On commutative (pseudo-) BCK-algebras

Jan Kühr

Joint work with Petr Ševčík

- BCK-algebras are the $\{\rightarrow,1\}$ -subreducts of commutative integral residuated lattices.
- Pseudo-BCK-algebras or biresiduation algebras are the $\{\setminus,/,1\}$ -subreducts of integral residuated lattices.
- Pseudo-ŁBCK-algebras or cone algebras are the $\{\setminus,/,1\}$ -subreducts of integral GMV-algebras, i.e., integral residuated lattices satisfying $(x/y)\setminus x=y/(x\setminus y)$.
- Commutative pseudo-BCK-algebras are pseudo-BCK-algebras satisfying $(x/y)\backslash x=y/(x\backslash y)$. Not BCK-algebras.

A pseudo-BCK-algebra or a biresiduation algebra is an algebra ${\bf A}=(A,\backslash,/,1)$ of type (2,0,0) satisfying the equations

$$((x \setminus z)/(y \setminus z))/(x \setminus y) = 1, \quad (y/x) \setminus ((z/y) \setminus (z/x)) = 1,$$

$$1 \setminus x = x, \quad x/1 = x,$$

$$x \setminus 1 = 1, \quad 1/x = 1,$$

and the quasi-equation

$$x \setminus y = 1$$
 & $y \setminus x = 1$ \Rightarrow $x = y$.

A BCK-algebra is a pseudo-BCK-algebra satisfying $x \setminus y = y/x$. The underlying poset is defined by

$$x \leqslant y$$
 iff $x \setminus y = 1$ iff $y/x = 1$.

A commutative pseudo-BCK-algebra is a pseudo-BCK-algebra satisfying the equation

$$(x/y)\backslash x = y/(x\backslash y).$$

In this case the underlying poset is a join-semilattice where

$$x \lor y = (x/y) \backslash x = y/(x \backslash y).$$

A pseudo-ŁBCK-algebra (or a cone algebra) is a commutative pseudo-BCK-algebra satisfying the equation

$$(x \backslash y) \lor (y \backslash x) = 1.$$

The class of commutative pseudo-BCK-algebras is a variety – congruence distributive and 1-regular.

Interval algebras: In any commutative pseudo-BCK-algebra $\mathbf{A}=(A,\backslash,/,1)$, all intervals $[a,1]\subseteq A$ are subuniverses of \mathbf{A} . In fact, the pseudo-BCK-algebra $[\mathbf{a},\mathbf{1}]=([a,1],\backslash,/,1)$ is the $\{\backslash,/,1\}$ -reduct of the bounded GMV-algebra $[\mathbf{a},\mathbf{1}]^+=([a,1],\vee,\wedge_a,\cdot_a,\backslash,/,a,1)$, where

$$x \cdot_a y = ((a/y)/x) \backslash a = a/(y \backslash (x \backslash a)),$$

$$x \wedge_a y = ((a/x) \vee (a/y)) \backslash a = a/((x \backslash a) \vee (y \backslash a)),$$

for all $x, y \in [a, 1]$.

The algebras C_n : For any integer $n \ge 2$, let

$$C_n = \{0, \frac{1}{n-1}, \dots, \frac{n-2}{n-1}, 1\}.$$

The algebra $\mathbf{C}_n = (C_n, \rightarrow, 1)$ with

$$x \to y = \min\{1, 1 - x + y\}$$

is a linearly ordered ŁBCK-algebra. Up to isomorphism, \mathbf{C}_n is the only n-element linearly ordered ŁBCK-algebra.

Komori (1978): The varieties of ŁBCK-algebras are

$$\mathfrak{T} \subset \mathfrak{C}_2 \subset \cdots \subset \mathfrak{C}_n \subset \cdots \subset \bigvee_{n \geq 2} \mathfrak{C}_n,$$

where $\mathscr{C}_n = V(\mathbf{C}_n)$.

