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Ramanujan’s Conjectures

Let n ≥ 0, α ≥ 1, and 24λ`,α ≡ 1 (mod `α).

Conjecture (Ramanujan, 1919)

p (5αn + λ5,α) ≡ 0 (mod 5α),

p (7αn + λ7,α) ≡ 0 (mod 7α),

p (11αn + λ11,α) ≡ 0 (mod 11α).
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Ramanujan’s Conjectures

Let n ≥ 0, α ≥ 1, and 24λ`,α ≡ 1 (mod `α).

Theorem (Ramanujan, Watson, Atkin)

p (5αn + λ5,α) ≡ 0 (mod 5α),

p (7αn + λ7,α) ≡ 0 (mod 7b
α
2 c+1),

p (11αn + λ11,α) ≡ 0 (mod 11α).
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α = 1

Theorem (Ramanujan)

∞∑
n=0

p(5n + 4)qn = 5
(q5; q5)5∞
(q; q)6∞

.

Rewriting, we have

(q5; q5)∞

∞∑
n=0

p(5n + 4)qn+1 = 5q
(q5; q5)6∞
(q; q)6∞

.
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α = 1, 2

For α = 1: (q5; q5)∞

∞∑
n=0

p(5n + 4)qn+1 = 5 · q (q5; q5)6∞
(q; q)6∞

.

For α = 2: (q; q)∞

∞∑
n=0

p(52n + 24)qn+1

= 512 · q5 (q5; q5)30∞
(q; q)30∞

+ 510 · 6 · q4 (q5; q5)24∞
(q; q)24∞

+ 57 · 63 · q3 (q5; q5)18∞
(q; q)18∞

+ 55 · 52 · q2 (q5; q5)12∞
(q; q)12∞

+ 52 · 63 · q (q5; q5)30∞
(q; q)30∞

.
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α = 1, 2

Let t = q
(q5; q5)6∞
(q; q)6∞

, and q = e2πiτ , with τ ∈ H.

Theorem

(q5; q5)∞

∞∑
n=0

p(5n + 4)qn+1 = 5t,

(q; q)∞

∞∑
n=0

p(52n + 24)qn+1 = 512 · t5 + 510 · 6 · t4 + 57 · 63 · t3

+ 55 · 52 · t2 + 52 · 63 · t.
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5α

Theorem

Let λα be the smallest positive solution to 24x ≡ 1 (mod 5α).
Then

L2α−1 = (q5; q5)∞

∞∑
n=0

p(52α−1n + λ2α−1)qn+1 ∈ Z[t],

L2α = (q; q)∞

∞∑
n=0

p(52αn + λ2α)qn+1 ∈ Z[t].

We write Lα+1 = U(α) (Lα), where U(α) are linear operators.
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5α

We have

Lα ∈ Z[t],

Lα+1 = U(α) (Lα),

U(α)
(
5k · f

)
= 5k · U(α) (f ),

Also, L1 = 5t.

Theorem

For every α ∈ Z≥1,

U(α)

(
Lα
5α

)
∈ 5 · Z[t].

So going from Lα to Lα+1, we pick up an extra power of 5.
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7α, 11α

The same technique works for

p (7αn + λ7,α) ≡ 0 (mod 7b
α
2 c+1),

It does not work for

p (11αn + λ11,α) ≡ 0 (mod 11α).
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Modular Group Action

Γ0(N) =

{(
a b
c d

)
∈ SL(2,Z) : N|c

}
.

Let Ĥ := H ∪Q ∪ {∞}. We define a group action

Γ0(N)× Ĥ −→ Ĥ,((
a b
c d

)
, τ

)
7−→ aτ + b

cτ + d
.

