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Group von Neumann algebras (Murray-von Neumann ’43)

Def: G - countable discrete group and u ∶ G → U (ℓ2G) left regular rep.
Group von Neumann algebra

L(G) = C[G ]sot = span{ug ∶ g ∈ G}
sot ⊂B(ℓ2G)

▸ L(G) admits a faithful, normal, tracial state: τ(ug) = δg ,1, ∀g ∈ G .
▸ A von Neumann algebraM that admits a trace and cannot be

decomposed as a direct sum (trivial center) is called a II1 factor.
▸ L(G) is a II1 factor iff G is icc (∣{hgh−1 ∶ h ∈ G}∣ = ∞, ∀g ≠ 1).
▸ IfM is II1 factor so is pMp for any projection 0 ≠ p ∈ M; the isom

class of pMp depends only on τ(p) = t and is denoted byMt .

Central problems: (a) Classify L(G) in terms of G !
(b) Compute: Out(L(G)) = Aut(L(G))/Inn(L(G))

F(L(G)) = {t ∈ R+ ∶ L(G)t ≅ L(G)}

1 ∃ unique approx. finite dimensional II1 factor R = ∪nM2n(C)
sot

.

2 For any locally finite icc group G (e.g. S∞) we have L(G) ≅ R.
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Theorem (Connes ’76): ∀G icc amenable we have L(G) ≅ R.

↝G -amenable if ∃ (ξn)n ⊂ (ℓ2G)1 so that limn ∥ug(ξn) − ξn∥ = 0, ∀g ∈ G
Examples: abelian, solvable, loc. finite, closed under ext/subgr.
↝ in this case all algebraic information on G (rank, torsion, gen/rel) is lost
when passing to L(G).
↝ Thus Out(L(G)) is “huge” and F(L(G)) = R∗+, ∀G icc amenable

Theorem (Connes ’80): For every G icc property (T) group, Out(L(G))
and F(L(G)) are countable.

Def: (Kazhdan ’67) G has prop. (T) if any unitary rep. of G that has
almost invariant vectors must have a nonzero invariant vector.

Examples: (a) SLn(Z), PSLn(Z), n ≥ 3

(b) unif. lat. Γ < Sp(n,1) = {A ∈Mn+1(H) ∶ A∗JA = J}, J = (
In 0
0 −1 )

(c) prop. (T) passes to quotients
(d) (Shalom ’00, Olivier-Wise ’05, de Cornulier ’05) Every prop. (T) group
is a quotient of a torsion free, word hyperbolic prop. (T) group
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Factors of property (T) groups

Connes Rigidity Conjecture ’82: Whenever G ≇ H are icc prop (T)
groups we have L(G) ≇ L(H).
↝(Cowling-Haagerup ’89) holds ∀ lat. G < Sp(n,1),H < Sp(m,1) n ≠ m.

↝(Ozawa ’02) ∃ uncountably many nonisom. prop. (T) group factors.

↝(Popa ’06) the map G → L(G) is countable-to-one.
Problem (Connes ’94): If G is icc prop (T) compute F(L(G)).

Outer Automorphisms Conjecture (VFR Jones ’00, Popa ’06): If G is
icc prop (T) then Out(L(G)) = Char(G)⋊Out(G), (i.e. ug → ρ(g)uδ(g)).

Popa’s strengthening of Connes Rigidity Conjecture ’06:
Let G be any icc prop (T) group and let H be any group.
If Θ ∶ L(G)t → L(H) is any ∗-isomorphism then t = 1 and there is a group
isomorphism δ ∶ G → H, a character ρ ∈ Char(G), and a unitary w ∈ L(H)
so that Θ(ug) = w(ρ(g)vδ(g))w∗, ∀g ∈ G .
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Deformation/rigidity theory

Popa’s deformation/rigidity theory (≈ ’01) led to huge progress towards
the classification of group factors and computation of their invariants.

Def: A ≀I B = (⊕IA) ⋊B generalized wreath product of A and B ↷ I .
When I = B we get the wreath product A ≀B.

