The structure of Boolean commutative idempotent residuated lattices

Peter Jipsen

Chapman University

Ordered Algebras and Logic Shanks Workshop 2020, Vanderbilt University

March 5, 2020

Lattices with a ≤-preserving idempotent binary operation

Let (A, \wedge, \vee, \cdot) be a lattice with an **order-preserving idempotent binary operation** \cdot , i.e.,

$$xx = x$$
, and $x \le y \implies xz \le yz$ and $zx \le zy$.

Then
$$x \wedge y = (x \wedge y)(x \wedge y) \leq xy \leq (x \vee y)(x \vee y) = x \vee y$$
.

So idempotence implies that xy is in the interval $[x \land y, x \lor y]$.

Atomic Boolean algebras with an idempotent operator

Let $\mathbf{B} = (B, \land, \lor, \neg, \bot, \top, \cdot)$ be a Boolean algebra (BA) with an **idempotent normal binary operator** \cdot , i.e.,

$$xx = x$$
, $x \perp = \perp = \perp x$, $x(y \lor z) = xy \lor xz$ and $(x \lor y)z = xz \lor yz$.

 $a \in B$ is an **atom** if a is a cover of \bot .

The set of atoms of \mathbf{B} is denoted $At(\mathbf{B})$.

B is **atomic** if for every $x \in B$ there exists an atom $a \le x$, or equivalently, if At(B) is **join-dense**, i.e., every $x \in B$ is a join of atoms.

Lemma

In an atomic Boolean algebra with an idempotent binary operator

$$ab \in \{\bot, a, b, a \lor b\}$$
 for all $a, b \in At(\mathbf{B})$.

Atomic BAs with normal operator and ternary relations

Lemma

1 Let **B** be an atomic Boolean algebra with a normal binary operator, $A = At(\mathbf{B})$ and define a ternary relation $R_{\mathbf{B}} \subseteq A^3$ by $R_{\mathbf{B}}(a,b,c) \iff a \leq bc$. Then for all $x,y \in B$,

$$xy = \bigvee \{a : \exists b \le x \exists c \le y \ R(a, b, c)\}.$$

2 Suppose $R \subseteq A^3$ is a ternary relation on a set A, and define $\mathbf{B}_R = (\mathcal{P}(A), \cup, \cap, \neg, \emptyset, A, \cdot)$ where for $Y, Z \in P(A)$

$$Y \cdot Z = \{x : \exists y \in Y \exists z \in Z \ R(x, y, z)\}.$$

Then \mathbf{B}_R is a complete atomic Boolean algebra with a normal binary operator.

3 $R_{\mathbf{B}_R} \cong R$ and if **B** is complete then $\mathbf{B}_{R_{\mathbf{B}}} \cong \mathbf{B}$.

Characterizing the relations of idempotent BAs

How to characterize the relations R that arise from an idempotent B?

Lemma

 \mathbf{B}_R has an idempotent binary operator if and only if R(a, a, a) and $R(a, b, c) \implies a = b$ or a = c.

Proof.

Assume \mathbf{B}_R is idempotent, $a, b, c \in A = At(\mathbf{B}_R)$ be atoms and $a \le bc$. By idempotence $bc \le b \lor c$, so $a \le b \lor c$.

Since a, b, c are atoms, it follows that a = b or a = c.

Now suppose R(a, a, a) and $(R(a, b, c) \Rightarrow a = b \text{ or } a = c)$ holds for all atoms $a, b, c \in A$. Then for any $x \in B$ we have $x \le xx$ since R(a, a, a) holds for all atoms $a \le x$.

Now let a be an atom such that $a \le xx$. Then $a \le bc$ for some atoms $b, c \le x$, therefore R(a, b, c) holds and by assumption a = b or a = c. Hence $a \le x$ and it follows that xx = x.

Idempotence reduces R to two binary relations

R is said to be **idempotent** if R(a, a, a), and $R(a, b, c) \implies a = b$ or a = c

Lemma

An idempotent ternary relation $R \subseteq A^3$ is definitionally equivalent to a pair of **reflexive** binary relations $P, Q \subseteq A^2$ via the following definitions.

