), fi |[0,1]\[i/n,(i+1)/n) ≡ e,

and note that fi ∈ N
(
V , 1

n

)
. Hence, as desired,

f = f1 · . . . · fn ∈
(
N
(
V , 1

n

))n ⊆ Un.

(2) The topological group L0(G) is (extremely) amenable if and
only if G is amenable (Pestov, Schneider, 2017).

(3) If G is Polish, then so is L0(G) due to (Moore, ’76). Since G
is topologically isomorphic to a closed subgroup of L0(G),
the converse holds as well.

(4) It is straightforward to verify that L0(G) is SIN if and only if
G is SIN.



Conclusion: L0(F2) is a power-bounded, non-amenable, SIN,
Polish group. Hence, the condition

lim
n→∞

P(Xn ∈ Un)1/n = 1

does not imply amenability of a topological group.



Good news: characterizes amenability for locally compact
groups

If G is an amenable locally compact group and λ is its left Haar
measure, and ν is a symmetric measure with countable support
with ν(id) ≥ 1/2, then the norm of the Markov operator Mν on
L2(G, λ) is equal to 1, and it is equal to the

lim sup
n→∞

(νn(V ))1/n

for any compact neighborhood V of the identity. On the other
hand, since non-amenability of a locally compact group is
witnessed by its compactly generated subgroups, we have that
a non-amenable locally compact group fails the condition
(Quint’s Lecture notes).



Lamplighter action in the measurable settings.
Define measure Ml on the subsets of R as follows. For any
Borel A ⊂ R

Ml(A) =

∫
X
|Ax |dµ(x),where Ax = {y ∈ X : (x , y) ∈ A}.

The sets A with Ml(A) <∞ form a group C with respect to the
symmetric difference operation. C is equipped with a distance
derived from the distance between indicator functions in
L1(R,Ml). Now take [R] (or any G which is dense in [R]) and
consider its action on X × X defined by

g(x , y) = (x ,gy).

This construction induces an action of [R] on C by isometries.
This action defines C o [R] as a topological group.



Proposition
Assume that R is an ergodic amenable countable Borel
equivalence relation on a non-atomic standard probability
space (X , µ). Let [R] be endowed with the uniform topology,
and C with the topology induced by the distance in L1(R,Ml).
Then the following statements are true.

1. C o [R] with the product topology is a topological group.
2. C o [R] with the product topology is amenable.
3. C o [R] does not have SIN property



Applications to inverted orbits.

Definition
Let G be a discrete group acting on a set X . For a sequence
h = {h1,h2, ...,hn} of elements of G (one may think of its
elements as of the increments defining the trajectory of a
random walk) and a point x ∈ X an inverted orbit of x under h is
the set {x ,hnx ,hnhn−1x , . . . ,hnhn−1 . . . h1x}. We will
sometimes use the notation Oh(x) for the inverted orbit of a
point x under the action of h.



Theorem
If R is amenable, then an affirmative answer to Topological
Kesten for C(G) o G or C o [R] implies that∫

X
P(|On(x)| ≤ εn)dµ(x)

decays subexponentially for each ε > 0.



Thank you!
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