Define the orbits [τ ]N := {γτ : γ ∈ Γ0(N)} .
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Modular Curves

Definition

For any N ∈ Z≥1, we define the classical modular curve of level N as
the set of all orbits of Γ0(N) applied to Ĥ:

X0(N) :=
{

[τ ]N : τ ∈ Ĥ
}

Definition

For each N ≥ 1 there exists some d ≥ 1 and orbits [rk ]N ,
0 ≤ k ≤ d − 1, such that

Q ∪ {∞} =
d−1⊔
k=0

[rk ]N .

The orbits [rk ]N are the cusps of X0(N).

Nicolas Allen Smoot Partition Congruences and the Localization Method



Motivation
The c(n) Sequence

Some Highlights to the Proof
Summary

Ramanujan’s Conjectures
Modular Curves

Modular Functions

Let q := e2πiτ , τ ∈ H.

Definition

A holomorphic function f : H −→ C is modular over Γ0(N) if

For any τ1, τ2 ∈ H such that τ1 ∈ [τ2]N , f (τ1) = f (τ2),

For any γ =

(
a b
c d

)
∈ SL(2,Z), we have

f

(
aτ + b

cτ + d

)
=
∑
n≥nγ

αγ(n)qn·gcd(c
2,N)/N ,

with nγ ∈ Z, αγ(nγ) 6= 0.
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Modular Curves

For each partition congruence family, we can associate a compact
Riemann surface.

p (5αn + λ5,α) ≡ 0 (mod 5α) −→ X0(5),

p (7αn + λ7,α) ≡ 0 (mod 7b
α
2 c+1) −→ X0(7),

p (11αn + λ11,α) ≡ 0 (mod 11α) −→ X0(11).

These are the classical modular curves of level 5, 7, 11 (resp.).
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Genus

The genus of a Riemann surface X, denoted g (X), is the number
of holes in the surface.

g (X0(1)) = 0,

g (X0(5)) = 0,

g (X0(7)) = 0,

g (X0(11)) = 1,

g (X0(20)) = 1.

Why is this important?
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Weierstrass Gap Theorem

Theorem

Let X be a compact Riemann surface, and let

f : X→ C

be holomorphic over X, except for a pole at a point p ∈ X. Then
the order of f at p can assume any negative integer, with exactly
g (X) exceptions.
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Weierstrass Gap Theorem

Example: Let q = e2πiτ , τ ∈ H.

1

t
=

1

q

∞∏
m=1

(
1− qm

1− q5m

)6

=
1

q
+ c(0) + c(1)q + ...

is holomorphic, except for q = 0 (τ = i∞). And t induces

t̂ : X0(5) −→ C
: [τ ]5 7−→ t(τ).

g (X0(5)) = 0.
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Weierstrass Gap Theorem

Example:

t =
1

q2

∞∏
m=1

(
1− q4m

1− q20m

)4(
1− q10m

1− q2m

)2

,

ρ =
1

q3

∞∏
m=1

(
1− q4m

1− qm

)(
1− q5m

1− q20m

)5

are holomorphic over X0(20), except for q = 0, with orders
−2,−3. There is no such function with order −1.

g (X0(20)) = 1.
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Corollaries

Let Mc (Γ0(N)) be the space of modular functions over Γ0(N)
with a pole at only one cusp [c]N .

Corollary

If g (X0(N)) = 0, then there exists a function t such that
Mc (Γ0(N)) = C[t].

Corollary

If g (X0(N)) = 1, then there exist functions t, ρ such that
Mc (Γ0(N)) = C[t]⊕ ρC[t].

Nicolas Allen Smoot Partition Congruences and the Localization Method



Motivation
The c(n) Sequence

Some Highlights to the Proof
Summary

Introduction
Comparison of Proofs
Main Theorem

c(n)

Let q = e2πiτ , with τ ∈ H. Define E2(τ) by

E2(τ) := 1− 24
∞∑
n=1

nqn

1− qn
.