Defining P, Q from R:

(Pdef)
$$P(x, y) \Leftrightarrow R(x, y, x)$$
 (Qdef) $Q(x, y) \Leftrightarrow R(x, x, y)$

Defining R from P, Q:

(Rdef)
$$R(x, y, z) \Leftrightarrow (x = y \& Q(y, z)) \text{ or } (x = z \& P(z, y)).$$

Commutativite idempotent R reduce to digraphs

R is said to be **commutative** if \mathbf{B}_R satisfies xy = yx.

Equivalently, R is commutative if $R(a, b, c) \implies R(a, c, b)$.

Lemma

A commutative idempotent ternary relation $R \subseteq A^3$ is definitionally equivalent to a **reflexive** binary relation $P \subseteq A^2$:

$$P(x, y) \iff R(x, y, x) \quad (\iff R(x, x, y))$$

$$R(x, y, z) \iff (x = y \& P(y, z)) \text{ or } (x = z \& P(z, y)).$$

i.e., an idempotent R is commutative $\iff P = Q$.

Commutative idempotent residuated Boolean algebras

A residuated Boolean algebra or *r*-algebra ($\mathbf{B}_0,\cdot,\setminus,/$) is a Boolean algebra $\mathbf{B}_0=(B,\wedge,\vee,\neg,\perp,\top)$ with three binary operations such that

$$xy \le z \iff x \le z/y \iff y \le x \setminus z$$
.

Jónsson-Tarski 1952, Jónsson-Tsinakis 1993: r-algebras form a variety, and \cdot is an operator.

Each of \cdot , \setminus , / uniquely determines the other two.

Theorem

- Complete and atomic (ca-)r-algebras correspond to ternary relations.
- ② Idempotent ca-r-algebras correspond to pairs (P, Q) of directed graphs.
- Ommutative idempotent ca-r-algebras correspond to directed graphs.

Associativity and multiplicative identity

An ordered algebra is **subassociativity** if it satisfies $(xy)z \le x(yz)$ and **supassociativite** if it satisfies $(xy)z \ge x(yz)$.

The operation \cdot is **right unital** if for some $e \in B$, xe = x. The operation \cdot is **left unital** if for some $e \in B$, ex = x.

Theorem (Maddux 1982)

Let R be a ternary relation on a set A. Then \mathbf{B}_R is

```
subassociative \Leftrightarrow (R(u, x, y) \& R(w, u, z) \Rightarrow \exists v (R(v, y, z) \& R(w, x, v)))
right unital \Leftrightarrow \exists I \subseteq A(x = y \Leftrightarrow \exists z \in I R(x, y, z))
left unital \Leftrightarrow \exists I \subseteq A(x = z \Leftrightarrow \exists y \in I R(x, y, z))
```

Associative idempotent ternary relations

R is called **subassociative** if \mathbf{B}_R satisfies $(xy)z \le x(yz)$.

Theorem

An idempotent ternary relation $R \subseteq A^3$ is subassociative if and only if the corresponding reflexive relations P, Q satisfy

$$(P_1)$$
 $P(x, y) \& P(y, z) \Rightarrow P(x, z)$ P -transitivity

$$(P_2)$$
 $Q(x, y) \& Q(x, z) \Rightarrow Q(y, z) \text{ or } P(z, y)$

(P₃)
$$P(x, y) \& Q(y, z) \& x \neq y \Rightarrow P(x, z)$$

To characterize supassociativity of R (i.e. $(xy)z \ge x(yz)$ for \mathbf{B}_R), it suffices to interchange P, Q in these conditions to obtain (P_1') , (P_2') , (P_3') .

Hence R is associative if and only if P, Q satisfy all six conditions.