Kowalski (1995): The covers of \mathscr{C}_2 is the lattice of varieties of BCK-algebras are \mathscr{C}_3 and $V(\mathbf{H}_3)$, where \mathbf{H}_3 is $(\{0,1/2,1\},\rightarrow,1)$ with $1/2 \rightarrow 0 = 0$.

The algebras $C_{n,\kappa}$: For any integer $n \geqslant 3$ and any cardinal $\kappa \geqslant 1$, the bottom element in C_n is replaced with κ minimal elements. In particular, we let $D_n = C_{n,2}$.

There are 2^{\aleph_0} varieties of commutative BCK-algebras.

For any $\emptyset \neq N \subseteq \{3,4,5,\dots\}$, let $\mathfrak{D}_N = V(\{\mathbf{D}_n \colon n \in N\})$. We know that \mathbf{D}_m satisfies

- $x^n \to y = x^{n-1} \to y$ iff $m \leqslant n$,
- $((x \to y) \lor (y \to x))^{n-2} \to y \leqslant (x \to y) \lor (y \to x)$ iff $m \geqslant n$.

Here $u^k \to v$ means $u \to (\cdots \to (u \to v) \dots)$.

Then ..., whence $\mathbf{D}_m \in \mathfrak{D}_N$ iff $m \in N$.

A commutative pseudo-BCK-algebra ${\bf A}$ is a pseudo-ŁBCK-algebra iff it satisfies the following condition, for all $a,b,c\in A$:

if
$$a \lor b \leqslant c$$
 and $c \backslash a = c \backslash b$, then $a = b$.

We say that (a, b, c) is a forbidden triple in **A** if

if
$$a \lor b \leqslant c$$
, $c \backslash a = c \backslash b$ and $a \neq b$.

In this case, a, b don't have a common lower bound.

We say that a commutative pseudo-BCK-algebra $\bf A$ is sectionally of finite length if every interval [a,1] is of finite length (as a lattice).

If a commutative pseudo-BCK-algebra ${\bf A}$ is sectionally of finite length, then ${\bf A}$ is a BCK-algebra.

Let ${\bf A}$ be a commutative BCK-algebra that is not an ŁBCK-algebra and let (a,b,c) be a forbidden triple in ${\bf A}$. Then

- \bullet $a \rightarrow b = b \rightarrow a$;
- (a,b,z) is a forbidden triple iff $z \in [a \lor b, a \to b]$;
- for every $x \in [a, a \vee b]$ there is a unique $y \in [b, a \vee b]$ such that (x, y, z) is a forbidden triple for every $z \in [a \vee b, a \rightarrow b]$.

Let A be a commutative BCK-algebra sectionally of finite length. Then A is *not* an ŁBCK-algebra if and only if A contains a subalgebra isomorphic to D_n for some integer $n \geqslant 3$.

Suppose that ${\bf A}$ is not an ŁBCK-algebra; then it has a forbidden triple, say (a,b,c). We may assume that the element a is maximal in the sense that whenever (x,y,z) is a forbidden triple such that $x\geqslant a$, then x=a. Then:

- ullet a,b are covered by $a\vee b$ and $a\to b=b\to a$ is a coatom;
- $B = \{a, b\} \cup [a \lor b, 1]$ is a subuniverse of **A**;
- $a \rightarrow b = b \rightarrow a$ is the only coatom in $[a \lor b, 1]$;
- $[a \lor b, 1]$ is a finite chain;
- $\mathbf{B} \cong \mathbf{D}_n$ for some $n \geqslant 3$.

The covers of the variety $\mathscr{C}_{n,p}$ (for $n \geqslant 3$, $p \geqslant 1$) in the lattice of varieties of commutative BCK-algebras are the varieties:

- ullet $\mathscr{C}_{n,p} \vee \mathscr{C}_{n+1}$,
- \bullet $\mathscr{C}_{n,p+1}$,
- if $n \geqslant 4$, then $\mathscr{C}_{n,p} \vee \mathfrak{D}_k$ for every $k \in \{3, \ldots, n-1\}$.

Every variety of commutative BCK-algebras that properly contains $\mathscr{C}_{n,p}$ contains at least one of these covers.

