Fragments of residuated lattices axiomatized by simple equations and decidability

Gavin St. John

GavinStJohn@gmail.com

Joint work with Nick Galatos University of Denver

Shanks Workshop: Ordered Algebras and Logic Vanderbilt University

5 March 2020

Residuated Lattices

A (commutative) **residuated lattice** is an algebraic structure

 $\mathbf{R} = (R, \vee, \wedge, \cdot, \backslash, /, 1),$ such that

- \triangleright (R, \vee, \wedge) is a lattice
- $ightharpoonup (R,\cdot,1)$ is a (commutative) monoid
- For all $x, y, z \in R$

$$x \cdot y \le z \iff y \le x \setminus z \iff x \le z/y,$$

where \leq is the induced lattice order.

Residuated Lattices

A (commutative) **residuated lattice** is an algebraic structure

 $\mathbf{R} = (R, \vee, \wedge, \cdot, \setminus, /, 1)$, such that

- \triangleright (R, \vee, \wedge) is a lattice
- $ightharpoonup (R,\cdot,1)$ is a (commutative) monoid
- For all $x, y, z \in R$

$$x \cdot y \le z \iff y \le x \backslash z \iff x \le z/y,$$

where \leq is the induced lattice order.

(C)RL denotes the variety of (commutative) residuated lattices.

Residuated Lattices

A (commutative) residuated lattice is an algebraic structure

 $\mathbf{R} = (R, \vee, \wedge, \cdot, \setminus, /, 1)$, such that

- \triangleright (R, \vee, \wedge) is a lattice
- $ightharpoonup (R,\cdot,1)$ is a (commutative) monoid
- For all $x, y, z \in R$

$$x \cdot y \le z \iff y \le x \setminus z \iff x \le z/y,$$

where < is the induced lattice order.

- o (C)RL denotes the **variety** of (commutative) residuated lattices.
- o multiplication is order preserving:

$$x \le y \implies uxv \le uyv$$

o multiplication distributes of join:

$$x(y \lor z) = xy \lor xz$$
 & $(y \lor z)x = yx \lor zx$

Residuated structures are the algebraic semantics of substructural logics (i.e., axiomatic extension of the **Full Lambek Calculus**) **FL**.

$$\frac{\Gamma \Rightarrow \alpha \quad \Delta_{1}, \alpha, \Delta_{2} \Rightarrow \Pi}{\Delta_{1}, \Gamma, \Delta_{2} \Rightarrow \Pi} \text{ (cut)} \qquad \frac{\alpha \Rightarrow \alpha \text{ (init)}}{\alpha \Rightarrow \alpha} \qquad \frac{\Gamma_{1}, \alpha, \beta, \Gamma_{2} \Rightarrow \Pi}{\Gamma_{1}, \alpha \cdot \beta, \Gamma_{2} \Rightarrow \Pi} \text{ (·l)} \qquad \frac{\Gamma \Rightarrow \alpha \quad \Delta \Rightarrow \beta}{\Gamma, \Delta \Rightarrow \alpha \cdot \beta} \text{ (·r)} \qquad \frac{\Gamma_{1}, \Gamma_{2} \Rightarrow \Pi}{\Gamma_{1}, 1, \Gamma_{2} \Rightarrow \Pi} \text{ (Il)}$$

$$\frac{\Gamma \Rightarrow \alpha \quad \Delta_{1}, \beta, \Delta_{2} \Rightarrow \Pi}{\Delta_{1}, \Gamma, \alpha \setminus \beta, \Delta_{2} \Rightarrow \Pi} \text{ (\lambda l)} \qquad \frac{\Gamma, \alpha \Rightarrow \beta}{\Gamma \Rightarrow \alpha \setminus \beta} \text{ (\lambda r)} \qquad \frac{\Gamma}{\Gamma \Rightarrow 0} \text{ (0r)}$$

$$\frac{\Gamma \Rightarrow \alpha \quad \Delta_{1}, \beta, \Delta_{2} \Rightarrow \Pi}{\Delta_{1}, \beta, \alpha, \Gamma, \Delta_{2} \Rightarrow \Pi} \text{ (/l)} \qquad \frac{\Gamma, \alpha \Rightarrow \beta}{\Gamma \Rightarrow \alpha \setminus \beta} \text{ (/r)} \qquad \frac{\Gamma \Rightarrow \alpha}{\Gamma \Rightarrow 0} \text{ (0l)}$$

$$\frac{\Gamma_{1}, \alpha, \Gamma_{2} \Rightarrow \Pi}{\Gamma_{1}, \alpha \vee \beta, \Gamma_{2} \Rightarrow \Pi} \text{ (\lambda l)} \qquad \frac{\Gamma, \alpha, \beta, \beta}{\Gamma \Rightarrow \alpha \vee \beta} \text{ (\lambda r)} \qquad \frac{\Gamma \Rightarrow \alpha}{\Gamma \Rightarrow \alpha \vee \beta} \text{ (\lambda r)}$$

$$\frac{\Gamma_{1}, \alpha, \Gamma_{2} \Rightarrow \Pi}{\Gamma_{1}, \alpha, \alpha \vee \beta, \Gamma_{2} \Rightarrow \Pi} \text{ (\lambda l)} \qquad \frac{\Gamma_{1}, \alpha, \Gamma_{2} \Rightarrow \Pi}{\Gamma_{1}, \alpha, \alpha \wedge \beta, \Gamma_{2} \Rightarrow \Pi} \text{ (\lambda l)} \qquad \frac{\Gamma \Rightarrow \alpha}{\Gamma \Rightarrow \alpha \wedge \beta} \text{ (\lambda r)}$$

Structural rules have an algebraic meaning.

$$\begin{split} &\frac{\Gamma,\alpha,\beta,\Delta\Rightarrow\Pi}{\Gamma,\beta,\alpha,\Delta\Rightarrow\Pi} \text{ (e)} & \Leftrightarrow & xy\leq yx\\ &\frac{\Gamma,\Delta\Rightarrow\Pi}{\Gamma,\alpha,\Delta\Rightarrow\Pi} \text{ (w)} & \Leftrightarrow & x\leq 1\\ &\frac{\Gamma,\alpha,\alpha,\Delta\Rightarrow\Pi}{\Gamma,\alpha,\Delta\Rightarrow\Pi} \text{ (c)} & \Leftrightarrow & x\leq x^2 \end{split}$$

We can use algebraic methods to answer questions about the logics.

(Quasi-) Equational Theory

A **quasi-equation** ξ is a universally-quantified formula

$$s_1 = t_1 \& \cdots \& s_n = t_n \implies s_0 = t_0,$$

where $s_0, t_0, s_1, t_1, ..., s_n, t_n \in T(X)$ are terms.

For a variety V, its *quasi-equational theory* is the set of quasi-equations that it satisfies.

$$\{\xi: \mathcal{V} \models \xi\}.$$

(Quasi-) Equational Theory

A **quasi-equation** ξ is a universally-quantified formula

$$s_1 = t_1 \& \cdots \& s_n = t_n \implies s_0 = t_0,$$

where $s_0, t_0, s_1, t_1, ..., s_n, t_n \in T(X)$ are terms.