Associative commutative idempotent ternary relations

Corollary

An idempotent commutative ternary relation $R \subseteq A^3$ is associative if and only if the corresponding relation P satisfy

(Refl)
$$P(x,x)$$

(Trans) $P(x,y) \& P(y,z) \Rightarrow P(x,z)$
(Forest) $P(x,y) \& P(x,z) \Rightarrow P(y,z)$ or $P(z,y)$
i.e., each branch $\{y: P(x,y)\}$ is a linear preorder.

Relations with these three properties are called preorder forests.

A connected preorder forest is called a preorder tree or labelled tree.

Boolean algebras with a semilattice operator

A semilattice operator on a lattice is a binary operation that is associative, commutative, idempotent and distributes over joins in each argument.

Theorem

Complete atomic Boolean algebras with a semilattice operator are in 1-1 correspondence with preorder forests.

For example a discrete poset or antichain (A, =) corresponds to the Boolean algebra of all subsets of A with semilattice operator $xy = x \land y = x \cap y$.

A **full** preorder (A, A^2) corresponds to the Boolean algebra of all subsets of A with semilattice operator $xy = x \lor y = x \cup y$ for nonempty x, y and \emptyset otherwise.

Rooted preorder forests

- A preorder forest is a disjoint union of one or more preorder trees.
- A **rooted** preorder tree has an element r such that P(x, r) for all x.
- A rooted preorder forest is a disjoint union of rooted preorder trees.
- Finite preorder forests are always rooted

How many preorder forests are there with n elements (up to isomorphism)?

Let pt(n)[pf(n)] = number of preorder trees [forests] with*n*elements.

$$pt(n+1) = pt(n) + pf(n)$$
 and $pf(n) = Euler transform of $pt(n)$$

Why is pt(n+1) = pt(n) + pf(n)?

Given a preorder forest, we add a single new root (maximum element) to get a preorder tree with n+1 elements.

Given a preorder tree, we add another element to the root preorder class to get a preorder tree with n+1 elements.

All preorder trees obtained in this way are nonisomorphic.

Given any preorder tree with n+1 elements, if it has a single maximal element, remove it to get a preorder forest with n elements,

and if it has several elements in the maximal preorder class, remove one of them to get a preorder tree with n elements.

Euler transform

Given a_1, a_2, \ldots, a_n the Euler transform b_n is calculated by:

$$c_n = \sum_{d|n} da_d$$
 and $b_n = \frac{1}{n} (c_n + \sum_{k=1}^{n-1} c_k b_{n-k})$

For example, given $a_1=1, a_2=2, a_3=5$ and $b_1=1, b_2=3$ we calculate

$$c_1 = 1 \cdot a_1 = 1$$

 $c_2 = 1 \cdot a_1 + 2 \cdot a_2 = 1 + 4 = 5$
 $c_3 = 1 \cdot a_1 + 3 \cdot a_3 = 1 + 15 = 16$

$$b_3 = \frac{1}{3}(c_3 + c_1b_2 + c_2b_1) = \frac{1}{3}(16 + 3 + 5) = \frac{24}{3} = 8 = pf(3)$$

Preorder forests with singletons roots

A preorder forest P has **singleton roots** if it is rooted and for all roots r and all x, $P(r,x) \implies r = x$, i.e., each root is a singleton preorder class.

Lemma

Let P be a preorder forest on a set A, with associated ternary relation R, and let I be the union of all root preorder classes.

Then \mathbf{B}_R has I as identity element if and only if P has singleton roots.

Proof.

Suppose $a \neq b$ are in the same root preorder class. Then $ab = a \lor b$ hence $\{a\}I \neq \{a\}$.

Conversely, suppose $\{a\}I \neq \{a\}$ for some $a \in I$. Since $a \leq aa$ it follows that $\{a,b\} \subseteq \{a\}I$ for some $b \in A - \{a\}$. Then $b \leq ai$ for some $i \in I$, and by idempotence b = i. Hence P(b,a) holds, and since $b \in I$ the preorder class of a is not a singleton.

Boolean idempotent residuated lattices

A **residuated Boolean monoid** or *rm*-algebra is an associative unital *r*-algebra. They are **residuated lattices with a Boolean lattice reduct**.

