$\begin{array}{c} & \mbox{Motivation} \\ & \mbox{The } c(n) \mbox{ Sequence} \\ & \mbox{Some Highlights to the Proof} \\ & \mbox{Summary} \end{array}$

Partition Congruences and the Localization Method

Nicolas Allen Smoot

Vanderbilt Number Theory Seminar

8 September, 2020

< ロ > < 同 > < 三 > < 三

Nicolas Allen Smoot Partition Congruences and the Localization Method

The c(n) Sequence Some Highlights to the Proof Summary Ramanujan's Conjectures Modular Curves

What is a Partition?

< ロ > < 回 > < 回 > < 回 > < 回 >

The c(n) Sequence Some Highlights to the Proof Summary Ramanujan's Conjectures Modular Curves

Ramanujan's Conjectures

Let $n \geq 0$, $\alpha \geq 1$, and $24\lambda_{\ell,\alpha} \equiv 1 \pmod{\ell^{\alpha}}$.

Conjecture (Ramanujan, 1919)

$$p(5^{lpha}n + \lambda_{5,lpha}) \equiv 0 \pmod{5^{lpha}}, \ p(7^{lpha}n + \lambda_{7,lpha}) \equiv 0 \pmod{7^{lpha}}, \ p(11^{lpha}n + \lambda_{11,lpha}) \equiv 0 \pmod{11^{lpha}}.$$

(日)

Ramanujan's Conjectures Modular Curves

Ramanujan's Conjectures

Let $n \geq 0$, $\alpha \geq 1$, and $24\lambda_{\ell,\alpha} \equiv 1 \pmod{\ell^{\alpha}}$.

Theorem (Ramanujan, Watson, Atkin)

$$p(5^{\alpha}n + \lambda_{5,\alpha}) \equiv 0 \pmod{5^{\alpha}},$$

$$p(7^{\alpha}n + \lambda_{7,\alpha}) \equiv 0 \pmod{7^{\lfloor \frac{\alpha}{2} \rfloor + 1}},$$

$$p(11^{\alpha}n + \lambda_{11,\alpha}) \equiv 0 \pmod{11^{\alpha}}.$$

(日)

The c(n) Sequence Some Highlights to the Proof Summary Ramanujan's Conjectures Modular Curves

$\alpha = 1$

Theorem (Ramanujan)

$$\sum_{n=0}^{\infty} p(5n+4)q^n = 5 \frac{(q^5; q^5)_{\infty}^5}{(q; q)_{\infty}^6}.$$

Rewriting, we have

$$(q^5; q^5)_{\infty} \sum_{n=0}^{\infty} p(5n+4)q^{n+1} = 5q \frac{(q^5; q^5)_{\infty}^6}{(q; q)_{\infty}^6}.$$

イロト イヨト イヨト

The c(n) Sequence Some Highlights to the Proof Summary Ramanujan's Conjectures Modular Curves

 $\alpha = 1, 2$

For
$$\alpha = 1$$
: $(q^5; q^5)_{\infty} \sum_{n=0}^{\infty} p(5n+4)q^{n+1} = 5 \cdot q \frac{(q^5; q^5)_{\infty}^6}{(q; q)_{\infty}^6}.$

・ロト ・四ト ・ヨト ・ヨト

The c(n) Sequence Some Highlights to the Proof Summary Ramanujan's Conjectures Modular Curves

 $\alpha = 1, 2$

For
$$\alpha = 1$$
: $(q^5; q^5)_{\infty} \sum_{n=0}^{\infty} p(5n+4)q^{n+1} = 5 \cdot q \frac{(q^5; q^5)_{\infty}^6}{(q; q)_{\infty}^6}.$

For
$$\alpha = 2$$
: $(q;q)_{\infty} \sum_{n=0}^{\infty} p(5^2n + 24)q^{n+1}$
 $= 5^{12} \cdot q^5 \frac{(q^5;q^5)_{\infty}^{30}}{(q;q)_{\infty}^{30}} + 5^{10} \cdot 6 \cdot q^4 \frac{(q^5;q^5)_{\infty}^{24}}{(q;q)_{\infty}^{24}}$
 $+ 5^7 \cdot 63 \cdot q^3 \frac{(q^5;q^5)_{\infty}^{18}}{(q;q)_{\infty}^{18}} + 5^5 \cdot 52 \cdot q^2 \frac{(q^5;q^5)_{\infty}^{12}}{(q;q)_{\infty}^{12}}$
 $+ 5^2 \cdot 63 \cdot q \frac{(q^5;q^5)_{\infty}^{30}}{(q;q)_{\infty}^{30}}.$

・ロト ・四ト ・ヨト ・ヨト

The c(n) Sequence Some Highlights to the Proof Summary Ramanujan's Conjectures Modular Curves

 $\alpha = 1, 2$

$$\text{Let } t=q\frac{(q^5;q^5)_\infty^6}{(q;q)_\infty^6}, \text{ and } q=e^{2\pi i\tau}, \text{ with } \tau\in\mathbb{H}.$$

Theorem

$$(q^{5}; q^{5})_{\infty} \sum_{n=0}^{\infty} p(5n+4)q^{n+1} = 5t,$$

$$(q; q)_{\infty} \sum_{n=0}^{\infty} p(5^{2}n+24)q^{n+1} = 5^{12} \cdot t^{5} + 5^{10} \cdot 6 \cdot t^{4} + 5^{7} \cdot 63 \cdot t^{3} + 5^{5} \cdot 52 \cdot t^{2} + 5^{2} \cdot 63 \cdot t.$$

The c(n) Sequence Some Highlights to the Proof Summary Ramanujan's Conjectures Modular Curves

Theorem

Let λ_{α} be the smallest positive solution to $24x \equiv 1 \pmod{5^{\alpha}}$. Then

$$egin{aligned} \mathcal{L}_{2lpha-1} &= (q^5;q^5)_\infty \sum_{n=0}^\infty p(5^{2lpha-1}n+\lambda_{2lpha-1})q^{n+1} \in \mathbb{Z}[t], \ \mathcal{L}_{2lpha} &= (q;q)_\infty \sum_{n=0}^\infty p(5^{2lpha}n+\lambda_{2lpha})q^{n+1} \in \mathbb{Z}[t]. \end{aligned}$$

We write $L_{\alpha+1} = U^{(\alpha)}(L_{\alpha})$, where $U^{(\alpha)}$ are *linear* operators.

イロト イボト イヨト イヨト

3

The c(n) Sequence Some Highlights to the Proof Summary Ramanujan's Conjectures Modular Curves

We have

•
$$L_{\alpha} \in \mathbb{Z}[t]$$
,
• $L_{\alpha+1} = U^{(\alpha)}(L_{\alpha})$,
• $U^{(\alpha)}(5^{k} \cdot f) = 5^{k} \cdot U^{(\alpha)}(f)$,

• Also,
$$L_1 = 5t$$
.

Theorem

For every $\alpha \in \mathbb{Z}_{\geq 1}$,

$$U^{(lpha)}\left(rac{L_{lpha}}{5^{lpha}}
ight)\in 5\cdot\mathbb{Z}[t].$$

So going from L_{α} to $L_{\alpha+1}$, we pick up an extra power of 5.

< ロ > < 同 > < 三 > < 三

The c(n) Sequence Some Highlights to the Proof Summary Ramanujan's Conjectures Modular Curves

We have

•
$$L_{\alpha} \in \mathbb{Z}[t],$$

• $L_{\alpha+1} = U^{(\alpha)}(L_{\alpha}),$
• $U^{(\alpha)}(5^{k} \cdot f) = 5^{k} \cdot U^{(\alpha)}(f),$

• Also,
$$L_1 = 5t$$
.