Let \mathcal{K} be a variety of commutative BCK-algebras such that $\mathscr{C}_{n,p} \subsetneq \mathcal{K}$.

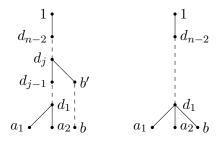
Case 1 – There is an ŁBCK-algebra in $\mathrm{Si}(\mathcal{K}\setminus\mathcal{C}_{n,p})$: If $\mathbf{A}\in\mathrm{Si}(\mathcal{K}\setminus\mathcal{C}_{n,p})$, then \mathbf{A} is linearly ordered and $|A|\geqslant n+1$, whence \mathbf{C}_{n+1} is isomorphic to a subalgebra of \mathbf{A} , and so $\mathcal{C}_{n,p}\vee\mathcal{C}_{n+1}\subseteq\mathcal{K}$.

Case 2 — There is no ŁBCK-algebra in $\mathrm{Si}(\mathcal{K}\setminus\mathcal{C}_{n,p})$: If $\mathbf{A}\in\mathrm{Si}(\mathcal{K}\setminus\mathcal{C}_{n,p})$, then for every $e\in A$, the subalgebra $[\mathbf{e},\mathbf{1}]$ is a linearly ordered ŁBCK-algebra and $|[e,1]|\leqslant n$. Hence \mathbf{A} is sectionally of finite length and contains a subalgebra isomorphic to \mathbf{D}_m for some $m\leqslant n$.

Case 2a – Some algebra in $\mathrm{Si}(\mathcal{K}\setminus\mathscr{C}_{n,p})$ has a subalgebra isomorphic to \mathbf{D}_m for some m< n: Then $\mathscr{C}_{n,p}\vee \mathfrak{D}_m\subseteq \mathscr{K}$.

Case 2b – No algebra in $\mathrm{Si}(\mathcal{K} \setminus \mathcal{C}_{n,p})$ contains a subalgebra isomorphic to \mathbf{D}_m for m < n: If $\mathbf{A} \in \mathrm{Si}(\mathcal{K} \setminus \mathcal{C}_{n,p})$, then \mathbf{A} has a subalgebra $\mathbf{B} \cong \mathbf{D}_n$ with universe $B = \{a_1, a_2, d_1, \ldots, d_{n-2}, 1\}$.

For p=1, $\mathbf{D}_n \in \mathrm{Si}(\mathcal{K} \setminus \mathscr{C}_n)$ and so $\mathscr{C}_{n,2} = \mathfrak{D}_n \subseteq \mathscr{K}$. For $p \geqslant 2$, $\mathbf{D}_n \in \mathscr{C}_{n,p}$ and so **B** is a proper subalgebra of **A**:



It follows that $\mathbf{A} \cong \mathbf{C}_{n,\kappa}$ for some $\kappa \geqslant p+1$, whence $\mathscr{C}_{n,p+1} \subseteq \mathscr{K}$.

The variety $\mathscr{C}_{n,p}$ (for $n \geqslant 3$, $p \geqslant 2$) is axiomatized, relative to commutative BCK-algebras, by the equations

$$x^{n} \to y = x^{n-1} \to y,$$

$$((x \to y) \lor (y \to x))^{n-2} \to y \leqslant (x \to y) \lor (y \to x),$$

$$\bigvee_{0 \leqslant i \neq j \leqslant p} (x_{i} \to x_{j}) = 1.$$

Here $u^k \to v$ means $u \to (\cdots \to (u \to v) \dots)$.

A (normal) filter in a commutative pseudo-BCK-algebra ${\bf A}$ is $F\subseteq A$ such that:

- $1 \in F$;
- if $x, x \setminus y \in F$, then $y \in F$;
- if $x \in F$, then $\lambda_y(x) = (x \setminus y) \setminus y$, $\rho_y(x) = y/(y/x) \in F$.

The map $\theta \mapsto [1]_{\theta}$ is an isomorphism $\mathbf{Con}(\mathbf{A}) \cong \mathbf{Fi}(\mathbf{A})$.