Definition

Define c(n) with the generating function

∞∑
n=0

c(n)qn :=
(2 · E2(2τ)− E2(τ))

(q2; q2)∞
.
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Congruences on c(n)

Theorem (Wang, Yang)

Let n ≥ 0, α ≥ 1, and 12δα ≡ 1 (mod 5α). Then

c (5αn + δα) ≡ 0 (mod 5α),
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Congruences on sptω(n)

Theorem (Wang, Yang)

Let n ≥ 0, α ≥ 1, and 12δα ≡ 1 (mod 5α). Then

sptω (2 · 5αn + δα) ≡ 0 (mod 5α),

with ω(q) defined as Ramanujan’s third order mock theta function.
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Proof in Terms of Lα

Let

L2α−1 := (q10; q10)∞

∞∑
n=0

c
(
52α−1n + δ2α−1

)
qn+1,

L2α := (q2; q2)∞

∞∑
n=0

c
(
52αn + δ2α

)
qn+1.

For example,

L1 = (q10; q10)∞

∞∑
n=0

c (5n + 3) qn+1.

The game is to show that Lα ≡ 0 (mod 5α).
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Technique by Wang and Yang

To begin with, examine L1. In Wang and Yang’s form:

L1 = F ·
(
245 · t + 3750 · t2 + 15625 · t3 − ρ ·

(
125 · t + 3125 · t2

))
,

with t, ρ eta quotients with integer power expansions, and F a
modular form with constant term 1, over Γ0(10).

Lα
5α · F

∈ Z[t]⊕ ρZ[t].

This is characteristic of the Paule–Radu method for proving
congruences when the associated modular curve has genus 1.
However, the genus of X0(10) is 0.
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Our First Attempt

Let x :=
∞∏

m=1

(1− q2m)5(1− q5m)

(1− qm)5(1− q10m)
.

Then M0 (Γ0(10)) = C[x ].

Theorem

x3 · L1
F
∈ C[x ].

Corollary

For all α ≥ 1,
Lα
F
∈ C[x , x−1].
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First Attempt

L1 = F ·
(
245 · t + 3750 · t2 + 15625 · t3 − ρ ·

(
125 · t + 3125 · t2

))
.

In terms of x :

L1 =F ·

(
− 624

625x3
− 2487

625x2
+

801

625x
− 422

125
− 3148x

125
+

19904x2

625

+
512x3

625
− 256x4

625

)
.
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Second Attempt

x =
∞∏

m=1

(1− q2m)5(1− q5m)

(1− qm)5(1− q10m)

Lemma

x ≡ 1 (mod 5).

Let x = 1 + 5y . Interestingly,

y = q
∞∏

m=1

(1− q2m)(1− q10m)3

(1− qm)3(1− q5m)
.
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Problem

We have a problem:

L1
F
6∈ C[y , y−1].

But we do have

L1
F
∈ C[y , x−1]...
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Comparison of Expressions for L1

L1 = F ·
(
245 · t + 3750 · t2 + 15625 · t3 − ρ ·

(
125 · t + 3125 · t2

))
,

In our form:

L1 =
F

(1 + 5y)3
·
(
120y + 1805y2 + 12050y3 + 39500y4 + 50000y5

)
,

Important! F , y , 1
1+5y have integer power series expansions.

Similar identities hold for L2, L3, etc.
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Weak Result

We let α ≥ 1,

S := {(1 + 5y)n : n ∈ Z≥0} ,
Z[y ]S := the localization of Z[y ] at S.

Then we have the following:

Theorem (Me!)

1

5αF
· Lα ∈ Z[y ]S .
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Strong Result

We let α ≥ 1,

ψ(α) :=

⌊
5α+1

12

⌋
+ 1.

Then we have the following:

Theorem (Me!)

(1 + 5y)ψ(α)

5αF
· Lα ∈ Z[y ].
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Lα

L1 =
F

(1 + 5y)3
·
(
120y + 1805y2 + 12050y3 + 39500y4 + 50000y5

)
.