For a variety V, its *quasi-equational theory* is the set of quasi-equations that it satisfies.

$$\{\xi: \mathcal{V} \models \xi\}.$$

The *equational theory* for V is the set of equations that it satisfies

$$\{s=t: \mathcal{V} \models s=t\}$$

A **presentation** for a language \mathcal{L} is a pair $\langle X, E \rangle$ where

- X is a set of generators, and
- E is a set of equations over T(X).

A **presentation** for a language \mathcal{L} is a pair $\langle X, E \rangle$ where

- X is a set of generators, and
- ightharpoonup E is a set of equations over T(X).

If both X and E are finite, we call the presentation $\langle X, E \rangle$ finite.

A **presentation** for a language \mathcal{L} is a pair $\langle X, E \rangle$ where

- X is a set of generators, and
- E is a set of equations over T(X).

If both X and E are finite, we call the presentation $\langle X, E \rangle$ finite.

 $lackbox{\ }$ We denote the conjunction of equations in E by &E.

A **presentation** for a language \mathcal{L} is a pair $\langle X, E \rangle$ where

- X is a set of generators, and
- E is a set of equations over T(X).

If both X and E are finite, we call the presentation $\langle X, E \rangle$ finite.

 \blacktriangleright We denote the conjunction of equations in E by &E.

We say $\mathcal V$ has an **undecidable word problem** if there exists a finite presentation $\langle X,E\rangle$ such that there is no algorithm deciding whether the q.e. (& $E\implies s=t$) holds in $\mathcal V$ having $s,t\in T(X)$ as inputs.

A **presentation** for a language \mathcal{L} is a pair $\langle X, E \rangle$ where

- X is a set of generators, and
- E is a set of equations over T(X).

If both X and E are finite, we call the presentation $\langle X, E \rangle$ finite.

• We denote the conjunction of equations in E by &E.

We say $\mathcal V$ has an **undecidable word problem** if there exists a finite presentation $\langle X,E\rangle$ such that there is no algorithm deciding whether the q.e. (& $E\implies s=t$) holds in $\mathcal V$ having $s,t\in T(X)$ as inputs.

Or equivalently, there is a finitely presented algebra $\mathbf{A} \in \mathcal{V}$ generated by X such that the following set is undecidable:

$$\{(s,t)\in T(X)^2: \mathbf{A}\models s=t\}.$$

A **presentation** for a language \mathcal{L} is a pair $\langle X, E \rangle$ where

- X is a set of generators, and
- E is a set of equations over T(X).

If both X and E are finite, we call the presentation $\langle X, E \rangle$ finite.

 \blacktriangleright We denote the conjunction of equations in E by &E.

We say $\mathcal V$ has an **undecidable word problem** if there exists a finite presentation $\langle X,E\rangle$ such that there is no algorithm deciding whether the q.e. (& $E\implies s=t$) holds in $\mathcal V$ having $s,t\in T(X)$ as inputs.

Or equivalently, there is a finitely presented algebra $\mathbf{A} \in \mathcal{V}$ generated by X such that the following set is undecidable:

$$\{(s,t)\in T(X)^2: \mathbf{A}\models s=t\}.$$

▶ undecidable word problem ⇒ undecidable q.e. theory.

▶ Since RL has a lattice reduct, $x \le y \iff x \lor y = y$.

- ▶ Since RL has a lattice reduct, $x \le y \iff x \lor y = y$.
- We take E to be a set of *inequations*, and will consider quasi-inequations ξ

$$s_1 \le t_1$$
 & \cdots & $s_n \le t_n$ \Longrightarrow $s_0 \le t_0$

- ▶ Since RL has a lattice reduct, $x \le y \iff x \lor y = y$.
- We take E to be a set of *inequations*, and will consider quasi-inequations ξ

$$s_1 \le t_1$$
 & \cdots & $s_n \le t_n$ \Longrightarrow $s_0 \le t_0$

▶ We consider the Word Problem in particular *fragments*, where the symbols occurring in the quasi-(in)equations are those from the given fragment.

- ▶ Since RL has a lattice reduct, $x \le y \iff x \lor y = y$.
- We take E to be a set of *inequations*, and will consider quasi-inequations ξ

$$s_1 \le t_1$$
 & \cdots & $s_n \le t_n$ \Longrightarrow $s_0 \le t_0$

We consider the Word Problem in particular fragments, where the symbols occurring in the quasi-(in)equations are those from the given fragment.

```
\{\leq,\cdot,1\} : Ordered Monoid Fragment \{\vee,\cdot,1\} : Idempotent Semiring (ISR) Fragment.
```

Overview of Decidability Results

${\cal V}$	Eq. Th.	WP
RL	FMP	Und. $\{\leq,\cdot,1\}$
$RL + x \le x^2$	Und.	Und. $\{\leq,\cdot,1\}$
$RL + x \le x^2 \lor 1$?	Und. $\{\leq,\cdot,1\}$
$RL + xy \leq yx \lor xyx$?	Und. $\{\leq,\cdot,1\}$
$RL + yx \leq xyx \vee y$?	?

Overview of Decidability Results

${\cal V}$	Eq. Th.	WP
RL	FMP	Und. $\{\leq,\cdot,1\}$
$RL + x \le x^2$	Und.	Und. $\{\leq,\cdot,1\}$
$RL + x \le x^2 \vee 1$?	Und. $\{\leq,\cdot,1\}$
$RL + xy \leq yx \vee xyx$?	Und. $\{\leq,\cdot,1\}$
$RL + yx \leq xyx \vee y$?	?
CRL	FMP	Und. $\{\vee,\cdot,1\}$
$CRL + x^m \le x^n$	FMP	FEP
$CRL + x \le x^2 \vee x^3$	Und.	Und. $\{\vee,\cdot,1\}$
$CRL + x \le x^2 \vee x^3 \vee 1$?	Und. $\{\vee, \cdot, 1\}$
$CRL + x \le x^2 \vee 1$?	?

Complexity problems are usually given by *Counter Machines*.

Complexity problems are usually given by Counter Machines.

k-Counter Machine

A k-CM is a tuple $M = (R_k, Q, P, q_f)$ where,

▶ $R_k = \{r_1, ..., r_k\}$ is a set of *k*-many **registers** that can store a non-negative integer (*tokens*).

Complexity problems are usually given by Counter Machines.

k-Counter Machine

A k-CM is a tuple $M = (R_k, Q, P, q_f)$ where,

- ▶ $R_k = \{r_1, ..., r_k\}$ is a set of k-many **registers** that can store a non-negative integer (*tokens*).
- ▶ Q is a finite set of **states**, with a designated **final state** q_f .

Complexity problems are usually given by Counter Machines.

k-Counter Machine

A k-CM is a tuple $M = (R_k, Q, P, q_f)$ where,

- ▶ $R_k = \{r_1, ..., r_k\}$ is a set of k-many **registers** that can store a non-negative integer (*tokens*).
- $ightharpoonup \mathbb{Q}$ is a finite set of **states**, with a designated **final state** q_f .
- P is a finite set of instructions that indicate whether to, given a certain state of the machine, increment, decrement, or test whether a given register is empty (zero-test), then transition to a new state.

Complexity problems are usually given by Counter Machines.

k-Counter Machine

A k-CM is a tuple $M = (R_k, Q, P, q_f)$ where,

- ▶ $R_k = \{r_1, ..., r_k\}$ is a set of k-many **registers** that can store a non-negative integer (*tokens*).
- ightharpoonup Q is a finite set of **states**, with a designated **final state** q_f .
- ▶ P is a finite set of instructions that indicate whether to, given a certain state of the machine, increment, decrement, or test whether a given register is empty (zero-test), then transition to a new state.

