# N.I.C.O.L.A.S. Oral Exam

January 29, 2020

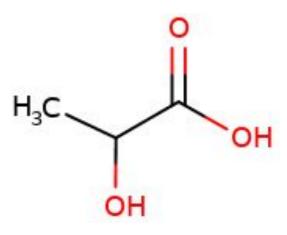
Jude Franklin, Anthony Frederick, Chet Friday, Justin Mollison, Gregory Ridgel

Faculty Advisor: Dr. Franz Baudenbacher

Clinical Advisor: Dr. Susan Eagle

Non-invasive

Continuous


Optical

**Lactic Acid** 

Sensor

## Background

- Clinical biomarker used to measure tissue degradation
- Normal levels ~ 1 mM.
  - Relative > Absolute measurements



Lactic Acid (2-hydroxypropanoic acid)

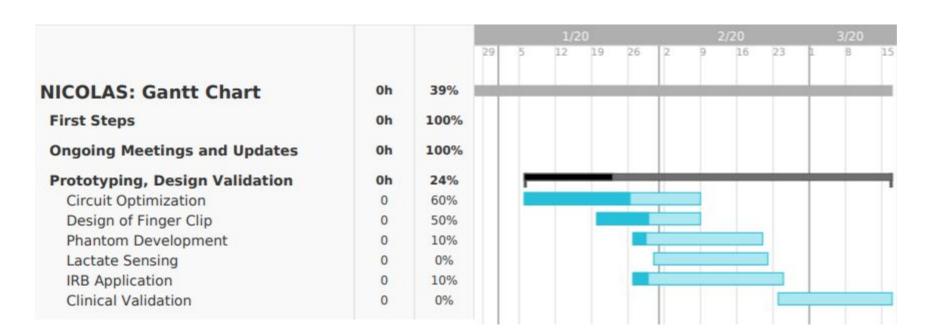


## **Problem Statement**

- Currently, blood is drawn too infrequently to detect rapid spikes in lactate levels, which indicate the onset of life-threatening complications, such as:
  - Septic shock
  - Organ failure
  - Hemorrhage