We will prove that

1

5αF
· Lα =

∑
m≥1

s(m) · 5µ(m) · ym

(1 + 5y)n
,

with n ∈ Z≥1 fixed, s, µ integer-valued functions, and s discrete.
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U Operator

U5 (L2α−1) = L2α,

U5 (Z · L2α) = L2α+1,

for a certain eta quotient Z . We define

U(i) (f ) :=
1

F
· U5

(
F · Z 1−i · f

)
.

Then

Lα+1

F
= U(i)

(
Lα
F

)
,

for i ≡ α (mod 2).
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U Operator

1

5αF
· Lα =

∑
m≥1

s(m) · 5µ(m) · ym

(1 + 5y)n
,

We study

U(i)

(
ym

(1 + 5y)n

)
.
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General Relation

Theorem

There exist discrete arrays h1, h0 : Z3 → Z and functions
πi : Z2

≥1 → Z≥0 such that

U(1)

(
ym

(1 + 5y)n

)
=

1

(1 + 5y)5n−4

∑
r≥dm/5e

h1(m, n, r) · 5π1(m,r) · y r ,

U(0)

(
ym

(1 + 5y)n

)
=

1

(1 + 5y)5n−2

∑
r≥d(m+2)/5e

h0(m, n, r) · 5π0(m,r) · y r .
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General Relation

π1(m, r) :=



0, 1 ≤ m ≤ 2 and r = 1

3, 1 ≤ m ≤ 2 and r = 3⌊
5r+1
6

⌋
, 1 ≤ m ≤ 2 and r 6= 1, 3

2, m = 3 and r = 2⌊
5r−2
6

⌋
, m = 3 and r 6= 2⌊

5r−m+1
6

⌋
, m ≥ 4,

π0(m, r) :=



⌊
5r+1
6

⌋
, m = 1⌊

5r+1
6

⌋
, m = 2 and r 6= 3, 4, 5⌊

5r−5
6

⌋
, m = 2 and 3 ≤ r ≤ 5⌊

5r−m−2
6

⌋
, m ≥ 3.
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Proof Strategy

Zn :=

 1

(1 + 5y)n

∑
m≥1

s(m) · 5θ(m) · ym : s is discreet

 ,

Vn :=

 1

(1 + 5y)n

∑
m≥1

s(m) · 5φ(m) · ym : s is discreet

 .

θ(m) :=

{⌊
5m−5

6

⌋
, 1 ≤ m ≤ 2⌊

5m−5
6

⌋
− 1, m ≥ 3,

φ(m) :=

{⌊
5m−5

6

⌋
, 1 ≤ m ≤ 3⌊

5m−5
6

⌋
− 1, m ≥ 4.

Nicolas Allen Smoot Partition Congruences and the Localization Method



Motivation
The c(n) Sequence

Some Highlights to the Proof
Summary

Setup
General Relation
5-adic Irregularities
Computational Considerations

Proof Strategy

Zn :=

 1

(1 + 5y)n

∑
m≥1

s(m) · 5θ(m) · ym : s is discreet

 ,

Vn :=

 1

(1 + 5y)n

∑
m≥1

s(m) · 5φ(m) · ym : s is discreet

 .

Show that
1

5F
L1 ∈ Z3,

Show that for any f ∈ Zn,
1

5
U(1)(f ) ∈ V5n−4,

Show that for any f ∈ Vn,
1

5
U(0)(f ) ∈ Z5n−2.
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Even-to-Odd Index

Let f ∈ Vn. Then

U(0)(f ) =U(0)

 1

(1 + 5y)n

∑
m≥1

s(m) · 5φ(m) · ym


=
∑
m≥1

s(m) · 5φ(m) · U(0)