Theorem

For every $\alpha \in \mathbb{Z}_{\geq 1}$,

$$U^{(lpha)}\left(rac{L_{lpha}}{5^{lpha}}
ight)\in 5\cdot\mathbb{Z}[t].$$

So going from L_{lpha} to L_{lpha+1} , we pick up an extra power of 5. \Box

< ロ > < 同 > < 三 > < 三 >

Ramanujan's Conjectures Modular Curves

 7^{α} , 11^{α}

The same technique works for

$$p(7^{\alpha}n + \lambda_{7,\alpha}) \equiv 0 \pmod{7^{\left\lfloor \frac{\alpha}{2} \right\rfloor + 1}},$$

It does not work for

$$p(11^{\alpha}n + \lambda_{11,\alpha}) \equiv 0 \pmod{11^{\alpha}}.$$

イロト イヨト イヨト

The *c*(*n*) Sequence Some Highlights to the Proof Summary Ramanujan's Conjectures Modular Curves

Modular Group Action

$$\Gamma_0(N) = \left\{ egin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathrm{SL}(2,\mathbb{Z}) : N|c
ight\}.$$

Let $\hat{\mathbb{H}} := \mathbb{H} \cup \mathbb{Q} \cup \{\infty\}$. We define a group action

$$\begin{aligned} \Gamma_0(N) \times \hat{\mathbb{H}} &\longrightarrow \hat{\mathbb{H}}, \\ \left(\begin{pmatrix} a & b \\ c & d \end{pmatrix}, \tau \right) &\longmapsto \frac{a\tau + b}{c\tau + d} \end{aligned}$$

Define the orbits $[\tau]_N := \{\gamma \tau : \gamma \in \Gamma_0(N)\}$.

・ 同 ト ・ ヨ ト ・ ヨ ト

The c(n) Sequence Some Highlights to the Proof Summary Ramanujan's Conjectures Modular Curves

Modular Curves

Definition

For any $N \in \mathbb{Z}_{\geq 1}$, we define the classical modular curve of level N as the set of all orbits of $\Gamma_0(N)$ applied to $\hat{\mathbb{H}}$:

$$\mathrm{X}_{0}(N) := \left\{ [\tau]_{N} : \tau \in \hat{\mathbb{H}} \right\}$$

Definition

For each $N \ge 1$ there exists some $d \ge 1$ and orbits $[r_k]_N$, $0 \le k \le d-1$, such that

$$\mathbb{Q}\cup\{\infty\}=\bigsqcup_{k=0}^{d-1}[r_k]_N.$$

The orbits $[r_k]_N$ are the cusps of $X_0(N)$.

The c(n) Sequence Some Highlights to the Proof Summary Ramanujan's Conjectures Modular Curves

Modular Functions

Let
$$q := e^{2\pi i \tau}$$
, $\tau \in \mathbb{H}$.

Definition

A holomorphic function $f : \mathbb{H} \longrightarrow \mathbb{C}$ is modular over $\Gamma_0(N)$ if

• For any $\tau_1, \tau_2 \in \mathbb{H}$ such that $\tau_1 \in [\tau_2]_N$, $f(\tau_1) = f(\tau_2)$,

• For any
$$\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathrm{SL}(2,\mathbb{Z})$$
, we have

$$f\left(\frac{a\tau+b}{c\tau+d}\right) = \sum_{n\geq n_{\gamma}} \alpha_{\gamma}(n) q^{n \cdot \gcd(c^2, N)/N}$$

with $n_{\gamma} \in \mathbb{Z}$, $\alpha_{\gamma}(n_{\gamma}) \neq 0$.

< ロ > < 同 > < 三 > < 三 >

Ramanujan's Conjectures Modular Curves

Modular Curves

For each partition congruence family, we can associate a compact Riemann surface.

$$p(5^{\alpha}n + \lambda_{5,\alpha}) \equiv 0 \pmod{5^{\alpha}} \longrightarrow X_0(5),$$

$$p(7^{\alpha}n + \lambda_{7,\alpha}) \equiv 0 \pmod{7^{\lfloor \frac{\alpha}{2} \rfloor + 1}} \longrightarrow X_0(7),$$

$$p(11^{\alpha}n + \lambda_{11,\alpha}) \equiv 0 \pmod{11^{\alpha}} \longrightarrow X_0(11).$$

These are the classical modular curves of level 5, 7, 11 (resp.).

< ロ > < 同 > < 三 > < 三 >

 Motivation

 The c(n) Sequence
 Ramanujan's Conjectures

 Some Highlights to the Proof
 Modular Curves

 Summary
 Summary

The genus of a Riemann surface X, denoted g(X), is the number of holes in the surface.

• $g(X_0(1)) = 0$,

Genus

- $g(X_0(5)) = 0$,
- $g(X_0(7)) = 0$,
- $g(X_0(11)) = 1$,
- $g(X_0(20)) = 1.$

Why is this important?

• • = • • = •

Summarv

The c(n) Sequence

Ramanujan's Conjectur Modular Curves

Weierstrass Gap Theorem

Theorem

Let \boldsymbol{X} be a compact Riemann surface, and let

 $f: \mathbf{X} \to \mathbb{C}$

be holomorphic over X, except for a pole at a point $p \in X$. Then the order of f at p can assume any negative integer, with exactly g(X) exceptions.

・ 同 ト ・ ヨ ト ・ ヨ

The c(n) Sequence Some Highlights to the Proof Summary Ramanujan's Conjectures Modular Curves

Weierstrass Gap Theorem

Example: Let $q = e^{2\pi i \tau}$, $\tau \in \mathbb{H}$.

$$rac{1}{t} = rac{1}{q} \prod_{m=1}^{\infty} \left(rac{1-q^m}{1-q^{5m}}
ight)^6 = rac{1}{q} + c(0) + c(1)q + ...$$

is holomorphic, except for q = 0 ($\tau = i\infty$). And t induces

$$\hat{t} : X_0(5) \longrightarrow \mathbb{C}$$

: $[\tau]_5 \longmapsto t(\tau).$

$$g(X_0(5)) = 0.$$

(日)

The c(n) Sequence Some Highlights to the Proof Summary Ramanujan's Conjectures Modular Curves

Weierstrass Gap Theorem

Example:

$$t = rac{1}{q^2} \prod_{m=1}^\infty \left(rac{1-q^{4m}}{1-q^{20m}}
ight)^4 \left(rac{1-q^{10m}}{1-q^{2m}}
ight)^2,
onumber
ho = rac{1}{q^3} \prod_{m=1}^\infty \left(rac{1-q^{4m}}{1-q^{m}}
ight) \left(rac{1-q^{5m}}{1-q^{20m}}
ight)^5$$

are holomorphic over $X_0(20)$, except for q = 0, with orders -2, -3. There is no such function with order -1.

$$g(X_0(20)) = 1.$$

・ 同 ト ・ ヨ ト ・ ヨ ト

Ramanujan's Conjectures Modular Curves

Corollaries

Let $\mathcal{M}^{c}(\Gamma_{0}(N))$ be the space of modular functions over $\Gamma_{0}(N)$ with a pole at only one cusp $[c]_{N}$.

