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Abstract

A Coxeter system is an ordered pair (W,S) where S is the gen-
erating set in a particular type of presentation for the Coxeter group
W . A subgroup of W is called special if it is generated by a subset of
S. Amalgamated product decompositions of a Coxeter group having
special factors and special amalgamated subgroup are easily recog-
nized from the presentation of the Coxeter group. If a Coxeter group
is a subgroup of the fundamental group of a given graph of groups,
then the Coxeter group is also the fundamental group of a graph of
special subgroups, where each vertex and edge group is a subgroup of
a conjugate of a vertex or edge group of the given graph of groups. A
vertex group of an arbitrary graph of groups decomposition of a Cox-
eter group is shown to split into parts conjugate to special groups and
parts that are subgroups of edge groups of the given decomposition.
Several applications of the main theorem are produced, including the
classification of maximal FA-subgroups of a finitely generated Coxeter
group as all conjugates of certain special subgroups.

1 Introduction

We take a Coxeter presentation to be given as

P = 〈S : (st)m(s,t) (s, t ∈ S, m(s, t) <∞)〉

where m : S2 → {1, 2, . . . ,∞} is such that m(s, t) = 1 iff s = t, and m(s, t) =
m(t, s). In the group with this presentation, the elements of S represent
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distinct elements of order 2 and a product st of generators has order m(s, t).
A Coxeter group W is a group having a Coxeter presentation and a Coxeter
system (W,S) is a Coxeter group W with generating subset S corresponding
to the generators in a Coxeter presentation of W . When the order of the
product of a pair of generators is infinite there will be no defining relator
for that pair of generators and we will say that the generators are unrelated.
A Coxeter group W belongs to some Coxeter system (W,S), and though S
need not be uniquely determined up to an automorphism of W , we often take
such an S as given. Our basic reference for Coxeter groups is Bourbaki [3].
A special subgroup of a Coxeter system (W,S), is a subgroup of W generated
by a subset of S (see [5]). If W ′ is the special subgroup generated by S ′ ⊆ S
in a Coxeter system (W,S), then (W ′, S ′) is also a Coxeter system.

The information given by a Coxeter presentation may be conveniently
expressed in the form of a labeled graph. We define the presentation dia-
gram of the system (W,S) to be the labeled graph Γ(W,S) with vertex set
S, and an (undirected) edge labeled m(s, t) between distinct vertices s and
t when m(s, t) < ∞. The connected components of the presentation dia-
gram Γ(W,S) correspond to special subgroups which are the factors in a free
product decomposition of W . (This is in contrast to a Coxeter graph with
vertex set S and labeled edges when m(s, t) 6= 2, and having components
corresponding to direct product factors of W . The Coxeter graph is not used
in this paper.) The presentation diagram of the special subgroup of W gen-
erated by a subset S ′ ⊆ S is the induced subgraph of Γ(W,S) with vertex
set S ′ (and in this sense, special subgroups could as well be termed visual
subgroups since we can see the presentation diagram of such a subgroup in
Γ(W,S)).

Suppose Γ(W,S) = Γ1 ∪ Γ2 is a union of induced subgraphs and let
Γ0 = Γ1 ∩ Γ2 (so vertices and edges of Γ(W,S) are in Γ1 or Γ2 or both, and
Γ0 is the induced subgraph consisting of the vertices and edges in both).
Equivalently, suppose Γ0 is an induced subgraph with Γ(W,S) − Γ0 having
at least two components, Γ1 is Γ0 together with some of these components
and Γ2 is Γ0 together with the other components. We say in this case that
Γ0 separates Γ(W,S) (separates it into at least two components). Then it is
evident from the Coxeter presentation that W is an amalgamated product
of special subgroups corresponding to Γ1 and Γ2 over the special subgroup
corresponding to Γ0. Amalgamated product decompositions with special
factors and special amalgamated subgroup are easily seen in the presentation
diagram and we call such an amalgamated product a visual splitting of W .
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Other amalgamated product decompositions may also be possible, and we
want to understand such splittings in terms of visual splittings.