(
ym

(1 + 5y)n

)
=

1

(1 + 5y)5n−2

∑
m≥1

∑
r≥d(m+2)/5e

s(m) · h0(m, n, r) · 5φ(m)+π0(m,r) · y r

=
1

(1 + 5y)5n−2

∑
r≥1

∑
m≥1

s(m) · h0(m, n, r) · 5φ(m)+π0(m,r) · y r

We want to show that

φ(m) + π0(m, r) ≥ θ(r) + 1 for all r ≥ 1,

so that
1

5
U(0)(f ) ∈ Z5n−2.
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Odd-to-Even Index

Let f ∈ Zn. Then

U(1)(f ) =U(1)

 1

(1 + 5y)n

∑
m≥1

s(m) · 5θ(m) · ym


=
∑
m≥1

s(m) · 5θ(m) · U(1)

(
ym

(1 + 5y)n

)
=

1

(1 + 5y)5n−4

∑
m≥1

∑
r≥dm/5e

s(m) · h1(m, n, r) · 5θ(m)+π1(m,r) · y r

=
1

(1 + 5y)5n−4

∑
r≥1

∑
m≥1

s(m) · h1(m, n, r) · 5θ(m)+π1(m,r) · y r

We want to show that

θ(m) + π1(m, r) ≥ φ(r) + 1 for all r ≥ 1,

so that
1

5
U(1)(f ) ∈ V5n−4.
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5-adic Irregularity

We are going to prove that

φ(m) + π0(m, r) ≥ θ(r) + 1 for all r ≥ 1,

θ(m) + π1(m, r) ≥ φ(r) + 1 for all r ≥ 1.

No we aren’t.

φ(m) + π0(m, r) ≥ θ(r) + 1 for all r ≥ 1 is true.

θ(m) + π1(m, r) ≥ φ(r) + 1, on the other hand...
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5-adic Irregularity

Let f ∈ Zn. Then

U(1)(f ) =U(1)

 1

(1 + 5y)n

∑
m≥1

s(m) · 5θ(m) · ym


=
∑
m≥1

s(m) · 5θ(m) · U(1)

(
ym

(1 + 5y)n

)
=

1

(1 + 5y)5n−4

∑
m≥1

∑
r≥dm/5e

s(m) · h1(m, n, r) · 5θ(m)+π1(m,r) · y r

=
1

(1 + 5y)5n−4

∑
r≥1

∑
m≥1

s(m) · h1(m, n, r) · 5θ(m)+π1(m,r) · y r

The coefficient of y1

(1+5y)5n−4 is

5∑
m=1

s(m) · h1(m, n, 1) · 5θ(m)+π1(m,1).
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5-adic Irregularity

The coefficient of y1

(1+5y)5n−4 has the form

=
5∑

m=1

s(m) · h1(m, n, 1) · 5θ(m)+π1(m,1)

=
3∑

m=1

s(m) · h1(m, n, 1) + s(4) · h1(4, n, 1) · 5 + s(5) · h1(5, n, 1) · 52

≡
3∑

m=1

s(m) · h1(m, n, 1) (mod 5).
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5-adic Irregularity

Lemma

For all m, n such that n ∈ Z≥1 and 1 ≤ m ≤ 3 we have:

h0(1, n, 1) ≡ 1 (mod 5),

h0(2, 5n − 4, 1) ≡ 0 (mod 5),

h0(3, n, 1) ≡ 1 (mod 5),

h0(1, n, 2) ≡ 4 (mod 5),

h0(2, 5n − 4, 2) ≡ 4 (mod 5),

h0(3, n, 2) ≡ 4 (mod 5),

h0(2, 5n − 4, 3) ≡ 1 (mod 5),

h1(m, n, 1) ≡ 1 (mod 5).
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5-adic Irregularity

Our coefficient of y1

(1+5y)5n−4 for U(1)(f ) is

≡
3∑

m=1

s(m) · h1(m, n, 1) (mod 5)

≡
3∑

m=1

s(m) (mod 5).