Corollary

If $g(X_0(N)) = 0$, then there exists a function t such that $\mathcal{M}^c(\Gamma_0(N)) = \mathbb{C}[t].$

Corollary

If $g(X_0(N)) = 1$, then there exist functions t, ρ such that $\mathcal{M}^c(\Gamma_0(N)) = \mathbb{C}[t] \oplus \rho \mathbb{C}[t].$

・ロト ・回ト ・ヨト ・ヨト

Introduction Comparison of Proofs Main Theorem

c(n)

Let
$$q=e^{2\pi i au},$$
 with $au\in\mathbb{H}.$ Define $\mathit{E}_2(au)$ by

$$E_2(\tau) := 1 - 24 \sum_{n=1}^{\infty} \frac{nq^n}{1-q^n}.$$

Definition

Define c(n) with the generating function

$$\sum_{n=0}^{\infty} c(n)q^n := \frac{(2 \cdot E_2(2\tau) - E_2(\tau))}{(q^2; q^2)_{\infty}}$$

イロト イヨト イヨト

Introduction Comparison of Proofs Main Theorem

Congruences on c(n)

Theorem (Wang, Yang)

Let $n \ge 0$, $\alpha \ge 1$, and $12\delta_{\alpha} \equiv 1 \pmod{5^{\alpha}}$. Then

$$c(5^{lpha}n+\delta_{lpha})\equiv 0\pmod{5^{lpha}},$$

< ロ > < 同 > < 三 > < 三 >

Introduction Comparison of Proofs Main Theorem

Congruences on $\operatorname{spt}_{\omega}(n)$

Theorem (Wang, Yang)

Let $n \ge 0$, $\alpha \ge 1$, and $12\delta_{\alpha} \equiv 1 \pmod{5^{\alpha}}$. Then

$$\operatorname{spt}_{\omega}(2 \cdot 5^{\alpha} n + \delta_{\alpha}) \equiv 0 \pmod{5^{\alpha}},$$

with $\omega(q)$ defined as Ramanujan's third order mock theta function.

・ロト ・回ト ・ヨト ・ヨト

Introduction Comparison of Proofs Main Theorem

Proof in Terms of L_{α}

Let

$$egin{aligned} & L_{2lpha-1} := (q^{10};q^{10})_\infty \sum_{n=0}^\infty c \left(5^{2lpha-1}n + \delta_{2lpha-1}
ight) q^{n+1}, \ & L_{2lpha} := (q^2;q^2)_\infty \sum_{n=0}^\infty c \left(5^{2lpha}n + \delta_{2lpha}
ight) q^{n+1}. \end{aligned}$$

<ロ> <部> <部> <き> <き>

Introduction Comparison of Proofs Main Theorem

Proof in Terms of L_{α}

Let

$$egin{aligned} & \mathcal{L}_{2lpha-1} := (q^{10};q^{10})_\infty \sum_{n=0}^\infty c \left(5^{2lpha-1}n + \delta_{2lpha-1}
ight) q^{n+1}, \ & \mathcal{L}_{2lpha} := (q^2;q^2)_\infty \sum_{n=0}^\infty c \left(5^{2lpha}n + \delta_{2lpha}
ight) q^{n+1}. \end{aligned}$$

For example,

$$L_1 = (q^{10}; q^{10})_{\infty} \sum_{n=0}^{\infty} c (5n+3) q^{n+1}.$$

イロト イヨト イヨト

Introduction Comparison of Proofs Main Theorem

Proof in Terms of L_{α}

Let

$$\begin{split} L_{2\alpha-1} &:= (q^{10}; q^{10})_{\infty} \sum_{n=0}^{\infty} c \left(5^{2\alpha-1} n + \delta_{2\alpha-1} \right) q^{n+1}, \\ L_{2\alpha} &:= (q^2; q^2)_{\infty} \sum_{n=0}^{\infty} c \left(5^{2\alpha} n + \delta_{2\alpha} \right) q^{n+1}. \end{split}$$

For example,

$$L_1 = (q^{10}; q^{10})_{\infty} \sum_{n=0}^{\infty} c (5n+3) q^{n+1}.$$

The game is to show that $L_{\alpha} \equiv 0 \pmod{5^{\alpha}}$.

Introduction Comparison of Proofs Main Theorem

Technique by Wang and Yang

To begin with, examine L_1 . In Wang and Yang's form:

(日)

Introduction Comparison of Proofs Main Theorem

Technique by Wang and Yang

To begin with, examine L_1 . In Wang and Yang's form:

$$L_1 = F \cdot (245 \cdot t + 3750 \cdot t^2 + 15625 \cdot t^3 - \rho \cdot (125 \cdot t + 3125 \cdot t^2)),$$

(日)

Introduction Comparison of Proofs Main Theorem

Technique by Wang and Yang

To begin with, examine L_1 . In Wang and Yang's form:

$$L_1 = F \cdot \left(245 \cdot t + 3750 \cdot t^2 + 15625 \cdot t^3 - \rho \cdot \left(125 \cdot t + 3125 \cdot t^2 \right) \right),$$

with t, ρ eta quotients with integer power expansions, and F a modular form with constant term 1, over $\Gamma_0(10)$.

< ロ > < 同 > < 三 > < 三 >

Introduction Comparison of Proofs Main Theorem

Technique by Wang and Yang

To begin with, examine L_1 . In Wang and Yang's form:

$$L_1 = F \cdot \left(245 \cdot t + 3750 \cdot t^2 + 15625 \cdot t^3 - \rho \cdot \left(125 \cdot t + 3125 \cdot t^2 \right) \right),$$

with t, ρ eta quotients with integer power expansions, and F a modular form with constant term 1, over $\Gamma_0(10)$.

$$\frac{L_{\alpha}}{5^{\alpha}\cdot F} \in \mathbb{Z}[t] \oplus \rho \mathbb{Z}[t].$$

This is characteristic of the Paule–Radu method for proving congruences when the associated modular curve has genus 1.

イロト イポト イラト イラト

Introduction Comparison of Proofs Main Theorem

Technique by Wang and Yang

To begin with, examine L_1 . In Wang and Yang's form:

$$L_1 = F \cdot \left(245 \cdot t + 3750 \cdot t^2 + 15625 \cdot t^3 - \rho \cdot \left(125 \cdot t + 3125 \cdot t^2 \right) \right),$$

with t, ρ eta quotients with integer power expansions, and F a modular form with constant term 1, over $\Gamma_0(10)$.

$$\frac{L_{\alpha}}{5^{\alpha}\cdot F} \in \mathbb{Z}[t] \oplus \rho \mathbb{Z}[t].$$

This is characteristic of the Paule–Radu method for proving congruences when the associated modular curve has genus 1. However, the genus of $X_0(10)$ is 0.

イロト イポト イラト イラト

Introduction Comparison of Proofs Main Theorem

Our First Attempt

Let
$$x := \prod_{m=1}^{\infty} \frac{(1-q^{2m})^5(1-q^{5m})}{(1-q^m)^5(1-q^{10m})}.$$

Then $\mathcal{M}^0(\Gamma_0(10)) = \mathbb{C}[x].$

Theorem

$$x^3 \cdot \frac{L_1}{F} \in \mathbb{C}[x].$$

Corollary

For all
$$\alpha \geq 1, \frac{L_{\alpha}}{F} \in \mathbb{C}[x, x^{-1}].$$

200

Introduction Comparison of Proofs Main Theorem

First Attempt

$$L_1 = F \cdot \left(245 \cdot t + 3750 \cdot t^2 + 15625 \cdot t^3 - \rho \cdot \left(125 \cdot t + 3125 \cdot t^2 \right) \right).$$

In terms of x:

イロト イヨト イヨト

ntroduction Comparison of Proofs Main Theorem

First Attempt

$$L_1 = F \cdot (245 \cdot t + 3750 \cdot t^2 + 15625 \cdot t^3 - \rho \cdot (125 \cdot t + 3125 \cdot t^2)).$$

In terms of x:

$$\begin{split} L_1 = & F \cdot \left(-\frac{624}{625x^3} - \frac{2487}{625x^2} + \frac{801}{625x} - \frac{422}{125} - \frac{3148x}{125} + \frac{19904x^2}{625} \right. \\ & + \frac{512x^3}{625} - \frac{256x^4}{625} \right). \end{split}$$

イロト イヨト イヨト

Introduction Comparison of Proofs Main Theorem

Second Attempt

$$x = \prod_{m=1}^{\infty} \frac{(1 - q^{2m})^5 (1 - q^{5m})}{(1 - q^m)^5 (1 - q^{10m})}$$

Lemma

$$x \equiv 1 \pmod{5}$$
.