↝ (Popa ’03) ∀B,D icc prop (T) st L(Z ≀B) ≅ L(Z ≀D) then B ≅ D.

↝ (Popa ’01; Popa-Vaes ’06) Examples of G = Z2 ≀I B with F(L(G)) = 1
and Out(L(G)) = Char(G) ⋊Out(G); ∀C fin. pres. Out(L(G)) ≅ C .

↝ (Ioana-Popa-Vaes ’10) Certain G = Z2 ≀I B are W ∗-superrigid.

None of these results apply to property (T) groups !!!

↝ (C-Das-Houdayer-Khan ’19-’20) F(L(G)) = 1, where G is prop (T)
fibered version of the Rips construction (Belegradek-Osin ’06).
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Wreath-like product groups

Def: Let A, B be groups and let B ↷ I be an action. Then G is a
generalized wreath-like product of A and B ↷ I (G ∈ W R(A,B ↷ I )) if
there is a s.e.s.

1→ ⊕i∈IA↪ G
ε↠ B → 1

such that gAig
−1 = Aε(g)⋅i , where Ai is the i-labeled copy of A in ⊕i∈IA.

When I = B, we denote by G ∈ W R(A,B) - regular wreath-like products.

Obs: Let G = A ∗B. Then normal closure ⟪A⟫ = ∗b∈BAb and G = ⟪A⟫B.
If S = ⟨[Ab,Ac] ∶ b ≠ c ∈ B⟩ then S ⊲ G and G/S ≅ A ≀B.
↝ A < G is CL subgroup iff ⟪A⟫ = ∗t∈TAt for T a transversal of ⟪H⟫ ⊲ G .

↝(Cohen-Lyndon ’63) ∀C < Fk maximal cyclic is a CL subgroup.

Prop: Let A < G be a CL subgroup. Then S = ⟨[Ab,Ac] ∶ b ≠ c⟩ < G is a
normal subgroup of G and G/S ∈ W R(A,G/⟪A⟫).

Proof: Follows because ⟪A⟫/S ≅ ⊕t∈TAt ≅ ⊕G/⟪A⟫N and we have the
short exact sequence 1→ ⟪A⟫/S → G/S → G/⟪A⟫ → 1. 6 / 16



Theorem (Osin ’06, Dahmani-Guirardel-Osin ’11, Sun ’19)

If H <W with W hyper. rel. to H, ∀A ⊲ H “sufficiently deep” we have:

▸ ⟪A⟫ = ∗t∈TAt where T is a left transversal for H⟪A⟫ <W ; and

▸ W /⟪A⟫ is hyperbolic relative to H/A.

↝ In this case it follows that G/S ∈ W R(A,W /⟪A⟫ ↷W /H⟪A⟫).
↝ ∀W icc hyperbolic and ∀n ∈ N, there is Fn ≅ H <W such that W is
hyperbolic relative to H. Using this in combination with the prior result we
get ∃Fn ≅ H <W CL-subgroup and the prior quotienting technique yields:

Theorem (C-Ioana-Osin-Sun ’21)

Let W be an icc, hyperbolic group. For every finitely generated A there is
G a quotient of W so that G ∈ W R(A,B) where B is icc hyperbolic.
In particular, if W has property (T) then so does G ∈ W R(A,B). p

↝ As a consequence , if A = Z then L(G) ≅ L∞(TB) ⋊σ,c B where B ↷ TB

is Bernoulli action and c ∈ Z2(σ,T). Hence H2(σ,T) ≠ H2(B,T)
answering a question of Popa and recovering (Jiang ’15).
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W∗-superrigidity results

Theorem (C-Ioana-Osin-Sun ’21)

Let A be abelian and let B be an icc subgroup of a hyperbolic group.
Then any property (T) group G ∈ W R(A,B) is W ∗-superrigid.

Theorem (C-Ioana-Osin-Sun ’21)

Let G be an icc hyperbolic property (T) group and let g ∈ G be an
element of infinite order. Then there is d ∈ N such that for all k ∈ N the
quotient G/[⟪gdk⟫,⟪gdk⟫] is a property (T) W ∗-superrigid group.