As we will see, they can be encoded using a some *string rewriting* system.

$$\mathbf{C} \approx \langle q; n_1, n_2, ..., n_k \rangle$$

$$C \approx \langle q; n_1, n_2, ..., n_k \rangle$$

We imagine a configuration being a box labeled by a state q and containing tokens labeled by r_i .

$$C \approx \langle q; n_1, n_2, ..., n_k \rangle$$

- We imagine a configuration being a box labeled by a state q and containing tokens labeled by r_i.
- We say a configuration C is accepted in M if there a computation (sequence of instructions), that lead to the final configuration

$$C_f \approx \langle q_f; 0, 0, ..., 0 \rangle.$$

$$C \approx \langle q; n_1, n_2, ..., n_k \rangle$$

- We imagine a configuration being a box labeled by a state q and containing tokens labeled by \mathbf{r}_i .
- We say a configuration C is accepted in M if there a computation (sequence of instructions), that lead to the final configuration

$$C_f \approx \langle q_f; 0, 0, ..., 0 \rangle.$$

▶ We denote the set of **accepted configurations in** M by Acc(M).

$$C \approx \langle q; n_1, n_2, ..., n_k \rangle$$

- We imagine a configuration being a box labeled by a state q and containing tokens labeled by \mathbf{r}_i .
- We say a configuration C is accepted in M if there a computation (sequence of instructions), that lead to the final configuration

$$C_f \approx \langle q_f; 0, 0, ..., 0 \rangle.$$

▶ We denote the set of **accepted configurations in** M by Acc(M).

Theorem (Minsky)

There exists a 2-CM whose set of accepted configurations is undecidable.

$$\mathtt{M}_{\mathrm{even}}=(\mathtt{R}_2,\mathtt{Q}_{\mathrm{even}},\mathtt{P}_{\mathrm{even}},q_f)$$
 where
$$\mathtt{Q}_{\mathrm{even}}=\{q_0,q_1,q_2,q_f\}\quad\&\quad\mathtt{P}_{\mathrm{even}}=\{p_0,p_1,p_2,p_f\}$$

$$\mathtt{M}_{\mathrm{even}}=(\mathtt{R}_2,\mathtt{Q}_{\mathrm{even}},\mathtt{P}_{\mathrm{even}},q_f)$$
 where
$$\mathtt{Q}_{\mathrm{even}}=\{q_0,q_1,q_2,q_f\}\quad\&\quad\mathtt{P}_{\mathrm{even}}=\{p_0,p_1,p_2,p_f\}$$

- p_0 : If in state q_0 and register r_1 is nonempty, remove a r_1 -token and transition to q_1 .
- p_2 : If in state q_0 and register r_1 is empty, transition to state q_2 .

$$\mathtt{M}_{\mathrm{even}}=(\mathtt{R}_2,\mathtt{Q}_{\mathrm{even}},\mathtt{P}_{\mathrm{even}},q_f)$$
 where
$$\mathtt{Q}_{\mathrm{even}}=\{q_0,q_1,q_2,q_f\}\quad\&\quad\mathtt{P}_{\mathrm{even}}=\{p_0,p_1,p_2,p_f\}$$

- p_0 : If in state q_0 and register r_1 is nonempty, remove a r_1 -token and transition to q_1 .
- p_2 : If in state q_0 and register r_1 is empty, transition to state q_2 .
- p_1 : If in state q_1 and register \mathbf{r}_1 is nonempty, remove a \mathbf{r}_1 -token and transition to q_0 .

$$\mathtt{M}_{\mathrm{even}}=(\mathtt{R}_2,\mathtt{Q}_{\mathrm{even}},\mathtt{P}_{\mathrm{even}},q_f)$$
 where
$$\mathtt{Q}_{\mathrm{even}}=\{q_0,q_1,q_2,q_f\}\quad\&\quad\mathtt{P}_{\mathrm{even}}=\{p_0,p_1,p_2,p_f\}$$

- p_0 : If in state q_0 and register r_1 is nonempty, remove a r_1 -token and transition to q_1 .
- p_2 : If in state q_0 and register r_1 is empty, transition to state q_2 .
- p_1 : If in state q_1 and register r_1 is nonempty, remove a r_1 -token and transition to q_0 .
- p_f : If in state q_2 and register \mathbf{r}_2 is empty, transition to the final state q_f .

Encoding in Ordered Monoids

lackbox We will interpret configurations as terms in a monoid ${f A}_{\tt M}.$

Encoding in Ordered Monoids

- ightharpoonup We will interpret configurations as terms in a monoid $A_{\mathbb{M}}$.
- ▶ We define a relation preorder \leq on $\mathbf{A}_{\mathtt{M}}$ the *encodes* computations in M.

Encoding in Ordered Monoids

- ightharpoonup We will interpret configurations as terms in a monoid ${f A}_{\tt M}$.
- ▶ We define a relation preorder \leq on A_M the *encodes* computations in M.
- ▶ We will need \leq to be compatible with multiplication, i.e., for all $x,y,u,v\in A_{\mathtt{M}}$

$$x \le y \implies uxv \le uyv$$

Encoding in Ordered Monoids

- lacktriangle We will interpret configurations as terms in a monoid ${f A}_{\tt M}$.
- ▶ We define a relation preorder \leq on \mathbf{A}_{M} the *encodes* computations in M.
- ▶ We will need \leq to be compatible with multiplication, i.e., for all $x,y,u,v\in A_{\mathtt{M}}$

$$x \le y \implies uxv \le uyv$$

How should we do this?

The relation $\leq_{\mathtt{M}}$

Let
$$Stp_k = \{S_0, S_1, ..., S_k\}$$

The relation \leq_{M}

Let
$$\operatorname{Stp}_k = \{S_0, S_1, ..., S_k\}$$

ightharpoonup Increment $m r}_i$

$$p:q\mathbb{S}_i \leq q'\mathbf{r}_i\mathbb{S}_i$$

The relation $\leq_{\mathtt{M}}$

Let
$$\mathsf{Stp}_k = \{ \mathsf{S}_0, \mathsf{S}_1, ..., \mathsf{S}_k \}$$

ightharpoonup Increment $m r}_i$

$$p:q\mathbb{S}_i\leq q'\mathbf{r}_i\mathbb{S}_i$$

 \triangleright Decrement \mathbf{r}_i

$$p: q\mathbf{r}_i S_i \le q' S_i$$

The relation \leq_{M}

Let
$$\mathsf{Stp}_k = \{ \mathsf{S}_0, \mathsf{S}_1, ..., \mathsf{S}_k \}$$

ightharpoonup Increment $m r}_i$

$$p:q\mathbb{S}_i \leq q'\mathbf{r}_i\mathbb{S}_i$$

 \triangleright Decrement \mathbf{r}_i

$$p: q\mathbf{r}_i S_i \leq q' S_i$$

Zero-test r_i

$$p: S_{i-1}qS_i \le S_{i-1}q'S_i$$

The relation $\leq_{\mathtt{M}}$

Let $\mathtt{Stp}_k = \{\mathtt{S}_0, \mathtt{S}_1, ..., \mathtt{S}_k\}$

ightharpoonup Increment $m r}_i$

$$p:q\mathbb{S}_i\leq q'\mathbf{r}_i\mathbb{S}_i$$

Decrement r_i

$$p: q\mathbf{r}_i S_i \leq q' S_i$$

Zero-test r_i

$$p: S_{i-1}qS_i \leq S_{i-1}q'S_i$$

Let $\leq_{\mathbb{M}}$ be the least compatible preorder generated by P and the finite sets $\{qx \leq xq: q \in \mathbb{Q} \ \& \ x \in \mathbb{R}_k \cup \operatorname{Stp}_k\}$ and $\{xq \leq qx: q \in \mathbb{Q} \ \& \ x \in \mathbb{R}_k \cup \operatorname{Stp}_k\}.$