Let x = 1 + 5y. Interestingly,

$$y = q \prod_{m=1}^{\infty} \frac{(1-q^{2m})(1-q^{10m})^3}{(1-q^m)^3(1-q^{5m})}.$$

イロト イヨト イヨト
Introduction Comparison of Proofs Main Theorem

Problem

We have a problem:

$$\frac{L_1}{F} \notin \mathbb{C}[y, y^{-1}].$$

But we do have

$$\frac{L_1}{F} \in \mathbb{C}[y, x^{-1}]...$$

イロト イポト イヨト イヨ

ntroduction Comparison of Proofs Main Theorem

Comparison of Expressions for L_1

$$L_1 = F \cdot \left(245 \cdot t + 3750 \cdot t^2 + 15625 \cdot t^3 - \rho \cdot \left(125 \cdot t + 3125 \cdot t^2 \right) \right),$$

In our form:

イロト イヨト イヨト

ntroduction Comparison of Proofs Main Theorem

Comparison of Expressions for L_1

$$L_1 = F \cdot \left(245 \cdot t + 3750 \cdot t^2 + 15625 \cdot t^3 - \rho \cdot \left(125 \cdot t + 3125 \cdot t^2 \right) \right),$$

In our form:

$$L_1 = \frac{F}{(1+5y)^3} \cdot \left(120y + 1805y^2 + 12050y^3 + 39500y^4 + 50000y^5\right),$$

イロト イヨト イヨト

Introduction Comparison of Proofs Main Theorem

Comparison of Expressions for L_1

$$L_{1} = F \cdot \left(245 \cdot t + 3750 \cdot t^{2} + 15625 \cdot t^{3} - \rho \cdot \left(125 \cdot t + 3125 \cdot t^{2}\right)\right),$$

In our form:

$$L_1 = \frac{F}{(1+5y)^3} \cdot \left(120y + 1805y^2 + 12050y^3 + 39500y^4 + 50000y^5\right),$$

Important! $F, y, \frac{1}{1+5y}$ have integer power series expansions.

イロト イポト イヨト イヨト

Introduction Comparison of Proofs Main Theorem

Comparison of Expressions for L_1

$$L_1 = F \cdot \left(245 \cdot t + 3750 \cdot t^2 + 15625 \cdot t^3 - \rho \cdot \left(125 \cdot t + 3125 \cdot t^2 \right) \right),$$

In our form:

$$L_1 = \frac{F}{(1+5y)^3} \cdot \left(120y + 1805y^2 + 12050y^3 + 39500y^4 + 50000y^5\right),$$

Important! $F, y, \frac{1}{1+5y}$ have integer power series expansions. Similar identities hold for L_2, L_3 , etc.

| 4 同 ト 4 ヨ ト 4 ヨ ト

Introduction Comparison of Proofs Main Theorem

Weak Result

We let $\alpha \geq 1$,

$$\begin{split} \mathcal{S} &:= \left\{ (1+5y)^n : n \in \mathbb{Z}_{\geq 0} \right\}, \\ \mathbb{Z}[y]_{\mathcal{S}} &:= \text{ the localization of } \mathbb{Z}[y] \text{ at } \mathcal{S}. \end{split}$$

Then we have the following:

Theorem (Me!) $rac{1}{5^lpha F} \cdot L_lpha \in \mathbb{Z}[y]_\mathcal{S}.$

Introduction Comparison of Proofs Main Theorem

Strong Result

We let $\alpha \geq 1$,

$$\psi(\alpha) := \left\lfloor \frac{5^{\alpha+1}}{12} \right\rfloor + 1.$$

Then we have the following:

Theorem (Me!)

$$\frac{(1+5y)^{\psi(\alpha)}}{5^{\alpha}F} \cdot L_{\alpha} \in \mathbb{Z}[y].$$

イロト イヨト イヨト

Motivation Setup The c(n) Sequence General Relation Some Highlights to the Proof 5-adic Irregularities Summary Computational Consideratio

$$L_1 = \frac{F}{(1+5y)^3} \cdot \left(120y + 1805y^2 + 12050y^3 + 39500y^4 + 50000y^5\right).$$

We will prove that

$$\frac{1}{5^{\alpha}F}\cdot L_{\alpha}=\sum_{m\geq 1}s(m)\cdot 5^{\mu(m)}\cdot \frac{y^{m}}{(1+5y)^{n}},$$

with $n \in \mathbb{Z}_{\geq 1}$ fixed, s, μ integer-valued functions, and s discrete.

イロト イボト イヨト イヨト

Setup General Relation 5-adic Irregularities Computational Considerations

U Operator

$$U_5(L_{2\alpha-1}) = L_{2\alpha},$$

$$U_5(Z \cdot L_{2\alpha}) = L_{2\alpha+1},$$

for a certain eta quotient Z. We define

$$U^{(i)}(f) := \frac{1}{F} \cdot U_5\left(F \cdot Z^{1-i} \cdot f\right).$$

Then

$$\frac{L_{\alpha+1}}{F} = U^{(i)}\left(\frac{L_{\alpha}}{F}\right),$$

for $i \equiv \alpha \pmod{2}$.

イロト イヨト イヨト

Setup General Relation 5-adic Irregularities Computational Considerations

U Operator

$$\frac{1}{5^{\alpha}F}\cdot L_{\alpha}=\sum_{m\geq 1}s(m)\cdot 5^{\mu(m)}\cdot \frac{y^m}{(1+5y)^n},$$

We study

$$U^{(i)}\left(\frac{y^m}{(1+5y)^n}\right).$$

< ロ > < 回 > < 回 > < 回 > < 回 >

Setup General Relation 5-adic Irregularities Computational Considerations

General Relation

Theorem

There exist discrete arrays $h_1, h_0 : \mathbb{Z}^3 \to \mathbb{Z}$ and functions $\pi_i : \mathbb{Z}_{\geq 1}^2 \to \mathbb{Z}_{\geq 0}$ such that

$$\begin{split} U^{(1)}\left(\frac{y^m}{(1+5y)^n}\right) &= \frac{1}{(1+5y)^{5n-4}} \sum_{r \ge \lceil m/5 \rceil} h_1(m,n,r) \cdot 5^{\pi_1(m,r)} \cdot y^r, \\ U^{(0)}\left(\frac{y^m}{(1+5y)^n}\right) &= \frac{1}{(1+5y)^{5n-2}} \sum_{r \ge \lceil (m+2)/5 \rceil} h_0(m,n,r) \cdot 5^{\pi_0(m,r)} \cdot y^r. \end{split}$$