↝ First examples of prop (T) groups satisfying Connes Rigidity
Conjecture; in fact one can construct 2ℵ0 many such groups.

↝ Our approach combines von Neumann alg. methods with techniques on
equivalence relations. Recently, we found another method that yields
many W∗-superrigid prop (T) groups G ∈ W R(A,B) where A is
non-amenable and B is a special type of relative hyperbolic group.
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Computations of invariants of prop (T) factors

Theorem (CIOS ’21-’22)

Let A,C be abelian or icc. Let B,D be non-parabolic icc subgroups of
groups which are hyperbolic relative to a finite family of finitely generated,
residually finite groups.

Let G ∈ W R(A,B ↷ I ), H ∈ W R(C ,D ↷ J) be any prop (T) groups
where B ↷ I and D ↷ J are faithful actions with infinite orbits.

Let Θ ∶ L(G)t → L(H) for t > 0 be any ∗-isomorphism. Then t = 1 and
one can find a group isomorphism δ ∶ G → H, a character ρ ∶ G → T and a
unitary w ∈ L(H) such that for all g ∈ G we have

Θ(ug) = w (ρ(g)vδ(g))w∗. p

↝ Yields F(L(G)) = 1, providing additional examples to the prior work
(C-Das-Houdayer-Khan ’20) confirming Popa’s conjecture.

↝ Implies Out(L(G)) = Char(G) ⋊Out(G), giving the first examples of
prop (T) groups satisfying VFR Jones’s conjecture.
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↝ Outer automorphisms of prop (T) groups in general can be very wild
(Ollivier-Wise ’04, Belegradek-Osin ’06). Developing a new approach
based on prior work of (Wise ’04, Haglund-Wise ’08, Agol ’13), Rips
constructions (Belegradek-Osin ’06), and quotienting techniques involving
Cohen-Lyndon subgroups we showed the following:

Theorem (CIOS ’22)

∀ countable group C , ∃ group G ∈ W R(A,B ↷ I ) so that:

(a) B is a non-parabolic icc subgroup of a relatively hyperbolic group
with finitely generated, ressidually finite peripheral subgroups.

(b) A is abelian and B ↷ I is a faithful action with infinite orbits.

(c) G has prop (T), [G ,G ] = G , and Out(G) ≅ C . p

↝ In fact there is a continuum of G ’s satisfying the statement.

Corollary - a converse to Connes’ result

∀ countable group C , ∃ prop (T) group G so that Out(L(G)) ≅ C .

↝ Similar results hold for reduced group C∗-algebras. p

10 / 16



Other invariants: Fs(M) = {t ∈ R+ ∣ ∃Θ ∶ M →Mt ∗-homomorphism}
IM = {r ∈ [1,∞] ∣ ∃N ⊆M subfactor so that [M ∶ N] = r}

Theorem (CIOS 21)

Let G be a prop (T) group, A ⊲ G abelian, ∣gA∣ = ∞, ∀g ∈ G ∖A.
Let H ∈ W R(C ,D ↷ I ), C -abelian, D-icc subgroup of a hyperbolic group,
CD(g) is virtually cyclic ∀1 ≠ g ∈ D, D ↷ I amenable stabilizers.

Let t > 0 and let Θ ∶ L(G) → L(H)t be any ∗-homomorphism.

Then t1 +⋯ + tq = t ∈ N with ti ∈ N and ∃ finite index subgroup K ⩽ G ,
a monomorphism δi ∶ K → H, a unitary rep ρi ∶ K → Uti (C), 1 ≤ i ≤ q after
conjugating by a unitary w ∈ L(H)t = L(H) ⊗Mt(C) we have that

Θ(ug) = diag(vδ1(g) ⊗ ρ1(g), . . . , vδq(g) ⊗ ρq(g)), ∀g ∈ K .

If t = 1 we can take K = G and hence ∃ δ ∶ G → H monomorphism,
ρ ∈ Char(G), w ∈ U (L(H)) so that Θ(ug) = w(ρ(g)vδ(g))w∗, ∀g ∈ G .