The relation $\leq_{\mathtt{M}}$

Let $\mathsf{Stp}_k = \{\mathtt{S}_0, \mathtt{S}_1, ..., \mathtt{S}_k\}$

ightharpoonup Increment $m r}_i$

$$p:q\mathbb{S}_i\leq q'\mathbf{r}_i\mathbb{S}_i$$

Decrement r_i

$$p: q\mathbf{r}_i S_i \leq q' S_i$$

Zero-test r_i

$$p: S_{i-1}qS_i \leq S_{i-1}q'S_i$$

Let $\leq_{\mathbb{M}}$ be the least compatible preorder generated by P and the finite sets $\{qx \leq xq: q \in \mathbb{Q} \ \& \ x \in \mathbb{R}_k \cup \operatorname{Stp}_k\}$ and $\{xq \leq qx: q \in \mathbb{Q} \ \& \ x \in \mathbb{R}_k \cup \operatorname{Stp}_k\}.$

We often write \leq^p to be compatible preorder generated by p:

$$\frac{s \le^p t}{usv \le^p utv}$$

The Meven machine

Let $M_{\text{even}} = (R_2, Q_{\text{even}}, P_{\text{even}}, q_f)$ be a 2-CM where

- $ightharpoonup Q_{\text{even}} = \{q_0, q_1, q_2, q_f\}$
- $P_{\text{even}} = \{p_0, p_1, p_2, p_f\}, \text{ where }$

$$\begin{array}{ll} p_0: q_0 \mathtt{r}_1 \mathbb{S}_1 \leq q_1 \mathbb{S}_1 & p_1: q_1 \mathtt{r}_1 \mathbb{S}_1 \leq q_0 \mathbb{S}_1 \\ p_2: \mathbb{S}_0 q_0 \mathbb{S}_1 \leq \mathbb{S}_0 q_2 \mathbb{S}_1 & p_f: \mathbb{S}_1 q_2 \mathbb{S}_2 \leq \mathbb{S}_1 q_f \mathbb{S}_2 \end{array}$$

The Meven machine

Let $M_{\text{even}} = (R_2, Q_{\text{even}}, P_{\text{even}}, q_f)$ be a 2-CM where

- $ightharpoonup Q_{\text{even}} = \{q_0, q_1, q_2, q_f\}$
- $P_{\text{even}} = \{p_0, p_1, p_2, p_f\}, \text{ where }$

$$\begin{array}{ll} p_0: q_0 \mathtt{r}_1 \mathbb{S}_1 \leq q_1 \mathbb{S}_1 & p_1: q_1 \mathtt{r}_1 \mathbb{S}_1 \leq q_0 \mathbb{S}_1 \\ p_2: \mathbb{S}_0 q_0 \mathbb{S}_1 \leq \mathbb{S}_0 q_2 \mathbb{S}_1 & p_f: \mathbb{S}_1 q_2 \mathbb{S}_2 \leq \mathbb{S}_1 q_f \mathbb{S}_2 \end{array}$$

▶ Configuration: C = uqv, where $q \in \mathbb{Q}$ and $uv = \mathbb{S}_0\mathbf{r}_1^n\mathbb{S}_1\mathbf{r}_2^m\mathbb{S}_2$. $q_0\mathbb{S}_0\mathbf{r}_1^2\mathbb{S}_1\mathbb{S}_2$

The M_{even} machine

Let $M_{\text{even}} = (R_2, Q_{\text{even}}, P_{\text{even}}, q_f)$ be a 2-CM where

- $Q_{\text{even}} = \{q_0, q_1, q_2, q_f\}$
- $P_{\text{even}} = \{p_0, p_1, p_2, p_f\}, \text{ where }$

$$\begin{array}{ll} p_0: q_0 \mathtt{r}_1 \mathbb{S}_1 \leq q_1 \mathbb{S}_1 & p_1: q_1 \mathtt{r}_1 \mathbb{S}_1 \leq q_0 \mathbb{S}_1 \\ p_2: \mathbb{S}_0 q_0 \mathbb{S}_1 \leq \mathbb{S}_0 q_2 \mathbb{S}_1 & p_f: \mathbb{S}_1 q_2 \mathbb{S}_2 \leq \mathbb{S}_1 q_f \mathbb{S}_2 \end{array}$$

▶ Configuration: C = uqv, where $q \in \mathbb{Q}$ and $uv = \mathbb{S}_0 \mathbf{r}_1^n \mathbb{S}_1 \mathbf{r}_2^m \mathbb{S}_2$. $q_0 \mathbb{S}_0 \mathbf{r}_1^2 \mathbb{S}_1 \mathbb{S}_2 \leq_{\text{com}} \mathbb{S}_0 \mathbf{r}_1 q_0 \mathbf{r}_1 \mathbb{S}_1 \mathbb{S}_2$

The Meven machine

Let $M_{\text{even}} = (R_2, Q_{\text{even}}, P_{\text{even}}, q_f)$ be a 2-CM where

- $Q_{\text{even}} = \{q_0, q_1, q_2, q_f\}$
- $P_{\text{even}} = \{p_0, p_1, p_2, p_f\}, \text{ where }$

$$p_0: q_0 \mathbf{r}_1 \mathbb{S}_1 \le q_1 \mathbb{S}_1 \qquad p_1: q_1 \mathbf{r}_1 \mathbb{S}_1 \le q_0 \mathbb{S}_1 \\ p_2: \mathbb{S}_0 q_0 \mathbb{S}_1 \le \mathbb{S}_0 q_2 \mathbb{S}_1 \qquad p_f: \mathbb{S}_1 q_2 \mathbb{S}_2 \le \mathbb{S}_1 q_f \mathbb{S}_2$$

$$q_0 S_0 \mathbf{r}_1^2 S_1 S_2 \leq_{\text{com}} S_0 \mathbf{r}_1 q_0 \mathbf{r}_1 S_1 S_2 \leq^{p_0} S_0 \mathbf{r}_1 q_1 S_1 S_2$$

The M_{even} machine

Let $M_{\text{even}} = (R_2, Q_{\text{even}}, P_{\text{even}}, q_f)$ be a 2-CM where