Setup General Relation 5-adic Irregularities Computational Considerations

General Relation

$$\pi_{1}(m,r) := \begin{cases} 0, & 1 \leq m \leq 2 \text{ and } r = 1\\ 3, & 1 \leq m \leq 2 \text{ and } r = 3\\ \lfloor \frac{5r+1}{6} \rfloor, & 1 \leq m \leq 2 \text{ and } r \neq 1, 3\\ 2, & m = 3 \text{ and } r = 2\\ \lfloor \frac{5r-2}{6} \rfloor, & m = 3 \text{ and } r \neq 2\\ \lfloor \frac{5r-m+1}{6} \rfloor, & m \geq 4, \end{cases}$$
$$\pi_{0}(m,r) := \begin{cases} \lfloor \frac{5r+1}{6} \rfloor, & m = 1\\ \lfloor \frac{5r+1}{6} \rfloor, & m = 2 \text{ and } r \neq 3, 4, 5\\ \lfloor \frac{5r-5}{6} \rfloor, & m = 2 \text{ and } 3 \leq r \leq 5\\ \lfloor \frac{5r-m-2}{6} \rfloor, & m \geq 3. \end{cases}$$

Nicolas Allen Smoot Partition Congruences and the Localization Method

Setup General Relation 5-adic Irregularities Computational Considerations

Proof Strategy

$$\begin{aligned} \mathcal{Z}_n &:= \left\{ \frac{1}{(1+5y)^n} \sum_{m \ge 1} s(m) \cdot 5^{\theta(m)} \cdot y^m : s \text{ is discreet} \right\}, \\ \mathcal{V}_n &:= \left\{ \frac{1}{(1+5y)^n} \sum_{m \ge 1} s(m) \cdot 5^{\phi(m)} \cdot y^m : s \text{ is discreet} \right\}. \end{aligned}$$

$$egin{aligned} & heta(m) := egin{cases} \left\lfloor rac{5m-5}{6}
ight
ceil, & 1 \leq m \leq 2 \ \left\lfloor rac{5m-5}{6}
ight
ceil - 1, & m \geq 3, \end{aligned} \ & \phi(m) := egin{cases} \left\lfloor rac{5m-5}{6}
ight
ceil, & 1 \leq m \leq 3 \ \left\lfloor rac{5m-5}{6}
ight
ceil - 1, & m \geq 4. \end{aligned}$$

< ロ > < 回 > < 回 > < 回 > < 回 >

Setup General Relation 5-adic Irregularities Computational Considerations

Proof Strategy

$$\begin{aligned} \mathcal{Z}_n &:= \left\{ \frac{1}{(1+5y)^n} \sum_{m \ge 1} s(m) \cdot 5^{\theta(m)} \cdot y^m : s \text{ is discreet} \right\}, \\ \mathcal{V}_n &:= \left\{ \frac{1}{(1+5y)^n} \sum_{m \ge 1} s(m) \cdot 5^{\phi(m)} \cdot y^m : s \text{ is discreet} \right\}. \end{aligned}$$

Show that
$$\frac{1}{5F}L_1 \in \mathbb{Z}_3$$
,
Show that for any $f \in \mathbb{Z}_n$, $\frac{1}{5}U^{(1)}(f) \in \mathcal{V}_{5n-4}$,
Show that for any $f \in \mathcal{V}_n$, $\frac{1}{5}U^{(0)}(f) \in \mathbb{Z}_{5n-2}$.

(日)

Setup General Relation 5-adic Irregularities Computational Considerations

Even-to-Odd Index

Let
$$f \in \mathcal{V}_n$$
. Then

$$U^{(0)}(f) = U^{(0)} \left(\frac{1}{(1+5y)^n} \sum_{m \ge 1} s(m) \cdot 5^{\phi(m)} \cdot y^m \right)$$

= $\sum_{m \ge 1} s(m) \cdot 5^{\phi(m)} \cdot U^{(0)} \left(\frac{y^m}{(1+5y)^n} \right)$
= $\frac{1}{(1+5y)^{5n-2}} \sum_{m \ge 1} \sum_{r \ge \lceil (m+2)/5 \rceil} s(m) \cdot h_0(m,n,r) \cdot 5^{\phi(m)+\pi_0(m,r)} \cdot y^r$
= $\frac{1}{(1+5y)^{5n-2}} \sum_{r \ge 1} \sum_{m \ge 1} s(m) \cdot h_0(m,n,r) \cdot 5^{\phi(m)+\pi_0(m,r)} \cdot y^r$

We want to show that

$$\begin{split} \phi(m) + \pi_0(m,r) \geq \theta(r) + 1 \text{ for all } r \geq 1, \\ \text{ so that } \frac{1}{5} U^{(0)}(f) \in \mathcal{Z}_{5n-2}. \end{split}$$

イロト イヨト イヨト

Setup General Relation 5-adic Irregularities Computational Considerations

Odd-to-Even Index

Let $f \in \mathcal{Z}_n$. Then

$$U^{(1)}(f) = U^{(1)} \left(\frac{1}{(1+5y)^n} \sum_{m \ge 1} s(m) \cdot 5^{\theta(m)} \cdot y^m \right)$$

= $\sum_{m \ge 1} s(m) \cdot 5^{\theta(m)} \cdot U^{(1)} \left(\frac{y^m}{(1+5y)^n} \right)$
= $\frac{1}{(1+5y)^{5n-4}} \sum_{m \ge 1} \sum_{r \ge \lceil m/5 \rceil} s(m) \cdot h_1(m,n,r) \cdot 5^{\theta(m)+\pi_1(m,r)} \cdot y^r$
= $\frac{1}{(1+5y)^{5n-4}} \sum_{r \ge 1} \sum_{m \ge 1} s(m) \cdot h_1(m,n,r) \cdot 5^{\theta(m)+\pi_1(m,r)} \cdot y^r$

We want to show that

$$egin{aligned} & heta(m)+\pi_1(m,r)\geq \phi(r)+1 \mbox{ for all } r\geq 1, \ & \mbox{ so that } rac{1}{5}U^{(1)}(f)\in \mathcal{V}_{5n-4}. \end{aligned}$$

<ロ> (日) (日) (日) (日) (日)

Setup General Relation 5-adic Irregularities Computational Considerations

5-adic Irregularity

We are going to prove that

$$\phi(m) + \pi_0(m, r) \ge \theta(r) + 1$$
 for all $r \ge 1$,
 $\theta(m) + \pi_1(m, r) \ge \phi(r) + 1$ for all $r \ge 1$.

イロト イヨト イヨト

Setup General Relation 5-adic Irregularities Computational Considerations

5-adic Irregularity

We are going to prove that

$$\phi(m) + \pi_0(m, r) \ge \theta(r) + 1$$
 for all $r \ge 1$,
 $\theta(m) + \pi_1(m, r) \ge \phi(r) + 1$ for all $r \ge 1$.

No we aren't.

イロト イヨト イヨト

Setup General Relation 5-adic Irregularities Computational Considerations

5-adic Irregularity

We are going to prove that

$$\phi(m) + \pi_0(m, r) \ge \theta(r) + 1$$
 for all $r \ge 1$,
 $\theta(m) + \pi_1(m, r) \ge \phi(r) + 1$ for all $r \ge 1$.