## **Needs Assessment**

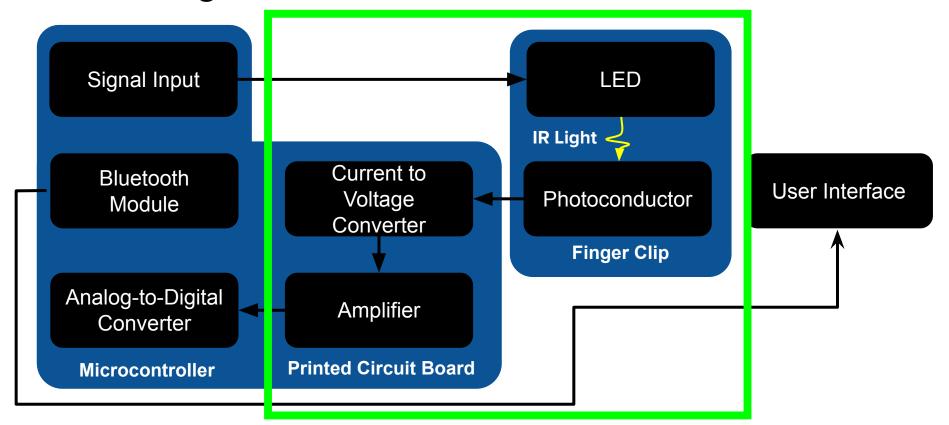
#### **Patient**


Insulated Device Intermittent Pulses Non-invasive

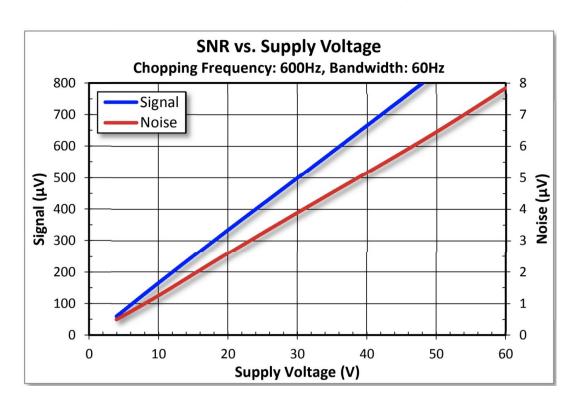
#### **Practitioner**

Continuous Sampling
Ease of Use
Clinical Application

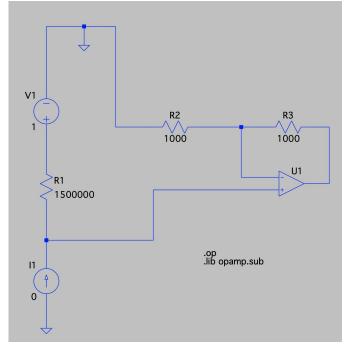
## **System**


Simplest Modality
Cost Effective & Portable
Integrate with Hospital Systems



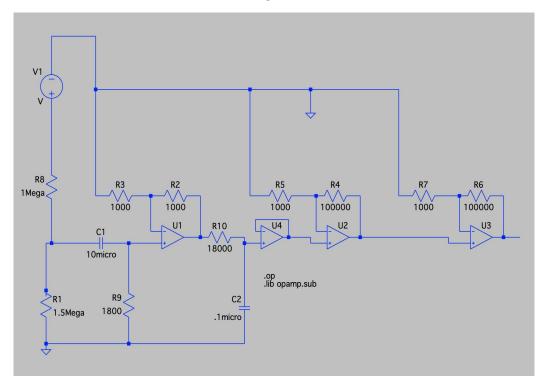

## This Week's Progress:

- Secured new meeting time with Dr. Baudenbacher
- Parts Received
- Located IR Spectrophotometer
  - iLab and VINSE Access/Training
- Circuit Troubleshooting
  - Two Pronged Approach
- Laser-Tissue Interactions: IR on the Finger
- Phantom Research and Plan
- Transmission to NIRS

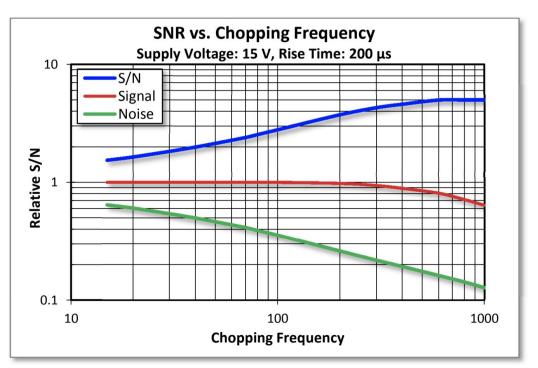

## Block Diagram



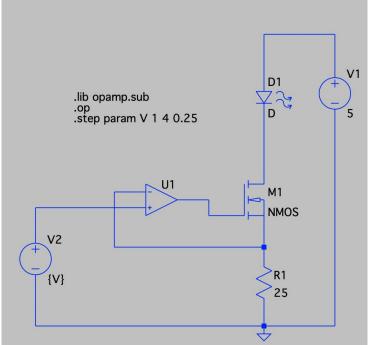
# Circuit Troubleshooting – Supply Voltage Optimization




#### Current to Voltage Converter v1.0

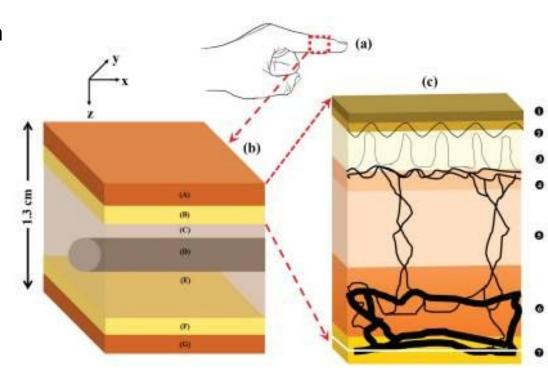



# Circuit Troubleshooting – Supply Voltage Optimization


Current to Voltage Converter v1.1



# Circuit Troubleshooting – LED Pulse Frequency Optimization




#### Pulsed Current Source v1.0



# Light and Tissue Interaction

- Light interacts with skin tissue in two ways
  - Scattering, u<sub>s</sub>
  - Absorption, u<sub>a</sub>
- Each layer of the tissue is examined in differential process for u<sub>s</sub> and u<sub>a</sub>
  - Mie scattering light goes forward



## Light and Tissue Interaction

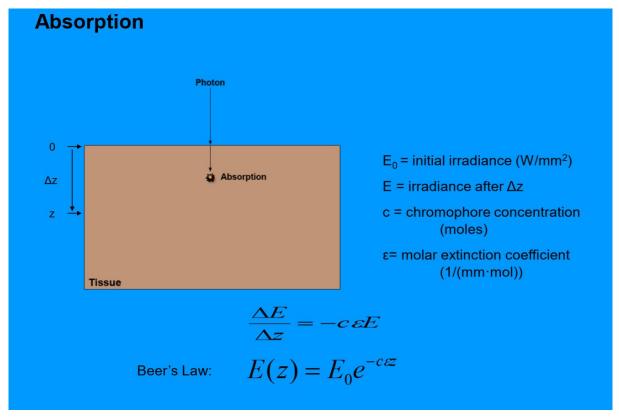
- Absorption coefficient of skin layers(epidermis and dermis)
  - $\circ$  u<sub>s</sub> = 8.31 cm<sup>-1</sup>
  - $\circ$  u<sub>a</sub> = 5.75 cm<sup>-1</sup>
  - $\circ$  u<sub>+</sub>= 7.412 cm<sup>-1</sup>
- Subcutaneous Fat Layers and Blood
  - Strongest absorbance is water
  - $\circ$   $u_a = 1 \text{ cm}^{-1}$
- Important for light to transmit through finger with least amount of attenuation