- $Q_{\text{even}} = \{q_0, q_1, q_2, q_f\}$
- $P_{\text{even}} = \{p_0, p_1, p_2, p_f\}, \text{ where }$

$$\begin{array}{ll} p_0: q_0 \mathtt{r}_1 \mathbb{S}_1 \leq q_1 \mathbb{S}_1 & p_1: q_1 \mathtt{r}_1 \mathbb{S}_1 \leq q_0 \mathbb{S}_1 \\ p_2: \mathbb{S}_0 q_0 \mathbb{S}_1 \leq \mathbb{S}_0 q_2 \mathbb{S}_1 & p_f: \mathbb{S}_1 q_2 \mathbb{S}_2 \leq \mathbb{S}_1 q_f \mathbb{S}_2 \end{array}$$

$$\begin{array}{lll} q_0 \mathbf{S}_0 \mathbf{r}_1^2 \mathbf{S}_1 \mathbf{S}_2 \leq_{\mathbf{com}} \mathbf{S}_0 \mathbf{r}_1 q_0 \mathbf{r}_1 \mathbf{S}_1 \mathbf{S}_2 & \leq^{p_0} & \mathbf{S}_0 \mathbf{r}_1 q_1 \mathbf{S}_1 \mathbf{S}_2 \\ & \leq^{p_1} & \mathbf{S}_0 q_0 \mathbf{S}_1 \mathbf{S}_2 \end{array}$$

The Meyen machine

Let $M_{\text{even}} = (R_2, Q_{\text{even}}, P_{\text{even}}, q_f)$ be a 2-CM where

- $ightharpoonup Q_{\text{even}} = \{q_0, q_1, q_2, q_f\}$
- $P_{\text{even}} = \{p_0, p_1, p_2, p_f\}$, where

$$\begin{array}{ll} p_0: q_0 \mathtt{r}_1 \mathtt{S}_1 \leq q_1 \mathtt{S}_1 & p_1: q_1 \mathtt{r}_1 \mathtt{S}_1 \leq q_0 \mathtt{S}_1 \\ p_2: \mathtt{S}_0 q_0 \mathtt{S}_1 \leq \mathtt{S}_0 q_2 \mathtt{S}_1 & p_f: \mathtt{S}_1 q_2 \mathtt{S}_2 \leq \mathtt{S}_1 q_f \mathtt{S}_2 \end{array}$$

The Meyen machine

Let $M_{\text{even}} = (R_2, Q_{\text{even}}, P_{\text{even}}, q_f)$ be a 2-CM where

- $Q_{\text{even}} = \{q_0, q_1, q_2, q_f\}$
- $P_{\text{even}} = \{p_0, p_1, p_2, p_f\}, \text{ where }$

$$\begin{array}{ll} p_0: q_0 \mathtt{r}_1 \mathbb{S}_1 \leq q_1 \mathbb{S}_1 & p_1: q_1 \mathtt{r}_1 \mathbb{S}_1 \leq q_0 \mathbb{S}_1 \\ p_2: \mathbb{S}_0 q_0 \mathbb{S}_1 \leq \mathbb{S}_0 q_2 \mathbb{S}_1 & p_f: \mathbb{S}_1 q_2 \mathbb{S}_2 \leq \mathbb{S}_1 q_f \mathbb{S}_2 \end{array}$$

The Meyen machine

Let $M_{\text{even}} = (R_2, Q_{\text{even}}, P_{\text{even}}, q_f)$ be a 2-CM where

- $Q_{\text{even}} = \{q_0, q_1, q_2, q_f\}$
- $P_{\text{even}} = \{p_0, p_1, p_2, p_f\}$, where

$$p_0: q_0 \mathbf{r}_1 \mathbb{S}_1 \le q_1 \mathbb{S}_1 \qquad p_1: q_1 \mathbf{r}_1 \mathbb{S}_1 \le q_0 \mathbb{S}_1 \\ p_2: \mathbb{S}_0 q_0 \mathbb{S}_1 \le \mathbb{S}_0 q_2 \mathbb{S}_1 \qquad p_f: \mathbb{S}_1 q_2 \mathbb{S}_2 \le \mathbb{S}_1 q_f \mathbb{S}_2$$

The Meyen machine

Let $M_{\text{even}} = (R_2, Q_{\text{even}}, P_{\text{even}}, q_f)$ be a 2-CM where

- $Q_{\text{even}} = \{q_0, q_1, q_2, q_f\}$
- $P_{\text{even}} = \{p_0, p_1, p_2, p_f\}, \text{ where }$

$$\begin{array}{ll} p_0: q_0 \mathtt{r}_1 \mathbb{S}_1 \leq q_1 \mathbb{S}_1 & p_1: q_1 \mathtt{r}_1 \mathbb{S}_1 \leq q_0 \mathbb{S}_1 \\ p_2: \mathbb{S}_0 q_0 \mathbb{S}_1 \leq \mathbb{S}_0 q_2 \mathbb{S}_1 & p_f: \mathbb{S}_1 q_2 \mathbb{S}_2 \leq \mathbb{S}_1 q_f \mathbb{S}_2 \end{array}$$

The M_{even} machine

Let $M_{\text{even}} = (R_2, Q_{\text{even}}, P_{\text{even}}, q_f)$ be a 2-CM where

- $ightharpoonup Q_{\text{even}} = \{q_0, q_1, q_2, q_f\}$
- $P_{\text{even}} = \{p_0, p_1, p_2, p_f\}, \text{ where }$

$$p_0: q_0 \mathbf{r}_1 \mathbb{S}_1 \le q_1 \mathbb{S}_1 \qquad p_1: q_1 \mathbf{r}_1 \mathbb{S}_1 \le q_0 \mathbb{S}_1 \\ p_2: \mathbb{S}_0 q_0 \mathbb{S}_1 \le \mathbb{S}_0 q_2 \mathbb{S}_1 \qquad p_f: \mathbb{S}_1 q_2 \mathbb{S}_2 \le \mathbb{S}_1 q_f \mathbb{S}_2$$

$$\begin{array}{lll} q_0 \mathbb{S}_0 \mathbf{r}_1^2 \mathbb{S}_1 \mathbb{S}_2 \leq_{\text{com}} \mathbb{S}_0 \mathbf{r}_1 q_0 \mathbf{r}_1 \mathbb{S}_1 \mathbb{S}_2 & \leq^{p_0} & \mathbb{S}_0 \mathbf{r}_1 q_1 \mathbb{S}_1 \mathbb{S}_2 \\ & \leq^{p_1} & \mathbb{S}_0 q_0 \mathbb{S}_1 \mathbb{S}_2 \\ & \leq^{p_2} & \mathbb{S}_0 q_2 \mathbb{S}_1 \mathbb{S}_2 \\ & \leq_{\text{com}} & \mathbb{S}_0 \mathbb{S}_1 q_2 \mathbb{S}_2 \\ & \leq^{p_f} & \mathbb{S}_0 \mathbb{S}_1 q_f \mathbb{S}_2 \\ & \leq_{\text{com}} & q_f \mathbb{S}_0 \mathbb{S}_1 \mathbb{S}_2 \in \operatorname{Acc}(\mathbb{M}_{\text{even}}) \end{array}$$

The Meven machine

Let $M_{\text{even}} = (R_2, Q_{\text{even}}, P_{\text{even}}, q_f)$ be a 2-CM where

- $Q_{\text{even}} = \{q_0, q_1, q_2, q_f\}$
- $P_{\text{even}} = \{p_0, p_1, p_2, p_f\}, \text{ where }$

$$\begin{array}{ll} p_0: q_0 \mathbf{r}_1 \mathbb{S}_1 \leq q_1 \mathbb{S}_1 & p_1: q_1 \mathbf{r}_1 \mathbb{S}_1 \leq q_0 \mathbb{S}_1 \\ p_2: \mathbb{S}_0 q_0 \mathbb{S}_1 \leq \mathbb{S}_0 q_2 \mathbb{S}_1 & p_f: \mathbb{S}_1 q_2 \mathbb{S}_2 \leq \mathbb{S}_1 q_f \mathbb{S}_2 \end{array}$$