Let \mathcal{U}, \mathcal{V} be varieties of commutative pseudo-BCK-algebras. The Maltsev product $\mathcal{U} \circ \mathcal{V}$ is the class of those commutative pseudo-BCK-algebras \mathbf{A} which have a filter $F \in \mathrm{Fi}(\mathbf{A})$ such that $\mathbf{F} \in \mathcal{U}$ and $\mathbf{A}/F \in \mathcal{V}$.

 $\mathscr{C}_n \circ \mathscr{C}_n = \mathscr{C}_n$ for every $n \geqslant 1$, and $\mathscr{C}_{n,p} \circ \mathscr{C}_{n,p} = \mathscr{C}_{n,p}$ for every $n \geqslant 3, p \geqslant 2$.

The varieties of commutative (pseudo-) BCK-algebras form a non-commutative po-monoid.

Let ${\bf A}$ be a commutative pseudo-BCK-algebra. We say that an element $a\in A$ is idempotent if

$$a \backslash (a \backslash x) = a \backslash x \text{ for all } x \in A,$$

or equivalently,

$$a \lor (a \backslash x) = 1$$
 for all $x \in A$.

The idempotent elements of ${\bf A}$ form a subalgebra of ${\bf A}$, ${\bf I}({\bf A})$. Moreover, ${\bf I}({\bf A}) \in \mathscr{C}_2$.

We say that a commutative pseudo-BCK-algebra $\bf A$ has enough idempotents if $A=\bigcup_{a\in I(\bf A)}[a,1].$

For any $a \in A$, both [a,1] and $a^{\perp} = \{x \in A : a \vee x = 1\}$ are subuniverses of \mathbf{A} .

If $a \in I(\mathbf{A})$, then

- $a \setminus x = x/a$ for all $x \in A$,
- the map $h_a \colon x \mapsto (a \backslash x, a \vee x)$ is an embedding of \mathbf{A} into $\mathbf{a}^{\perp} \times [\mathbf{a}, \mathbf{1}].$

We call $a \in I(\mathbf{A})$ central if h_a is an isomorphism.

The central elements of A form a subalgebra of I(A), C(A).

Suppose that a commutative pseudo-BCK-algebra ${f A}$ has enough idempotents and let

$$\mathbf{M} = \prod_{e \in I(\mathbf{A})} \left[\mathbf{e}, \mathbf{1}
ight] \ldots$$
 pseudo-ŁBCK-algebra,

$$\mathbf{M}^{+} = \prod_{e \in I(\mathbf{A})} \left[\mathbf{e}, \mathbf{1}
ight]^{+} \ldots$$
 bounded GMV-algebra.

- The map $f \colon x \mapsto (x \vee e)_{e \in I(\mathbf{A})}$ is an embedding of \mathbf{A} into \mathbf{M} .
- A is pseudo-ŁBCK-algebra.
- For every $x \in A$, $x \in I(\mathbf{A})$ iff $f(x) \in I(\mathbf{M})$.

Let's identify A with the subalgebra f[A] of M, which is the reduct of M^+ . Let

$$L = \{a_1 \wedge \cdots \wedge a_n \colon a_i \in A\}.$$

Then $(L,\cdot,\backslash,/,1)$ is a subalgebra of the GMV-algebra $(M,\cdot,\backslash,/,1)$. In addition, the pseudo-ŁBCK-algebra $(L,\backslash,/,1)$ has enough idempotents and A is an up-set in L.

• If $0 \in L$, then $\mathbf{L} = (L,\cdot,\setminus,/,0,1)$ is a subalgebra of the bounded GMV-algebra $\mathbf{M}^+.$ Let

$$\mathbf{K_A} = \mathbf{L} \times \mathbf{C}_2^+$$
.