No we aren't.

$$egin{aligned} \phi(m)+\pi_0(m,r)\geq heta(r)+1 ext{ for all } r\geq 1 ext{ is true.} \ heta(m)+\pi_1(m,r)\geq \phi(r)+1, ext{ on the other hand...} \end{aligned}$$

イロト イヨト イヨト

Setup General Relation 5-adic Irregularities Computational Considerations

5-adic Irregularity

Let $f \in \mathcal{Z}_n$. Then

$$\begin{split} U^{(1)}(f) &= U^{(1)} \left(\frac{1}{(1+5y)^n} \sum_{m \ge 1} s(m) \cdot 5^{\theta(m)} \cdot y^m \right) \\ &= \sum_{m \ge 1} s(m) \cdot 5^{\theta(m)} \cdot U^{(1)} \left(\frac{y^m}{(1+5y)^n} \right) \\ &= \frac{1}{(1+5y)^{5n-4}} \sum_{m \ge 1} \sum_{r \ge \lceil m/5 \rceil} s(m) \cdot h_1(m,n,r) \cdot 5^{\theta(m)+\pi_1(m,r)} \cdot y^r \\ &= \frac{1}{(1+5y)^{5n-4}} \sum_{r \ge 1} \sum_{m \ge 1} s(m) \cdot h_1(m,n,r) \cdot 5^{\theta(m)+\pi_1(m,r)} \cdot y^r \end{split}$$

The coefficient of $\frac{y^1}{(1+5y)^{5n-4}}$ is

$$\sum_{m=1}^{5} s(m) \cdot h_1(m, n, 1) \cdot 5^{\theta(m) + \pi_1(m, 1)}.$$

Setup General Relation 5-adic Irregularities Computational Considerations

5-adic Irregularity

The coefficient of
$$\frac{y^1}{(1+5y)^{5n-4}}$$
 has the form

$$=\sum_{m=1}^{5} s(m) \cdot h_{1}(m, n, 1) \cdot 5^{\theta(m) + \pi_{1}(m, 1)}$$

$$=\sum_{m=1}^{3} s(m) \cdot h_{1}(m, n, 1) + s(4) \cdot h_{1}(4, n, 1) \cdot 5 + s(5) \cdot h_{1}(5, n, 1) \cdot 5^{2}$$

$$\equiv \sum_{m=1}^{3} s(m) \cdot h_{1}(m, n, 1) \pmod{5}.$$

イロト イヨト イヨト

Setup General Relation 5-adic Irregularities Computational Considerations

5-adic Irregularity

Lemma

For all m, n such that $n \in \mathbb{Z}_{\geq 1}$ and $1 \leq m \leq 3$ we have:

 $\begin{array}{rl} h_0(1,\,n,\,1)\equiv 1 \pmod{5},\\ h_0(2,\,5n-4,\,1)\equiv 0 \pmod{5},\\ h_0(3,\,n,\,1)\equiv 1 \pmod{5},\\ h_0(1,\,n,\,2)\equiv 4 \pmod{5},\\ h_0(2,\,5n-4,\,2)\equiv 4 \pmod{5},\\ h_0(3,\,n,\,2)\equiv 4 \pmod{5},\\ h_0(2,\,5n-4,\,3)\equiv 1 \pmod{5},\\ h_1(m,\,n,\,1)\equiv 1 \pmod{5}. \end{array}$

< ロ > < 同 > < 三 > < 三 >

Setup General Relation 5-adic Irregularities Computational Considerations

5-adic Irregularity

Our coefficient of
$$\frac{y^1}{(1+5y)^{5n-4}}$$
 for $U^{(1)}(f)$ is

$$\equiv \sum_{m=1}^{3} s(m) \cdot h_1(m, n, 1) \pmod{5}$$
$$\equiv \sum_{m=1}^{3} s(m) \pmod{5}.$$

< ロ > < 回 > < 回 > < 回 > < 回 >

Setup General Relation 5-adic Irregularities Computational Considerations

5-adic Irregularity

Our coefficient of
$$\frac{y^1}{(1+5y)^{5n-4}}$$
 for $U^{(1)}(f)$ is

$$\equiv \sum_{m=1}^{3} s(m) \cdot h_1(m, n, 1) \pmod{5}$$
$$\equiv \sum_{m=1}^{3} s(m) \pmod{5}.$$

Examine L_1 :

$$L_1 = \frac{5 \cdot F}{(1+5y)^3} \cdot \left(24y + 361y^2 + 2410y^3 + 7900y^4 + 10000y^5\right)$$

イロト イヨト イヨト

Setup General Relation 5-adic Irregularities Computational Considerations

5-adic Irregularity

Definition

$$\mathcal{W}_n := \left\{ \frac{1}{(1+5y)^n} \sum_{m \ge 1} s(m) \cdot 5^{\theta(m)} \cdot y^m : \sum_{m=1}^3 s(m) \equiv 0 \mod 5 \right\},$$
$$\mathcal{V}_n := \left\{ \frac{1}{(1+5y)^n} \sum_{m \ge 1} s(m) \cdot 5^{\phi(m)} \cdot y^m \right\}.$$

Here *s* again represents a discrete integer-valued function.

イロト イヨト イヨト

Setup General Relation 5-adic Irregularities Computational Considerations

Resolving 5-adic Irregularity

Theorem

Suppose $f \in W_n$. Then

$$egin{aligned} &rac{1}{5} \cdot U^{(1)}\left(f
ight) \in \mathcal{V}_{5n-4}, \ &rac{1}{5^2} \cdot U^{(0)} \circ U^{(1)}\left(f
ight) \in \mathcal{W}_{25n-22}. \end{aligned}$$

(日)

 Motivation
 Setup

 The c(n) Sequence
 General Relation

 Some Highlights to the Proof
 5-adic Irregularities

 Summary
 Computational Considerati

Sketch

Let $f \in W_n$. Then

$$\frac{1}{5^{2}} \cdot \left(U^{(0)} \circ U^{(1)}(f) \right) = \frac{1}{(1+5y)^{25n-22}} \sum_{w \ge 1} t(w) \cdot 5^{\theta(w)} y^{w},$$

$$t(w) = \sum_{r=1}^{5w-2} \sum_{m=1}^{5r} s(m) \cdot h_1(m, n, r) \cdot h_0(r, 5n - 4, w)$$

 $\times 5^{\theta(m) + \pi_1(m, r) + \pi_0(r, w) - \theta(w) - 2}.$

 Motivation
 See

 The c(n) Sequence
 Ge

 Some Highlights to the Proof
 5-2

 Summary
 Co

Setup General Relation 5-adic Irregularities Computational Considerations

Sketch

$$\begin{split} t(1) &= \sum_{r=1}^{3} \sum_{m=1}^{5r} s(m) \cdot h_1(m, n, r) \cdot h_0(r, 5n - 4, 1) \cdot 5^{\lambda(m, r, 1)}, \\ t(2) &= \sum_{r=1}^{8} \sum_{m=1}^{5r} s(m) \cdot h_1(m, n, r) \cdot h_0(r, 5n - 4, 2) \cdot 5^{\lambda(m, r, 2)}, \\ t(3) &= \sum_{r=1}^{13} \sum_{m=1}^{5r} s(m) \cdot h_1(m, n, r) \cdot h_0(r, 5n - 4, 3) \cdot 5^{\lambda(m, r, 3)}, \\ \lambda(m, r, w) &:= \theta(m) + \pi_1(m, r) + \pi_0(r, w) - 2. \end{split}$$

We want to show that $t(1), t(2), t(3) \in \mathbb{Z}$, and that $t(1) + t(2) + t(3) \equiv 0 \pmod{5}$.