▶ Configuration: C = uqv, where $q \in Q$ and $uv = S_0 \mathbf{r}_1^n S_1 \mathbf{r}_2^m S_2$. $q_0 S_0 \mathbf{r}_1 S_1 S_2$

The Meyen machine

Let $M_{\text{even}} = (R_2, Q_{\text{even}}, P_{\text{even}}, q_f)$ be a 2-CM where

- $Q_{\text{even}} = \{q_0, q_1, q_2, q_f\}$
- $P_{\text{even}} = \{p_0, p_1, p_2, p_f\}, \text{ where }$

$$p_0: q_0 \mathbf{r}_1 \mathbb{S}_1 \le q_1 \mathbb{S}_1 \qquad p_1: q_1 \mathbf{r}_1 \mathbb{S}_1 \le q_0 \mathbb{S}_1 \\ p_2: \mathbb{S}_0 q_0 \mathbb{S}_1 \le \mathbb{S}_0 q_2 \mathbb{S}_1 \qquad p_f: \mathbb{S}_1 q_2 \mathbb{S}_2 \le \mathbb{S}_1 q_f \mathbb{S}_2$$

$$q_0 S_0 \mathbf{r}_1 S_1 S_2 \leq_{\mathbf{com}} S_0 q_0 \mathbf{r}_1 S_1 S_2$$

The Meyen machine

Let $M_{\text{even}} = (R_2, Q_{\text{even}}, P_{\text{even}}, q_f)$ be a 2-CM where

- $ightharpoonup Q_{\text{even}} = \{q_0, q_1, q_2, q_f\}$
- $P_{\text{even}} = \{p_0, p_1, p_2, p_f\}, \text{ where }$

$$egin{array}{ll} p_0: q_0 \mathbf{r}_1 \mathbb{S}_1 \leq q_1 \mathbb{S}_1 & p_1: q_1 \mathbf{r}_1 \mathbb{S}_1 \leq q_0 \mathbb{S}_1 \\ p_2: \mathbb{S}_0 q_0 \mathbb{S}_1 \leq \mathbb{S}_0 q_2 \mathbb{S}_1 & p_f: \mathbb{S}_1 q_2 \mathbb{S}_2 \leq \mathbb{S}_1 q_f \mathbb{S}_2 \end{array}$$

$$q_0 S_0 \mathbf{r}_1 S_1 S_2 \leq_{\text{com}} S_0 q_0 \mathbf{r}_1 S_1 S_2 \leq^{p_0} S_0 q_1 S_1 S_2$$

The Meyen machine

Let $M_{\text{even}} = (R_2, Q_{\text{even}}, P_{\text{even}}, q_f)$ be a 2-CM where

- $ightharpoonup Q_{\text{even}} = \{q_0, q_1, q_2, q_f\}$
- $P_{\text{even}} = \{p_0, p_1, p_2, p_f\}, \text{ where }$

$$egin{array}{ll} p_0: q_0 \mathbf{r}_1 \mathbb{S}_1 \leq q_1 \mathbb{S}_1 & p_1: q_1 \mathbf{r}_1 \mathbb{S}_1 \leq q_0 \mathbb{S}_1 \\ p_2: \mathbb{S}_0 q_0 \mathbb{S}_1 \leq \mathbb{S}_0 q_2 \mathbb{S}_1 & p_f: \mathbb{S}_1 q_2 \mathbb{S}_2 \leq \mathbb{S}_1 q_f \mathbb{S}_2 \end{array}$$

$$\begin{array}{lll} q_0 \mathbf{S}_0 \mathbf{r}_1 \mathbf{S}_1 \mathbf{S}_2 \leq_{\mathbf{com}} \mathbf{S}_0 q_0 \mathbf{r}_1 \mathbf{S}_1 \mathbf{S}_2 & \leq^{p_0} & \mathbf{S}_0 q_1 \mathbf{S}_1 \mathbf{S}_2 \\ & \Rightarrow & q_0 \mathbf{S}_0 \mathbf{r}_1 \mathbf{S}_1 \mathbf{S}_2 \not\in \mathrm{Acc}(\mathtt{M}_{\mathrm{even}}) \end{array}$$

The Meven machine

Let $M_{\text{even}} = (R_2, Q_{\text{even}}, P_{\text{even}}, q_f)$ be a 2-CM where

- $ightharpoonup Q_{\text{even}} = \{q_0, q_1, q_2, q_f\}$
- $P_{\text{even}} = \{p_0, p_1, p_2, p_f\}, \text{ where }$

$$egin{array}{ll} p_0: q_0 \mathbf{r}_1 \mathbb{S}_1 \leq q_1 \mathbb{S}_1 & p_1: q_1 \mathbf{r}_1 \mathbb{S}_1 \leq q_0 \mathbb{S}_1 \\ p_2: \mathbb{S}_0 q_0 \mathbb{S}_1 \leq \mathbb{S}_0 q_2 \mathbb{S}_1 & p_f: \mathbb{S}_1 q_2 \mathbb{S}_2 \leq \mathbb{S}_1 q_f \mathbb{S}_2 \end{array}$$

$$\begin{array}{lll} q_0 \mathbf{S}_0 \mathbf{r}_1 \mathbf{S}_1 \mathbf{S}_2 \leq_{\mathbf{com}} \mathbf{S}_0 q_0 \mathbf{r}_1 \mathbf{S}_1 \mathbf{S}_2 & \leq^{p_0} & \mathbf{S}_0 q_1 \mathbf{S}_1 \mathbf{S}_2 \\ & \Rightarrow & q_0 \mathbf{S}_0 \mathbf{r}_1 \mathbf{S}_1 \mathbf{S}_2 \not \in \mathrm{Acc}(\mathtt{M}_{\mathrm{even}}) \end{array}$$

$$q_0 S_0 \mathbf{r}_1^n S_1 \mathbf{r}_2^m S_2 \in Acc(\mathbf{M}_{even})$$
 iff n is even and $m = 0$.

We are interested in whether the set $\mathrm{Acc}(\mathtt{M})$ is *resilient* to certain inference rules corresponding to certain inequations.

We are interested in whether the set Acc(M) is *resilient* to certain inference rules corresponding to certain inequations.

▶ We are interested in whether the set Acc(M) is *resilient* to certain inference rules corresponding to certain inequations.

We are interested in whether the set $\mathrm{Acc}(\mathtt{M})$ is *resilient* to certain inference rules corresponding to certain inequations.

▶ We are interested in whether the set Acc(M) is *resilient* to certain inference rules corresponding to certain inequations.

E.g.,

 $ightharpoonup x \le x^2$ is admissible in M if

$$ux^2v \in Acc(M) \implies uxv \in Acc(M).$$

We are interested in whether the set Acc(M) is *resilient* to certain inference rules corresponding to certain inequations.

▶ We are interested in whether the set Acc(M) is *resilient* to certain inference rules corresponding to certain inequations.