Clearly, $f_{\bf A}\colon x\mapsto (f(x),1)$ is an embedding of $\bf A$ into ${\bf K}_{\bf A}^-={\bf L}^-\times {\bf C}_2.$

 \bullet If $0 \notin L$, let

$$L^{\sim}=\{x^{\sim}\colon x\in L\}\quad\text{and}\quad L^{-}=\{x^{-}\colon x\in L\}$$

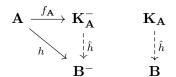
where $x^{\sim}=x\backslash 0$ and $x^{-}=0/x$ are the negations in $\mathbf{M}^{+}.$ Then $L^{\sim}=L^{-}$, $L\cap L^{\sim}=\emptyset$ and

$$\mathbf{K_A} = (L \cup L^{\sim}, \cdot, \setminus, /, 0, 1)$$

is a subalgebra of the bounded GMV-algebra \mathbf{M}^+ . Moreover, A and L are up-sets in $L \cup L^\sim$. The natural embedding $f_{\mathbf{A}}$ of \mathbf{A} into $\mathbf{K}_{\mathbf{A}}^- = (L \cup L^\sim, \backslash, /, 1)$ is f.

Let A be a pseudo-ŁBCK-algebra with enough idempotents. Let K_A and f_A be as before. Then:

- ullet A is a subalgebra of K_A^- and it is a union of filters of K_A ;
- \bullet $I(\mathbf{A}) \subseteq I(\mathbf{K}_{\mathbf{A}});$
- for any bounded GMV-algebra ${\bf B}$ and any $\{\setminus,/,1\}$ -homomorphism $h\colon A\to B$ with the property that $h[I({\bf A})]\subseteq I({\bf B})$ there exists a unique $\{\cdot,\setminus,/,0,1\}$ -homomorphism $\hat h\colon K_{\bf A}\to B$ such that $\hat h\circ f_{\bf A}=h$.



- Let bGMV be the category of bounded GMV-algebras with homomorphisms.
- Let pLBCK_{ei} be the category of pseudo-ŁBCK-algebras with enough idempotents with homomorphisms that preserve idempotents.

The forgetful functor $U \colon \mathbb{bGMV} \to \mathbb{pLBCK}_{ei}$ is adjoint; its co-adjoint $F \colon \mathbb{pLBCK}_{ei} \to \mathbb{bGMV}$ is given as follows:

- For any $\mathbf{A} \in \mathbb{PLBCK}_{ei}$, $F(\mathbf{A}) \in \mathbb{bGMV}$ is the bounded GMV-algebra $\mathbf{K}_{\mathbf{A}}$ constructed above.
- For any morphism $\mathbf{A} \xrightarrow{h} \mathbf{A}'$ in \mathbb{pLBCK}_{ei} , the morphism $F(\mathbf{A} \xrightarrow{h} \mathbf{A}')$ in \mathbb{bGMV} is the morphism $\mathbf{K_A} \xrightarrow{F(h)} \mathbf{K_{A'}}$ which is given by

$$\begin{array}{ccccc} \mathbf{A} & \xrightarrow{f_{\mathbf{A}}} & \mathbf{K}_{\mathbf{A}}^{-} & & \mathbf{K}_{\mathbf{A}} \\ \downarrow h & & \downarrow \hat{g} & & \downarrow F(h) = \hat{g} \\ \mathbf{A}' & \xrightarrow{f_{\mathbf{A}'}} & \mathbf{K}_{\mathbf{A}'}^{-} & & \mathbf{K}_{\mathbf{A}'} \end{array}$$

where g is $f_{\mathbf{A}'} \circ h$.

Let \mathbf{A} and \mathbf{B} be commutative pseudo-BCK-algebras satisfying condition \mathfrak{P} . If $\mathbf{A} \cong \mathbf{a}^{\perp}$ for some $a \in C(\mathbf{B})$ and $\mathbf{B} \cong \mathbf{b}^{\perp}$ for some $b \in C(\mathbf{A})$, then $\mathbf{A} \cong \mathbf{B}$. Equivalently, if $\mathbf{A} \cong \mathbf{B} \times \mathbf{C}$ and $\mathbf{B} \cong \mathbf{A} \times \mathbf{D}$ where \mathbf{C}, \mathbf{D} are bounded, then $\mathbf{A} \cong \mathbf{B}$.