## Light Tissue Interaction

#### **Scatter**

#### Rayleigh Scatter

- Wavelength much larger than particle size
- Scatter is isotropic
- Scattering is proportional to 1/(λ<sup>4</sup>), where λ is the wavelength of light being scattered
- Rayleigh scatter is the reason that the sky is blue




#### Mie Scatter

- Wavelength is approximately equal to the particle size
- Scatter is highly forward
- Scattering is proportional to 1/(λ<sup>0.4</sup>), where λ is the wavelength of light being scattered
- Mie scatter is what makes clouds appear white



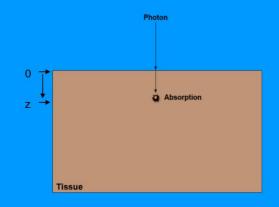
## Light Tissue Interaction



# Light Tissue Interaction

## **Absorption**

Beer's Law:


$$E(z) = E_0 e^{-\mu_a z}$$

Penetration depth: Let  $z = \frac{1}{z}$ 

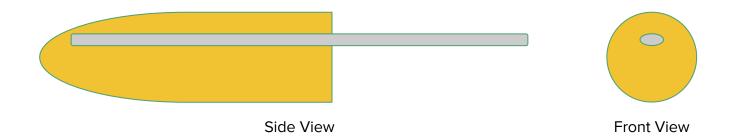
$$E(z) = E_0 e^{-\mu_a (\frac{1}{\mu_a})}$$
$$E(z) = E_0 e^{-1}$$

$$E(z) = E_0 e^{-1}$$

$$E(z) = 0.3679E_0$$



Penetration depth is defined as the depth at which 63% of the light has been absorbed. However, 37% of the light still makes it beyond this depth!


## Phantom Design

### Tissue Requirements:

- Laser interaction with layers of tissue
  - Absorption and Scattering of IR
- PVA (polyvinyl alcohol)
- Agarose-albumin (egg whites)
- Acrylamide

## **Vessel Requirements:**

- Path length to capillaries
- Shape of capillary bed beneath nail
- NMR Tube / Silicone Catheter



# **Blood Analog**

- Model for Blood Plasma
  - Aqueous lactate solution
  - Charcoal-stripped Fetal Bovine Serum + Lactate
    - Plasma w/o clotting factors
  - Defibrinated Sheep Blood + Lactate

## Lactate Absorbance Curve

- Standard curve
  - o 0.25 7 mM
  - 15 point curve
- Equipment
  - Varian Cary UV-Vis-NIR Spectrophotometer (175 to 3300 nm)
- First trials
  - Waiting on access to VINSE

# Transition to Near Infrared Spectroscopy (NIRS)

- What are our current challenges with IR spectroscopy and lactate sensing?
  - Various analytes absorb very similar wavelengths (we can confirm this in our situation).
  - Water absorbs most of the IR signal and emits heat
- What exactly is NIRS?
  - Near Infrared = different optical window
  - Focuses on refractance vs transmittance
  - More specific for each particulate
- How can we use this?
  - Using the modified Beer-Lambert's law
  - Can measure in relation to various wavelengths and absorptivities
  - Would use the same circuit as the IR (just optimized for the SNR).

$$r_{\mathrm{HbO}_{2}}^{\lambda_{1},\lambda_{2}} = \frac{\alpha_{\mathrm{Hb}}^{\lambda_{1}} \frac{\kappa^{\lambda_{2}}}{L^{\lambda_{2}}} \mu_{\mathrm{s,0}}^{\prime \lambda_{2}} - \alpha_{\mathrm{Hb}}^{\lambda_{2}} \frac{\kappa^{\lambda_{1}}}{L^{\lambda_{1}}} \mu_{\mathrm{s,0}}^{\prime \lambda_{1}}}{\alpha_{\mathrm{HbO}_{2}}^{\lambda_{1}} \alpha_{\mathrm{HbO}_{2}}^{\lambda_{2}} - \alpha_{\mathrm{Hb}}^{\lambda_{2}} \alpha_{\mathrm{HbO}_{2}}^{\lambda_{1}}}$$

## Next Steps:

- Lactate Standard Curve
- Tweaks to Circuit Design
- Proof of Concept -- lactate absorbance in cuvette
- Phantom Development -- lactate absorbance in phantom

## Materials to be Purchased:

- Charcoal-stripped Fetal Bovine Serum (\$118.00 for 50 mL)
- Defibrinated Sheep Blood (\$104.27 for 25mL)
  - Need a BSL-2 lab space