↝ we constructed prop (T) wreath-like products G with End(G) = Inn(G)

Cor: End(L(G)) = Inn(L(G)); Fs(L(G)) = N; IL(G) ⊂ N ∪ {∞}.11 / 16



Embedding universality for prop (T) factors

Theorem (C-Drimbe-Ioana ’22)

LetM be a separable II1 factor. Then the following hold:

1 For any hyperbolic group H there is a representation π ∶ H → U (Q)
with π(H)′′ = Q andM⊂Q.

2 There is a prop (T) II1 factor P with Out(P) = {1} and F (P) = {1}
such thatM⊂ P. p

↝ II1 factor analogue to SQ-universality of hyperbolic groups (Delzant,’96;
Ol’shanskii,’95).

↝ Cocompact lattices H < Sp(n,1), n ≥ 2 are prop (T) groups whose
representations are embbedding universal.

↝ Contrasts (Bekka ’06; Peterson ’14; Boutonnet-Houdayer ’19): If G is
an icc lattice in a higher rank simple Lie group (eg SLn(R), n ≥ 3), then
L(G) is the only II1 factor generated by a rep. of G .

↝ Combining this with (Ji-Natarajan-Vidick-Wright-Yuen ’20) we obtain
prop (T) factors that are not Rω-embeddable.
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Popa’s Factorial Relative Commutant Problem:
LetM be a separable Rω-embeddable II1 factor. Is there an embedding
π ∶ M ↪ Rω such that π(M)′ ∩Rω is a factor? eg: SL3(Z) (Popa ’13)

Theorem (Farah-Goldbring-Hart-Sherman, ’16)

∃ a class G of separable II1 factors (infinitely generic) which is model
complete, i.e. maximal class satisfying

a) G is embedding universal;

b) If Q1,Q2 ∈ G, any embedding π ∶ Q1 ↪Q2 extends to an isomorphism
Qω

1 ≅ Qω
2 .

↝ (Goldbring ’20) showed that any property (T) factorM admits an
embedding into Qω, for any infinitely generic factor Q.

Theorem (C-Drimbe-Ioana, ’22)

Let Q be any infinitely generic II1 factor. Then any full II1 factorM
admits an embedding in Qω with factorial relative commutant.
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Def: A II1 factorM is called super-McDuff iffM′ ∩Mω is a II1 factor.

Examples: ↝ R; N⊗R, where N is a full II1 factor
↝ (Popa ’17) ⊗n∈NNn, where Nn are full II1 factors

Open problems (Atkinson-Goldbring-Kunnawalkam-Elayavalli, ’20)
∃ e.c. factors that are super-McDuff? Are all e.c. factors super-McDuff?

↝ (C-Drimbe-Ioana ’22) Every infinitely generic factor is super-McDuff.
↝(Goldbring-Jekel-Kunnwalkam-Elayavalli-Pi ’23) these are uniformly
super-McDuff; thus any factor in their e.e. class is super-McDuff

Conjecture: Any e.c. factorM satisfiesM≇ P⊗Q, ∀ Q a full factor.

↝ (C-Drimbe-Ioana ’22) confirmed this for an embedding universal class

of e.c. factors, which are inductive limits Q = ⋃n∈NNn
sot

where

▸ (Nn)n∈N is an increasing sequence of prop (T) s-prime II1 factors

▸ [Nm ∶ Nn] = ∞, ∀m > n.
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↝ M is a compact unoriented 3-manifold with toric ∂M. Topologically
distinct way to attach a solid torus to ∂M are parametrized by slopes of
∂M. For a slope σ, the Dehn filling M(σ) of M is obtained by attaching a
solid torus D2 × S1 so its meridian ∂D2 goes to a curve of slope σ.

↝ (Thurston ’82) showed that if M ∖ ∂M has complete finite volume then
M(σ) has a hyperbolic structure for all but finitely many slopes.

↝ If π1(∂M) ⩽ π1(M) is rel. hyper. then ∃F ⊂ π1(M) finite so that
π1(M(σ)) = π1(M)/⟪x⟫ is hyperbolic ∀x ∈ H ∖ F .