イロト イポト イヨト イヨ

Setup General Relation 5-adic Irregularities Computational Considerations

Sketch

$$\begin{split} t(1) + t(2) + t(3) &\equiv \frac{1}{5} \cdot \left(\sum_{j=1}^{2} h_0(1, 5n - 4, j) \right) \cdot \left(\sum_{m=1}^{3} s(m) \cdot h_1(m, n, 1) \right) \\ &+ h_0(1, 5n - 4, 3) \cdot \left(\sum_{m=1}^{3} s(m) \cdot h_1(m, n, 1) \right) \\ &+ \left(\sum_{j=1}^{2} h_0(1, 5n - 4, j) \right) \cdot s(4) \cdot h_1(4, n, 1) \\ &+ \left(\sum_{j=1}^{3} h_0(2, 5n - 4, j) \right) \cdot \sum_{m=1}^{2} s(m) \cdot h_1(m, n, 2) \\ &+ \left(\sum_{j=1}^{2} h_0(3, 5n - 4, j) \right) \cdot s(3) \cdot h_1(3, n, 3) \pmod{5}. \end{split}$$

The c(n) Sequence Some Highlights to the Proof

5-adic Irregularities

Sketch

It's That Lemma Again

For all m, n such that $n \in \mathbb{Z}_{>1}$ and $1 \le m \le 3$ we have:

$$\begin{array}{rl} h_0(1,n,1)\equiv 1 \pmod{5},\\ h_0(2,5n-4,1)\equiv 0 \pmod{5},\\ h_0(3,n,1)\equiv 1 \pmod{5},\\ h_0(1,n,2)\equiv 4 \pmod{5},\\ h_0(2,5n-4,2)\equiv 4 \pmod{5},\\ h_0(3,n,2)\equiv 4 \pmod{5},\\ h_0(2,5n-4,3)\equiv 1 \pmod{5},\\ h_1(m,n,1)\equiv 1 \pmod{5}. \end{array}$$

Therefore, $t(1) + t(2) + t(3) \equiv 0 \pmod{5}$.

The c(n) Sequence Some Highlights to the Proof

5-adic Irregularities

Sketch

It's That Lemma Again

For all m, n such that $n \in \mathbb{Z}_{>1}$ and $1 \le m \le 3$ we have:

$$\begin{array}{rl} h_0(1,n,1)\equiv 1 \pmod{5},\\ h_0(2,5n-4,1)\equiv 0 \pmod{5},\\ h_0(3,n,1)\equiv 1 \pmod{5},\\ h_0(1,n,2)\equiv 4 \pmod{5},\\ h_0(2,5n-4,2)\equiv 4 \pmod{5},\\ h_0(3,n,2)\equiv 4 \pmod{5},\\ h_0(2,5n-4,3)\equiv 1 \pmod{5},\\ h_1(m,n,1)\equiv 1 \pmod{5}. \end{array}$$

Therefore, $t(1) + t(2) + t(3) \equiv 0 \pmod{5}$.

Setup General Relation 5-adic Irregularities Computational Considerations

Proof of our Strong Result

Proof (I)

$$\frac{1}{5F} \cdot L_1 \in \mathcal{W}_3.$$

Suppose that for some $\alpha \in \mathbb{Z}_{\geq 1}$, there exists some $n \in \mathbb{Z}_{\geq 1}$ such that

$$\frac{1}{5^{2\alpha-1}F} \cdot L_{2\alpha-1} \in \mathcal{W}_n. \text{ Then} L_{2\alpha-1} = 5^{2\alpha-1}F \cdot f_{2\alpha-1}, \text{ for } f_{2\alpha-1} \in \mathcal{W}_n. \text{ Now,} L_{2\alpha} = U_5(L_{2\alpha-1}) = U_5(5^{2\alpha-1}F \cdot f_{2\alpha-1}) = 5^{2\alpha-1}F \cdot U^{(1)}(f_{2\alpha-1}).$$

There exists some $f_{2\alpha} \in \mathcal{V}_{5n-4}$ such that $U^{(1)}(f_{2\alpha-1}) = 5 \cdot f_{2\alpha}$. Therefore,

$$L_{2\alpha} = 5^{2\alpha} F \cdot f_{2\alpha}$$
, and $\frac{1}{5^{2\alpha} F} \cdot L_{2\alpha} \in \mathcal{V}_{5n-4}$.

୦୯୯

Setup General Relation 5-adic Irregularities Computational Considerations

Proof of our Strong Result

Proof (II)

$$L_{2\alpha+1} = U_5(Z \cdot L_{2\alpha}) = U_5(5^{2\alpha}F \cdot Z \cdot f_{2\alpha}) = 5^{2\alpha}F \cdot U^{(0)}(f_{2\alpha}).$$

There exists some $f_{2\alpha+1} \in W_{25n-22}$ such that $U^{(0)}(f_{2\alpha}) = 5 \cdot f_{2\alpha+1}$. Therefore,

$$\mathcal{L}_{2lpha+1}=5^{2lpha+1}\mathcal{F}\cdot f_{2lpha+1}, ext{ and } rac{1}{5^{2lpha+1}\mathcal{F}}\cdot \mathcal{L}_{2lpha+1}\in\mathcal{W}_{25n-22}.$$

・ロト ・回ト ・ヨト ・ヨト

Setup General Relation 5-adic Irregularities Computational Considerations

Proof of our Strong Result

Proof (III)

$$\psi(\alpha) = \left\lfloor \frac{5^{\alpha+1}}{12} \right\rfloor + 1.$$

Establishing that $\psi(\alpha)$ give the appropriate indices for $\mathcal{V}_n, \mathcal{W}_n$ is an elementary exercise in number theory. Prove that

$$\psi(1)=3, \ 5\psi(2lpha-1)-4=\psi(2lpha), \ 5\psi(2lpha)-2=\psi(2lpha+1).$$

Setup General Relation 5-adic Irregularities Computational Considerations

Computational Considerations

We have a degree 5 modular equation for y (and for 1 + 5y). So for any pattern, we would expect 25 initial relations for each value of i to prove by induction—50 relations, total. Let x = 1 + 5y. Then

$$U^{(i)}\left(\frac{y^{m}}{(1+5y)^{n}}\right) = \frac{1}{5^{m}} \cdot U^{(i)}\left(\frac{(x-1)^{m}}{x^{n}}\right)$$
$$= \frac{1}{5^{m}} \sum_{r=0}^{m} (-1)^{m-r} {m \choose r} \cdot U^{(i)}\left(x^{r-n}\right)$$
$$= \frac{1}{5^{m}} \sum_{r=0}^{m} (-1)^{m-r} {m \choose r} \cdot U^{(i)}\left((1+5y)^{r-n}\right).$$

< ロ > < 同 > < 三 > < 三 >

Setup General Relation 5-adic Irregularities Computational Considerations

Computational Considerations

If $n \ge 0$, then

$$U^{(i)}\left((1+5y)^n\right) = \sum_{k=0}^n \binom{n}{k} \cdot 5^k \cdot U^{(i)}\left(y^k\right).$$

So all we really need are ten relations—five for each *i*—for $U^{(i)}(y^k)$. Then we can confirm the initial relations for any patern on $U^{(i)}\left(\frac{y^m}{(1+5y)^n}\right)$.

< ロ > < 同 > < 三 > < 三 >
Summary Future Work

Summary

• Wang and Yang's proof utilized techniques for handling congruences with an associated Riemann surface of genus 1.

・ 同 ト ・ ヨ ト ・ ヨ

Summary Future Work

Summary

- Wang and Yang's proof utilized techniques for handling congruences with an associated Riemann surface of genus 1.
- However, the congruences for this problem are associated with a genus 0 Riemann surface.

Summary Future Work

Summary

- Wang and Yang's proof utilized techniques for handling congruences with an associated Riemann surface of genus 1.
- However, the congruences for this problem are associated with a genus 0 Riemann surface.
- Our new approach uses one modular function instead of two.

・ 同 ト ・ ヨ ト ・ ヨ ト

Summary Future Work

Summary

- Wang and Yang's proof utilized techniques for handling congruences with an associated Riemann surface of genus 1.
- However, the congruences for this problem are associated with a genus 0 Riemann surface.
- Our new approach uses one modular function instead of two.
- We require 50 initial cases.

- 4 同 1 4 三 1 4 三 1

Summary Future Work

Summary

- Wang and Yang's proof utilized techniques for handling congruences with an associated Riemann surface of genus 1.
- However, the congruences for this problem are associated with a genus 0 Riemann surface.
- Our new approach uses one modular function instead of two.
- We require 50 initial cases.
- However, these are algebraically dependent: we only need to directly prove 10 initial cases...