Examine L1:

L1 =
5 · F

(1 + 5y)3
·
(
24y + 361y2 + 2410y3 + 7900y4 + 10000y5

)
.
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5-adic Irregularity

Definition

Wn :=

 1

(1 + 5y)n

∑
m≥1

s(m) · 5θ(m) · ym :
3∑

m=1

s(m) ≡ 0 mod 5

 ,

Vn :=

 1

(1 + 5y)n

∑
m≥1

s(m) · 5φ(m) · ym
 .

Here s again represents a discrete integer-valued function.
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Resolving 5-adic Irregularity

Theorem

Suppose f ∈ Wn. Then

1

5
· U(1) (f ) ∈ V5n−4,

1

52
· U(0) ◦ U(1) (f ) ∈ W25n−22.
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Sketch

Let f ∈ Wn. Then

1

52
·
(
U(0) ◦ U(1) (f )

)
=

1

(1 + 5y)25n−22

∑
w≥1

t(w) · 5θ(w)yw ,

t(w) =
5w−2∑
r=1

5r∑
m=1

s(m) · h1(m, n, r) · h0(r , 5n − 4,w)

× 5θ(m)+π1(m,r)+π0(r ,w)−θ(w)−2.
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Sketch

t(1) =
3∑

r=1

5r∑
m=1

s(m) · h1(m, n, r) · h0(r , 5n − 4, 1) · 5λ(m,r ,1),

t(2) =
8∑

r=1

5r∑
m=1

s(m) · h1(m, n, r) · h0(r , 5n − 4, 2) · 5λ(m,r ,2),

t(3) =
13∑
r=1

5r∑
m=1

s(m) · h1(m, n, r) · h0(r , 5n − 4, 3) · 5λ(m,r ,3),

λ(m, r ,w) :=θ(m) + π1(m, r) + π0(r ,w)− 2.

We want to show that t(1), t(2), t(3) ∈ Z, and that
t(1) + t(2) + t(3) ≡ 0 (mod 5).
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Sketch

t(1) + t(2) + t(3) ≡1

5
·

 2∑
j=1

h0(1, 5n − 4, j)

 ·( 3∑
m=1

s(m) · h1(m, n, 1)

)

+h0(1, 5n − 4, 3) ·

(
3∑

m=1

s(m) · h1(m, n, 1)

)

+

 2∑
j=1

h0(1, 5n − 4, j)

 · s(4) · h1(4, n, 1)

+

 3∑
j=1

h0(2, 5n − 4, j)

 · 2∑
m=1

s(m) · h1(m, n, 2)

+

 2∑
j=1

h0(3, 5n − 4, j)

 · s(3) · h1(3, n, 3) (mod 5).
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Sketch

It’s That Lemma Again

For all m, n such that n ∈ Z≥1 and 1 ≤ m ≤ 3 we have:

h0(1, n, 1) ≡ 1 (mod 5),

h0(2, 5n − 4, 1) ≡ 0 (mod 5),

h0(3, n, 1) ≡ 1 (mod 5),

h0(1, n, 2) ≡ 4 (mod 5),

h0(2, 5n − 4, 2) ≡ 4 (mod 5),

h0(3, n, 2) ≡ 4 (mod 5),

h0(2, 5n − 4, 3) ≡ 1 (mod 5),

h1(m, n, 1) ≡ 1 (mod 5).

Therefore, t(1) + t(2) + t(3) ≡ 0 (mod 5).
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Proof of our Strong Result

Proof (I)

1

5F
· L1 ∈ W3.

Suppose that for some α ∈ Z≥1, there exists some n ∈ Z≥1 such that

1

52α−1F
· L2α−1 ∈ Wn. Then

L2α−1 = 52α−1F · f2α−1, for f2α−1 ∈ Wn. Now,

L2α = U5 (L2α−1) = U5

(
52α−1F · f2α−1

)
= 52α−1F · U(1)(f2α−1).