Osin ’06, Dahmani-Guirardel-Osin ’11, Sun ’19

Let H < G with G hyperbolic relative to H. ∃F ⊂ H ∖ {1} finite such that
∀N ⊲ H with N ∩ F = ∅ we have:

▸ ⟪N⟫ = ∗t∈TNt where T is a left transversal for H⟪N⟫ < G ; and

▸ G/⟪N⟫ is hyperbolic relative to H/N.

back



Theorem (C-Ioana-Osin-Sun ’21)

Let W - icc, hyperbolic group. For every finitely generated A there is G a
quotient of W so that G ∈ W R(A,B) where B is icc hyperbolic. In
particular, if W has property (T) then so is G .

↝ Using [DGO11] ∃ F7n = K <W with W hyp. rel. to K . Using Dehn
filling ∃ F ⋐W ∖ {1} so that ∀N ⊲ K with N ∩F = ∅ then (W ,K ,N) is
CL-triple and W /⟪N⟫ is hyp. rel. to K/N.

↝ Using a high-power elements, Fn ∗ L = K with ⟪Fn⟫K ∩F = ∅ . Hence
(W ,K ,⟪Fn⟫K) is CL-triple and W /⟪Fn⟫W is hyp. rel. to K/⟪Fn⟫K = L.
↝ As (W ,K ,⟪Fn⟫K), (K ,Fn,Fn) are CL-triple then (W ,Fn,Fn) is
CL-triple. Since L is free then W /⟪Fn⟫ = B is hyperbolic. Thus,

G0 =W /⟨S⟩ ∈ W R(Fn,B).
↝ If G0 ∈ W R(Fn,B) then ∀ H ⊲ Fn ⇒ G = G0/⟪H⟫ ∈ W R(Fn/H,B).
back



If G ∈ W R(A,B) with A abelian then:

a) action G ↷σ L(A(B)) by conjugation σg = ad(ug) is a gen. Bernoulli;

b) Eq. rel. R(L(A(B)) ⊂M) is the OE rel. of Bernoulli action B ↷ ÂB .

Fix G ∈ W R(A,B), H ∈ W R(C ,D) with L(G) = L(H) =∶ M .

I: If P = L(A(B)), Q = L(C (D)) ⇒ ∃u ∈ U (M) so that uPu∗ = Q.

As P,Q ⊂M regular, B,D-rel hyp follows from (Popa-Vaes ’12, Ioana
’12, C-Ioana-Kida ’13).

II: ∃ maps ζ ∶ G → U (P) and δ ∶ G → H with ζgug = vδ(g), ∀g ∈ G .

Using b) to identify the eq. rel. of P ⊂M in two ways ⇒ an OE between
B ↷ ÂB and D ↷ ĈD . Using Popa’s CSR Thm ⇒ U (P)G = U (P)H.

III: Let ∆ ∶ M →M⊗M defined ∆(vh) = vh ⊗ vh, ∀h ∈ H. Then ∃
w ∈ U (M⊗M), η ∈ Char(G) with w∆(ug)w∗ = η(g)ug ⊗ ug , ∀g ∈ G .

∆(ug) =∆(ζ∗g vδ(g)) =∆(ζ∗g )vδ(g) ⊗ vδ(g) = (∆(ζ∗g )ζg ⊗ ζg)(ug ⊗ ug)
⇒ g → ωg ∈ U (P⊗P) is a 1-cocycle for σ ⊗ σ; Using CSR results ⇒ III.
Using a height technique of (Ioana-Popa-Vaes ’10) we get conclusion. back



↝ Using the work of ;(Wise ’04, Haglund-Wise ’08, Agol ’13)
∀ countable group C < S/M, where S fin. gen., torsion free, res. finite.
↝ Rips construction (Belegradek-Osin ’06) one can find

S < G ← torsion free, hyp rel to S
∇
N ← prop (T), trivial abelianization

with C < S/M ≅ G/N
↝ CL-subgroup→ ⟨x⟩ < N ⊲ C0 = π−1(C) < G . If H = ⟪x⟫G = ∗bb⟨x⟩b−1