Summary Future Work

Summary

- Wang and Yang's proof utilized techniques for handling congruences with an associated Riemann surface of genus 1.
- However, the congruences for this problem are associated with a genus 0 Riemann surface.
- Our new approach uses one modular function instead of two.
- We require 50 initial cases.
- However, these are algebraically dependent: we only need to directly prove 10 initial cases...
- (in contrast to the 20 that Wang and Yang needed)

Summary Future Work

Summary

- Wang and Yang's proof utilized techniques for handling congruences with an associated Riemann surface of genus 1.
- However, the congruences for this problem are associated with a genus 0 Riemann surface.
- Our new approach uses one modular function instead of two.
- We require 50 initial cases.
- However, these are algebraically dependent: we only need to directly prove 10 initial cases...
- (in contrast to the 20 that Wang and Yang needed)
- Our proof reveals some interesting algebraic structure in the form of the localized polynomial ring.

Summary Future Work

Summary

- Wang and Yang's proof utilized techniques for handling congruences with an associated Riemann surface of genus 1.
- However, the congruences for this problem are associated with a genus 0 Riemann surface.
- Our new approach uses one modular function instead of two.
- We require 50 initial cases.
- However, these are algebraically dependent: we only need to directly prove 10 initial cases...
- (in contrast to the 20 that Wang and Yang needed)
- Our proof reveals some interesting algebraic structure in the form of the localized polynomial ring.
- Finally, there are some extremely difficult steps in showing that going from L_{α} to $L_{\alpha+1}$ always picks up an extra power of 5.

Summary Future Work

Localization Method

 Let L := (L_α)_{α≥1} be a sequence of modular functions over some Γ₀(N), such that

- 4 同 1 4 三 1 4 三 1

Summary Future Work

Localization Method

- Let L := (L_α)_{α≥1} be a sequence of modular functions over some Γ₀(N), such that
- $g(X_0(N)) = 0$

くロ と く 同 と く ヨ と 一

Summary Future Work

Localization Method

- Let L := (L_α)_{α≥1} be a sequence of modular functions over some Γ₀(N), such that
- $g(X_0(N)) = 0$
- Let y be a chosen so that $\mathcal{M}^{a/c}(\Gamma_0(N)) = \mathbb{C}[y]$.

(日本) (日本) (日本)

Summary Future Work

Localization Method

- Let L := (L_α)_{α≥1} be a sequence of modular functions over some Γ₀(N), such that
- $g(X_0(N)) = 0$
- Let y be a chosen so that $\mathcal{M}^{a/c}(\Gamma_0(N)) = \mathbb{C}[y]$.

There exists some $p \in \mathbb{C}[X]$ and some nonnegative integer sequence $\{\psi(\alpha)\}_{\alpha \geq 1}$ such that $p(y) \in \mathcal{E}^{a/c}(\Gamma_0(N))$ and

$$p(y)^{\psi(\alpha)} \cdot L_{\alpha} \in \mathbb{C}[y].$$

・ 同 ト ・ ヨ ト ・ ヨ ト

Summary Future Work

Localization Method

$$\mathsf{If} \ L_{\alpha} = \sum_{m \geq 1} s(m) \cdot \ell^{\nu_{\alpha}(m)} \cdot \frac{y^m}{p(y)^{\psi(\alpha)}} \in \mathbb{Z}[y]_{\mathcal{S}},$$

with $\mathcal{S}:=\{p(y)^n:n\in\mathbb{Z}_{\geq 0}\}$, and

$$U^{\left(lpha
ight)}\left(L_{lpha}
ight)=L_{lpha+1}$$

for some linear operator sequence $\left(U^{(\alpha)} \right)_{\alpha \geq 1}$, then we want to understand

$$U^{(\alpha)}\left(rac{y^m}{p(y)^{\psi(\alpha)}}
ight).$$

3

Summary Future Work

Future Work

• This result has enormous potential!

イロト イヨト イヨト

Summary Future Work

Future Work

- This result has enormous potential!
- This is an extension of the original technique by Ramanujan and Watson.

< ロ > < 同 > < 三 > < 三 >

Summary Future Work

Future Work

- This result has enormous potential!
- This is an extension of the original technique by Ramanujan and Watson.
- The localization structure has never been studied before in this subject.

Summary Future Work

Future Work

- This result has enormous potential!
- This is an extension of the original technique by Ramanujan and Watson.
- The localization structure has never been studied before in this subject.
- The result relates arithmetic, algebra, analysis, topology, computational methods, and experimental math.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Summary Future Work

Future Work

- This result has enormous potential!
- This is an extension of the original technique by Ramanujan and Watson.
- The localization structure has never been studied before in this subject.
- The result relates arithmetic, algebra, analysis, topology, computational methods, and experimental math.
- There are theoretical reasons to believe that this modified technique may be used to prove *all* congruence families over a genus 0 surface.

Summary Future Work

Future Work

- This result has enormous potential!
- This is an extension of the original technique by Ramanujan and Watson.
- The localization structure has never been studied before in this subject.
- The result relates arithmetic, algebra, analysis, topology, computational methods, and experimental math.
- There are theoretical reasons to believe that this modified technique may be used to prove *all* congruence families over a genus 0 surface.
- But we need more examples!

- 4 同 ト 4 ヨ ト 4 ヨ ト

Summary Future Work

Future Work

- This result has enormous potential!
- This is an extension of the original technique by Ramanujan and Watson.
- The localization structure has never been studied before in this subject.
- The result relates arithmetic, algebra, analysis, topology, computational methods, and experimental math.
- There are theoretical reasons to believe that this modified technique may be used to prove *all* congruence families over a genus 0 surface.
- But we need more examples!
- I'm looking through the literature now for any pathological congruences that are resistant to classical techniques.

Summary Future Work

Future Work

- This result has enormous potential!
- This is an extension of the original technique by Ramanujan and Watson.
- The localization structure has never been studied before in this subject.
- The result relates arithmetic, algebra, analysis, topology, computational methods, and experimental math.
- There are theoretical reasons to believe that this modified technique may be used to prove *all* congruence families over a genus 0 surface.
- But we need more examples!
- I'm looking through the literature now for any pathological congruences that are resistant to classical techniques.
- I'm working on a research proposal to study this method further (Hint, *Hint*).

Summary Future Work

References

- F. Diamond, J. Shurman, *A First Course in Modular Forms*, 4th Printing., Springer Publishing (2016).
- M. Knopp, *Modular Functions in Analytic Number Theory*, 2nd Ed., AMS Chelsea Publishing, 1993.
- P. Paule, S. Radu, "The Andrews–Sellers Family of Partition Congruences," *Advances in Mathematics* 230, pp. 819-838 (2012).
- S. Ramanujan, G.H. Hardy, P.V. Seshu Aiyar, B.M. Wilson, Bruce C. Berndt, *Collected Papers of Srinivasa Ramanujan*, Cambridge University Press, 1927; Reissued AMS-Chelsea, 2000.
- N. Smoot, "A Single-Variable Proof of the Omega SPT Congruence Family Over Powers of 5," (Submitted) Available at https://risc.jku.at/m/nicolas-smoot/ (2020).
- L. Wang, "New Congruences for Partitions Related to Mock Theta Functions," *Journal of Number Theory* 175, pp. 51-65 (2017).
- L. Wang, Y. Yang, "The Smallest Parts Function Associated with ω(q)," (Submitted), Available at https://arxiv.org/pdf/1812.00379.pdf (2018).