E.g.,

• $x \le x^2$ is admissible in M if

$$ux^2v \in Acc(M) \implies uxv \in Acc(M).$$

• $x \le x^2 \lor x^4$ is admissible in M if

$$ux^2v, ux^4v \in Acc(M) \implies uxv \in Acc(M).$$

 ${\rm M_{even}} \ {\rm and} \ \varepsilon: x \leq x^2 \vee x^4$

$$q_0 \mathbf{r}_1^3$$

$$q_0 \mathbf{r}_1^3 = q_0 \mathbf{r}_1^2 \cdot \overbrace{(\mathbf{r}_1)}^x$$

$$q_0\mathbf{r}_1^3 = q_0\mathbf{r}_1^2 \cdot \overbrace{(\mathbf{r}_1)}^x \leq^{\varepsilon} q_0\mathbf{r}_1^2 \cdot (\overbrace{\mathbf{r}_1^2}^2 \vee \overbrace{\mathbf{r}_1^4}^x)$$

Admissibility can be achieved by adapting the standard encoding in a number of way.

Admissibility can be achieved by adapting the standard encoding in a number of way.

E.g., representing n-many tokens in a register by $\phi(n)$, for some (computable) function ϕ on \mathbb{N} .

What about commutativity $xy \leq yx$?

Admissibility can be achieved by adapting the standard encoding in a number of way.

E.g., representing n-many tokens in a register by $\phi(n)$, for some (computable) function ϕ on \mathbb{N} .

What about commutativity $xy \leq yx$?

► Impossible for the standard encoding. Commutative ordered monoids have a decidable word problem! [Mayr 1984]

Admissibility can be achieved by adapting the standard encoding in a number of way.

E.g., representing n-many tokens in a register by $\phi(n)$, for some (computable) function ϕ on \mathbb{N} .

What about commutativity $xy \leq yx$?

- ► Impossible for the standard encoding. Commutative ordered monoids have a decidable word problem! [Mayr 1984]
- Possible by paying the price of adding ∨ to the signature. [Lincoln, Mitchell, Scedrov, Shankar 1992]

Admissibility can be achieved by adapting the standard encoding in a number of way.

E.g., representing n-many tokens in a register by $\phi(n)$, for some (computable) function ϕ on \mathbb{N} .

What about commutativity $xy \leq yx$?

- ► Impossible for the standard encoding. Commutative ordered monoids have a decidable word problem! [Mayr 1984]
- Possible by paying the price of adding ∨ to the signature. [Lincoln, Mitchell, Scedrov, Shankar 1992]

And-branching Counter Machines

An ACM is a machine $M = (R_k, Q, P, q_f)$ is a CM containing no zero-test instruction but allows **branching instructions**

$$q \le q' \lor q''$$
.

Acceptance and Quasi-equations

Let $\mathtt{M}=(\mathtt{R}_k,\mathtt{Q},\mathtt{P},q_f)$ be a counter machine.

▶ Let $P_{com} = P \cup \{qx = xq : q \in Q, x \in R_k \cup Stp_k\}$

Acceptance and Quasi-equations

Let $M = (R_k, Q, P, q_f)$ be a counter machine.

- ▶ Let $P_{com} = P \cup \{qx = xq : q \in Q, x \in R_k \cup Stp_k\}$
- ▶ For a monoid term u, we define the quasi-equation $\mathrm{acc}_{\mathtt{M}}(u)$ to be

$$\&P_{com} \implies u \le C_f$$

where for CM's $C_f = q_f S_0 S_1 \cdots S_k$ and ACM's $C_f = q_f$.

Lemma

If u is accepted in M then $\mathsf{RL} \models \mathrm{acc}_{\mathtt{M}}(u)$

Acceptance and Quasi-equations

Let $M = (R_k, Q, P, q_f)$ be a counter machine.

- ▶ Let $P_{com} = P \cup \{qx = xq : q \in Q, x \in R_k \cup Stp_k\}$
- ▶ For a monoid term u, we define the quasi-equation $\mathrm{acc}_{\mathtt{M}}(u)$ to be

$$\&P_{com} \implies u \le C_f$$

where for CM's $C_f = q_f S_0 S_1 \cdots S_k$ and ACM's $C_f = q_f$.

Lemma

If u is accepted in M then $RL \models acc_{\mathtt{M}}(u)$

Completeness is achieved by constructing a counter-model using the theory of **residuated frames**.

Residuated frames

Definition

A **residuated frame** is a structure $\mathbf{W} = (W, W', N, \circ, \backslash \backslash, //, 1)$, s.t.

- $(W, \circ, 1)$ is a monoid and W' is a set.
- $ightharpoonup N \subset W \times W'$
- \blacktriangleright \\ : $W \times W' \to W'$ and $\# : W' \times W \to W'$ such that
- N is **nuclear**, i.e. for all $u, v \in W$ and $w \in W'$, $(u \circ v) N w$ iff u N (w //v) iff $v N (u \setminus w)$.

Residuated frames

Definition

A **residuated frame** is a structure $\mathbf{W} = (W, W', N, \circ, \backslash \backslash, //, 1)$, s.t.

- $(W, \circ, 1)$ is a monoid and W' is a set.
- $ightharpoonup N \subset W \times W'$
- \blacktriangleright \\ : $W \times W' \to W'$ and $\# : W' \times W \to W'$ such that
- N is **nuclear**, i.e. for all $u, v \in W$ and $w \in W'$, $(u \circ v) N w$ iff u N (w // v) iff $v N (u \setminus w)$.

$$\wp(W) \overset{\triangleright}{\underset{\triangleleft}{\rightleftarrows}} \wp(W'): \quad X^{\triangleright} = \{y \in W' : X \ N \ y\}$$

$$Y^{\triangleleft} = \{x \in W : x \ N \ Y\}$$

- ▶ (▷, △) is a Galois connection.
- ▶ The map $X \stackrel{\gamma_N}{\longmapsto} X^{\bowtie}$ is a closure operator on $\mathcal{P}(W)$.
- ▶ N is nuclear iff γ_N is a nucleus.

Residuated frames cont.

Theorem [Galatos & Jipsen 2013]

$$\mathbf{W}^+ := (\gamma_N[\mathcal{P}(W)], \cup_{\gamma_N}, \cap, \circ_{\gamma_N}, \setminus, /, \gamma_N(\{1\})),$$

$$X \cup_{\gamma_N} Y = \gamma_N(X \cup Y)$$
 and $X \circ_{\gamma_N} Y = \gamma_N(X \circ Y)$,

is a residuated lattice.

Completeness of Encoding

Let $\mathtt{M} = (\mathtt{R}_k, \mathtt{Q}, \mathtt{P}, q_f)$ be a counter machine.

- $\blacktriangleright \ W_{\mathtt{M}} = (\mathtt{Q} \cup \mathtt{R}_k \cup \mathtt{Stp}_k)^*$
- $ightharpoonup W_{
 m M}' = W imes W$
- $\triangleright x N_{\mathtt{M}}(u,v) \iff uxv \in \mathrm{Acc}(\mathtt{M})$

Theorem

 $\mathbf{W}_{\mathtt{M}}$ is a residuated frame.

Proof.

Let $\mathbf{M} = (\mathbf{R}_k, \mathbf{Q}, \mathbf{P}, q_f)$ be a counter machine.

Let $M = (R_k, Q, P, q_f)$ be a counter machine.

Theorem

For a variety $\mathcal{V} \subseteq \mathsf{RL}$, if $\mathbf{W}_{\mathtt{M}}^+ \in \mathcal{V}$ then for all u

$$\mathcal{V} \models \mathrm{acc}_{\mathtt{M}}(u) \iff u \in \mathrm{Acc}(\mathtt{M}).$$

Let $M = (R_k, Q, P, q_f)$ be a counter machine.