The condition \mathcal{P} can be:

- **1** the algebra is orthogonally σ -complete, i.e., if $\{x_i \colon i \in I\}$ is a countable subset s.t. $x_i \lor x_j = 1$ for all $i \neq j$, then $\bigwedge \{x_i \colon i \in I\}$ exists;
- ② if $\{a_i\colon i\in I\}$ is a countable set of central elements s.t. $a_i\vee a_j=1$ for all $i\neq j$, then $\bigwedge\{x_i\colon i\in I\cup\{0\}\}$ exists for every subset $\{x_i\colon i\in I\cup\{0\}\}$ s.t. (i) $x_i\geqslant a_i$ for all $i\in I$ and (ii) $x_0\vee a_i=1$ for all $i\in I$.

The latter condition is weaker and entails that whenever $\{a_i\colon i\in I\}$ is a countable set of central elements s.t. $a_i\vee a_j=1$ for all $i\neq j$, then $a=\bigwedge\{a_i\colon i\in I\}$ exists and is central, and the algebra is isomorphic to $\mathbf{a}^\perp\times\prod_{i\in I}[\mathbf{a}_i,\mathbf{1}].$

Let A be a commutative pseudo-BCK-algebra satisfying \mathcal{P} . Let $a_1, a_2 \in C(\mathbf{A})$, $a_1 \geqslant a_2$. If $\mathbf{A} \cong \mathbf{a}_2^{\perp}$, then $\mathbf{A} \cong \mathbf{a}_1^{\perp}$.

Let $X_i = a_i^{\perp}$ for i = 1, 2; then $X_1 \supseteq X_2$. Let f be an isomorphism $\mathbf{A} \cong \mathbf{X}_2 = \mathbf{a}_2^{\perp}$. Let $X_n = f[X_{n-2}]$ for each $n \geqslant 3$. We get

- $X_1 \supseteq X_2 \supseteq X_3 \supseteq \dots$;
- ullet $\mathbf{A}\cong\mathbf{X}_2\cong\mathbf{X}_4\cong\dots$ and $\mathbf{X}_1\cong\mathbf{X}_3\cong\dots$;
- $\mathbf{X}_{k-1} \cong \mathbf{X}_k \times [\mathbf{b}_k, \mathbf{1}]$, where the elements $b_1 = a_1, b_2, b_3, \dots$ form an orthogonal sequence of central elements;
- ullet $[\mathbf{b}_1,\mathbf{1}]\cong [\mathbf{b}_3,\mathbf{1}]\cong \ldots$ and $[\mathbf{b}_2,\mathbf{1}]\cong [\mathbf{b}_4,\mathbf{1}]\cong \ldots;$
- $b = \bigwedge_{k \geqslant 1} b_k \in C(\mathbf{A})$ and $c = \bigwedge_{k \geqslant 2} b_k \in C(\mathbf{X}_1)$;
- $\mathbf{A} \cong \mathbf{b}^{\perp} \times \prod_{k \geqslant 1} [\mathbf{b}_k, \mathbf{1}] \cong \mathbf{b}^{\perp} \times [\mathbf{b}_1, \mathbf{1}] \times [\mathbf{b}_2, \mathbf{1}] \times [\mathbf{b}_1, \mathbf{1}] \times \dots;$
- $\begin{array}{l} \bullet \ \ \mathbf{X}_1 \cong (\mathbf{X}_1 \cap \mathbf{c}^{\perp}) \times \prod_{k \geqslant 2} \left[\mathbf{b}_k, \mathbf{1} \right] \cong \\ (\mathbf{X}_1 \cap \mathbf{c}^{\perp}) \times \left[\mathbf{b}_2, \mathbf{1} \right] \times \left[\mathbf{b}_1, \mathbf{1} \right] \times \left[\mathbf{b}_2, \mathbf{1} \right] \times \ldots; \end{array}$
- $\mathbf{b}^{\perp} = \mathbf{X}_1 \cap \mathbf{c}^{\perp}$, hence $\mathbf{A} \cong \mathbf{X}_1$.

Thank you!