Commutative *rm*-algebras are also known as **Boolean bunched implication algebras**.

Theorem

Complete and atomic idempotent commutative rm-algebras are definitionally equivalent to preorder forests with singleton roots.

Hence all finite idempotent commutative $\it rm$ -algebras can be constructed by enumerating preorder forests with singleton roots.

Counting finite preorder forests with singleton roots

A preorder tree with singleton root and n elements is obtained by adding a new root to a preorder forest.

Let $pt_1(n) = number of preorder trees with singleton root and <math>n$ elements.

 $pf_1(n) = number of preorder forests with singleton root and n elements.$

	1								OEIS
pt(n)	1	2	5	13	37	108	332	1042	A036249
pf(n)	1	3	8	24	71	224	710	2318	A036249 A052855
$pt_1(n)$	1	1	3	8	24	71	224	710	
$pf_1(n)$	1	2	5	14	41	127			

Here $pf_1(n)$ is also the Euler transform of $pt_1(n)$.

Enumerating finite preorder forests

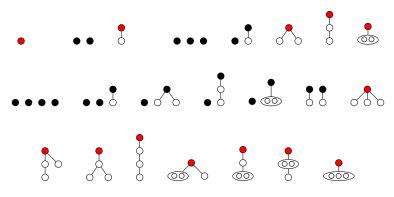


Figure: Preorder forests with singleton roots: 1, 2, 5, 14, 41, 127,...

Generalizing to distributive residuated lattices

Replace complete atomic Boolean algebras by **complete perfect distributive lattices**.

Replace the set of atoms by the poset $(J(\mathbf{D}), \leq)$ of completely join-irreducible elements with partial order induced by \mathbf{D} .

A ternary relation R(a, b, c) is defined on $J(\mathbf{D})$ as before: $a \leq bc$.

This relation is captured by binary relations P, Q if \mathbf{D} satisfies the formula

$$xy = x \land y \text{ or } xy = x \text{ or } xy = y \text{ or } xy = x \lor y \text{ for all } x, y \in J(\mathbf{D})$$

This is a class of idempotent distributive residuated lattices (but not all of them). It includes the class of **conservative residuated lattices**.

Commutative distributive idempotent residuated lattices

For a poset $\mathbf{A} = (A, \leq)$, let $P \subseteq A^2$ be a preorder forest with singleton roots and let R be the associated ternary relation.

Define
$$\mathbf{D}_R = Dn(\mathbf{A}) = \{ \downarrow X : X \subseteq A \}$$
 with operation

$$(\downarrow X)(\downarrow Y) = \downarrow \{a : a \le bc \text{ for some } b \in X, c \in Y\}.$$

Then \mathbf{D}_R is a commutative distributive idempotent residuated lattice if and only if R satisfies the down-up-up property:

$$R(x, y, z), u \le x, y \le v \text{ and } z \le w \implies R(u, v, w).$$

Find a simple characterization of this property in term of P and \leq .

Thank you!

References

P. Jipsen, J. Gil-Férez, and G. Metcalfe, Structures theorems for idempotent residuated lattices, preprint. http://math.chapman.edu/~jipsen/preprints/GJMsubmitted.pdf

B. Jónsson and A. Tarski, Boolean algebras with operators. II. Amer. J. Math. 74 (1952), 127-162

R. Maddux, Some varieties containing relation algebras. Trans. Amer. Math. Soc. 272 (1982), no. 2, 501-526.

W. McCune, Prover9 and Mace4, http://www.cs.unm.edu/~mccune/Prover9, 2005-2010.

OEIS Foundation Inc. (2019), The On-Line Encyclopedia of Integer Sequences, http://oeis.org.

OEIS Foundation Inc. (2019), Number of forests of rooted trees of nonempty sets with n points, The On-Line Encyclopedia of Integer Sequences, https://oeis.org/A052855.

D. Stanovský. Commutative idempotent residuated lattices. Czechoslovak Math. J. 57(132) (2007), no. 1, 191–200.

March 5, 2020