Theorem

For a variety $\mathcal{V} \subseteq \mathsf{RL}$, if $\mathbf{W}_{\mathtt{M}}^+ \in \mathcal{V}$ then for all u

$$\mathcal{V} \models \mathrm{acc}_{\mathtt{M}}(u) \iff u \in \mathrm{Acc}(\mathtt{M}).$$

Corollary

If $\mathbf{W}_{\mathtt{M}}^{+} \in \mathcal{V}$, then the word problem for \mathcal{V} in the $\{\leq,\cdot,1\}$ -fragment is at least as hard as acceptance in \mathtt{M} . In particular, if \mathtt{M} has an undecidable set of accepted configurations, then the word problem for \mathcal{V} is undecidable.

In RL:

▶ Every equation s=t over the signature $\{\lor, \cdot, 1\}$ can be written as the conjunction of *basic (in)equations* of the form

$$w \leq v_1 \vee \cdots \vee v_k$$

where $w, v_1, ..., v_k$ are monoid terms over a set of variables X.

In RL:

▶ Every equation s=t over the signature $\{\lor, \cdot, 1\}$ can be written as the conjunction of *basic (in)equations* of the form

$$w \leq v_1 \vee \cdots \vee v_k$$

where $w, v_1, ..., v_k$ are monoid terms over a set of variables X.

These basic equations can be linearized in a uniform way producing an equivalent simple equation of the form

$$[R]: x_1 x_2 \cdots x_n \le \bigvee_{r \in R} r$$

where $x_1, ..., x_n \in X$ and $R \subseteq X^*$.

In RL:

▶ Every equation s=t over the signature $\{\lor, \cdot, 1\}$ can be written as the conjunction of *basic (in)equations* of the form

$$w \leq v_1 \vee \cdots \vee v_k$$

where $w, v_1, ..., v_k$ are monoid terms over a set of variables X.

These basic equations can be linearized in a uniform way producing an equivalent simple equation of the form

$$[R]: x_1 x_2 \cdots x_n \le \bigvee_{r \in R} r$$

where $x_1,...,x_n \in X$ and $R \subseteq X^*$.

$$(\forall \mathbf{u})(\forall \mathbf{v}) \mathbf{u}^2 \mathbf{v} \leq \mathbf{u}^3 \vee \mathbf{u} \mathbf{v}$$

In RL:

▶ Every equation s=t over the signature $\{\lor, \cdot, 1\}$ can be written as the conjunction of *basic (in)equations* of the form

$$w \leq v_1 \vee \cdots \vee v_k$$

where $w, v_1, ..., v_k$ are monoid terms over a set of variables X.

These basic equations can be linearized in a uniform way producing an equivalent simple equation of the form

$$[R]: x_1 x_2 \cdots x_n \le \bigvee_{r \in R} r$$

where $x_1, ..., x_n \in X$ and $R \subseteq X^*$.

$$(\forall u)(\forall v) u^2 v \leq u^3 \vee uv$$

is equivalent to, via the substitution $\sigma \colon \underline{u} \overset{\sigma}{\mapsto} x \vee \underline{y}$ and $v \overset{\sigma}{\mapsto} z$,

$$(\forall x)(\forall y)(\forall z) \ xyz \le x^3 \lor x^2y \lor xy^2 \lor y^3 \lor xz \lor yz$$

Simple Equations and Simple Rules

Any simple equation [R] corresponds to a **simple structural rule** (R). For example

$$[\mathbf{R}]: x\mathbf{y} \leq x^2 \vee \mathbf{y} \iff \frac{\Delta_1, \Gamma, \Gamma, \Delta_2 \Rightarrow \Pi \quad \Delta_1, \mathbf{\Psi}, \Delta_2 \Rightarrow \Pi}{\Delta_1, \Gamma, \mathbf{\Psi}, \Delta_2 \Rightarrow \Pi} \ (\mathbf{R})$$

Simple Equations and Simple Rules

Any simple equation $[\mathrm{R}]$ corresponds to a simple structural rule $(\mathrm{R}).$ For example

$$[\mathbf{R}]: x\mathbf{y} \leq x^2 \vee \mathbf{y} \iff \frac{\Delta_1, \Gamma, \Gamma, \Delta_2 \Rightarrow \Pi \quad \Delta_1, \mathbf{\Psi}, \Delta_2 \Rightarrow \Pi}{\Delta_1, \Gamma, \mathbf{\Psi}, \Delta_2 \Rightarrow \Pi} \ (\mathbf{R})$$

In general,

$$[R]: x_1 \cdots x_n \le \bigvee_{r \in R} r \iff \frac{\{\Delta_1, r^{FL}(\Gamma_1, \dots, \Gamma_n), \Delta_2 \Rightarrow \Pi\}_{r \in R}}{\Delta_1, \Gamma_1, \dots, \Gamma_n, \Delta_2 \Rightarrow \Pi}$$
(R)

Theorem [Galatos & Jipsen 2013]

Extensions of FL by simple rules enjoy cut-elimination.

Simple equations and Residuated Frames

Lemma [Galatos & Jipsen 2013]

All simple equations ε are preserved by $(-)^+$:

$$\mathbf{W} \models (\varepsilon) \text{ iff } \mathbf{W}^+ \models \varepsilon,$$

where for all $x_1, \ldots, x_n \in W$ and $w \in W'$,

$$\frac{r_1(x_1,...,x_n) N w \cdots r_k(x_1,...,x_n) N w}{x_1 \circ \cdots \circ x_n N w} (\varepsilon)$$

Simple equations and Residuated Frames

Lemma [Galatos & Jipsen 2013]

All simple equations ε are preserved by $(-)^+$:

$$\mathbf{W} \models (\varepsilon) \text{ iff } \mathbf{W}^+ \models \varepsilon,$$

where for all $x_1, \ldots, x_n \in W$ and $w \in W'$,

$$\frac{r_1(x_1,...,x_n) N w \cdots r_k(x_1,...,x_n) N w}{x_1 \circ \cdots \circ x_n N w} (\varepsilon)$$

Admissibility in $\mathbf{W}_{\mathtt{M}}$

 $\mathbf{W}_\mathtt{M} \models (arepsilon)$ is equivalently stated as

$$\frac{ur_1(x_1,...,x_n)v \in Acc(\mathtt{M}) \cdots ur_k(x_1,...,x_n)v \in Acc(\mathtt{M})}{u \cdot x_1 \cdots x_n \cdot v \in Acc(\mathtt{M})} (\varepsilon)$$

Undecidable word problems

Theorem (Horčík 2015)

Let ε be a simple equation that "always contains a square as a subword" on its RHS. Then RL $+ \varepsilon$ has an undecidable word problem witnessed in its ordered monoid fragment.

Undecidable word problems

Theorem (Horčík 2015)

Let ε be a simple equation that "always contains a square as a subword" on its RHS. Then RL + ε has an undecidable word problem witnessed in its ordered monoid fragment.

Theorem (Galatos and S.)

Let ε be a *spineless* simple equation. Then RL $+ \varepsilon$ has an undecidable word problem witnessed in its ordered monoid fragment and CRL $+ \varepsilon$ has an undecidable word problem witnessed in its idempotent semiring fragment.

Thank you!