1→ ⊕G/HZ ↪ G/[H,H] ↠ G/H → 1
∨ ∨

1→ ⊕C0/HA ↪ C0/[H,H] ↠ C0/H → 1

↝ The group yielding the conclusion is the image N/[H,H] in a suitable
quotient of C0/[H,H] ( ⇐ a generalized wreath-like product with infinite,
untwisted stabilizers). back



Theorem (CIOS ’21-’22)

Let A-icc, Haagerup group with trivial amenable radical and B-icc
subgroup of a hyperbolic group. Let G ∈ W R(A,B) be a torsion free prop
(T) group. Then for any H and any ∗-isomorphism Θ ∶ C∗r (G) → C∗r (H)
there is a group isomorphism δ ∶ G → H, a character ρ ∈ Char(G), and a
unitary w ∈ L(H) such that Θ(ug) = w(ρ(g)vδ(g))w∗, ∀g ∈ G .

↝ The proof uses von Neumann algebra techniques and C∗r (G) having
unique trace and being projectionless (G satisfies Baum-Connes conjecture
(Higson-Kasparov ’97, Mineyev-Yu ’01, Oyono-Oyono ’01))

↝ If G is non-inner amenable, with trivial amenable radical then
1→ swInn(C∗r (G)) → Out(C∗r (G)) → sOut(C∗r (G)) → 1

Corollary: Let A- icc group with trivial amenable radical, B- icc subgroup
of a hyperbolic group. ∀ prop (T) group G ∈ W R(A,B) we have

sOut(C∗r (G)) = Char(G) ⋊Out(G).
Thus, ∀ finitely presented C there is such G with sOut(C∗r (G)) ≅ C .

back



Ideas behind the proof of part 2):

▸ Can assume thatM is generated by 3 unitaries by considering
M⊂M⊗R, where R is the hyperfinite II1 factor (Ge-Popa ’98).

▸ Let π ∶ F3 → U (M) be a homomorphism with π(F3)′′ =M.

▸ ∃ a property (T) group G ∈ W R(F3,B) with no non-trivial characters
for some icc hyperbolic group B with Out(B) = 1, (CIOS’21).

G ∈ W R(A,B) ⇔ ∃ρ ∶ B → AB with vb,c = ρbσb(ρc)ρ−1bc ∈ A(B),∀b, c ∈ B,
and letting αb ∶= Ad(ρb)σb ∈ Aut(A(B)) we have G ≅ A(B) ⋊α,v B. def

▸ π extends to a homomorphism π̃ ∶ G → U (P) with π̃(G)′′ = P,
P ⊃M (where G = F(B)3 ⋊α,v B and P =MB ⋊β,w B).

▸ P has prop (T) since G has prop (T).

back



Definition

A cocycle action B ↷α,v A is a pair α ∶ B → Aut(A), v ∶ B ×B → A with

1 αbαc = Ad(vb,c)αbc , for every b, c ∈ B,
2 vb,cvbc,d = αb(vc,d)vb,cd , for every b, c ,d ∈ B, and
3 vb,1 = v1,b = 1, for every b ∈ B.

The cocycle semidirect product A ⋊α,v B is the group A ×B endowed with
the unit (1,1) and the multiplication (x ,b) ⋅ (y , c) = (xαb(y)vb,c ,bc).

Definition

A cocycle action B ↷β,w (M, τ) is a pair β ∶ B → Aut(M),
w ∶ B ×B → U (M) with

1 βbβc = Ad(wb,c)βbc , for every b, c ∈ B,
2 wb,cwbc,d = βb(wc,d)wb,cd , for every b, c ,d ∈ B, and
3 wb,1 = w1,b = 1, for every b ∈ B. back

The cocycle crossed product M ⋊β,w B is a tracial vN algebra generated by
a copy of M and unitaries {ub}b∈B such that ubxu

∗
b = βb(x),

ubuc = wb,cubc and τ(xub) = τ(x)δb,e , for every b, c ∈ B and x ∈M.
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