There exists some f2α ∈ V5n−4 such that U(1)(f2α−1) = 5 · f2α. Therefore,

L2α = 52αF · f2α, and
1

52αF
· L2α ∈ V5n−4.
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Proof of our Strong Result

Proof (II)

L2α+1 = U5 (Z · L2α) = U5

(
52αF · Z · f2α

)
= 52αF · U(0)(f2α).

There exists some f2α+1 ∈ W25n−22 such that
U(0)(f2α) = 5 · f2α+1. Therefore,

L2α+1 = 52α+1F · f2α+1, and
1

52α+1F
· L2α+1 ∈ W25n−22.
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Proof of our Strong Result

Proof (III)

ψ(α) =

⌊
5α+1

12

⌋
+ 1.

Establishing that ψ(α) give the appropriate indices for Vn,Wn is
an elementary exercise in number theory. Prove that

ψ(1) = 3,

5ψ(2α− 1)− 4 = ψ(2α),

5ψ(2α)− 2 = ψ(2α + 1).
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Computational Considerations

We have a degree 5 modular equation for y (and for 1 + 5y).
So for any pattern, we would expect 25 initial relations for each
value of i to prove by induction—50 relations, total.
Let x = 1 + 5y . Then

U(i)

(
ym

(1 + 5y)n

)
=

1

5m
· U(i)

(
(x − 1)m

xn

)
=

1

5m

m∑
r=0

(−1)m−r
(
m

r

)
· U(i)

(
x r−n

)
=

1

5m

m∑
r=0

(−1)m−r
(
m

r

)
· U(i)

(
(1 + 5y)r−n

)
.
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Computational Considerations

If n ≥ 0, then

U(i) ((1 + 5y)n) =
n∑

k=0

(
n

k

)
· 5k · U(i)

(
yk
)
.

So all we really need are ten relations—five for each i—for
U(i)

(
yk
)
. Then we can confirm the initial relations for any patern

on U(i)
(

ym

(1+5y)n

)
.
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Summary

Wang and Yang’s proof utilized techniques for handling
congruences with an associated Riemann surface of genus 1.

However, the congruences for this problem are associated with
a genus 0 Riemann surface.

Our new approach uses one modular function instead of two.

We require 50 initial cases.

However, these are algebraically dependent: we only need to
directly prove 10 initial cases...

(in contrast to the 20 that Wang and Yang needed)

Our proof reveals some interesting algebraic structure in the
form of the localized polynomial ring.

Finally, there are some extremely difficult steps in showing that
going from Lα to Lα+1 always picks up an extra power of 5.
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Localization Method

Let L := (Lα)α≥1 be a sequence of modular functions over
some Γ0(N), such that

g (X0(N)) = 0

Let y be a chosen so that Ma/c (Γ0(N)) = C[y ].

There exists some p ∈ C[X ] and some nonnegative integer
sequence {ψ(α)}α≥1 such that p(y) ∈ Ea/c (Γ0(N)) and

p(y)ψ(α) · Lα ∈ C[y ].
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Localization Method

If Lα =
∑
m≥1

s(m) · `να(m) · ym

p(y)ψ(α)
∈ Z[y ]S ,

with S := {p(y)n : n ∈ Z≥0}, and

U(α) (Lα) = Lα+1

for some linear operator sequence
(
U(α)

)
α≥1, then we want to

understand

U(α)

(
ym

p(y)ψ(α)

)
.
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Future Work

This result has enormous potential!

This is an extension of the original technique by Ramanujan
and Watson.
The localization structure has never been studied before in
this subject.
The result relates arithmetic, algebra, analysis, topology,
computational methods, and experimental math.
There are theoretical reasons to believe that this modified
technique may be used to prove all congruence families over a
genus 0 surface.
But we need more examples!
I’m looking through the literature now for any pathological
congruences that are resistant to classical techniques.
I’m working on a research proposal to study this method
further (Hint, Hint).
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