More generally, we are interested in when a Coxeter group W can be
realized as the fundamental group of a graph of groups (as explained in the
next section). We show that the graph must actually be a tree and so this
generalizes amalgamated products. We say that Ψ is a visual graph of groups
decomposition of W (for a given S), if each vertex and edge group of Ψ is a
special subgroup of W , the injections of each edge group into its endpoint
vertex groups are given simply by inclusion, and the fundamental group of
Ψ is isomorphic to W by the homomorphism induced by the inclusion map
of vertex groups into W . A sequence of compatible visual splittings of W
will result in such a decomposition. Our main result shows that an arbitrary
graph of group decomposition of a Coxeter group can be refined (in a certain
sense) to a visual graph of groups decomposition.

Theorem 1 (Main Theorem) Suppose (W,S) is a Coxeter system and W
is a subgroup of the fundamental group of a graph of groups Λ. Then W has
a visual graph of groups decomposition Ψ where each vertex group of Ψ is a
subgroup of a conjugate of a vertex group of Λ, and each edge group of Ψ is a
subgroup of a conjugate of an edge group of Λ. Moreover, Ψ can be taken so
that each special subgroup of W that is a subgroup of a conjugate of a vertex
group of Λ is a subgroup of a vertex group of Ψ.

For (W,S) and Λ as in theorem 1 and Ψ satisfying the full conclusion
of theorem 1 (including the moreover clause), we say Ψ is a (W,S)-visual
decomposition from Λ. Suppose G is a group decomposed as A ∗C B. If H
is a subgroup of B, then 〈A ∪ H〉 decomposes as A ∗C 〈C ∪ H〉 (consider
the action of 〈A ∪H〉 on the Bass-Serre tree for A ∗C B). Furthermore, the
decomposition (A ∗C 〈C ∪ H〉)〈C∪H〉B reduces to A ∗C B so G decomposes
as 〈A ∪ H〉 ∗〈C∪H〉 B. In this way some visual decompositions of Coxeter
groups can be “artificially” altered to decompositions that have no visual
vertex or edge groups. In section 3, we exhibit a Coxeter system (W,S) and
a reduced graph of groups decomposition ΛN , for (W,S) with N vertices
for any positive integer N . Even so, the following theorem defines limits on
how far an arbitrary graph of groups decomposition for a finitely generated
Coxeter system can stray from a visual decomposition for that system.

Theorem 2 Suppose (W,S) is a finitely generated Coxeter system, Λ is a
graph of groups decomposition of W and Ψ is a reduced graph of groups
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decomposition of W such that each vertex group of Ψ is a subgroup of a
conjugate of a vertex group of Λ. Then for each vertex V of Λ, the vertex
group Λ(V ), has a graph of groups decomposition ΦV such that each vertex
group of ΦV is either

(1) conjugate to a vertex group of Ψ or
(2) a subgroup of vΛ(E)v−1 for some v ∈ Λ(V ) and E some edge of Λ

adjacent to V .

When Ψ is visual, vertex groups of the first type in theorem 2 are visual.
Those of the second type seem somewhat artificial.

It is easy to recognize whether a finitely generated Coxeter group is 2-
ended or infinite ended, by refining Stallings’ theorem (from [18]) to a visual
splitting theorem. A Dunwoody decomposition of a finitely generated Cox-
eter group is a graph of groups with finite or 1-ended vertex groups and
finite edge groups. These refine to a visual Dunwoody decomposition, and
we get a simple argument for why finitely generated Coxeter groups are ac-
cessible with respect to splittings over finite groups (as in [10]). In separate
papers [14] and [15], we developed the fundamental ideas of this paper to
prove a strong accessibility result for Coxeter groups with respect to split-
tings over “minimal” splitting subgroups, and a JSJ result for splittings of
Coxeter groups over virtually abelian groups. At the bottom level, the strong
accessibility result is a visual version of Dunwoody’s result in the Coxeter
setting.

J. P. Serre gives an account of FA groups in [17]. In particular, an FA
group has no nontrivial splittings. We apply the main theorem to show
that the maximal FA subgroups of a finitely generated Coxeter group W are
those conjugate to a special subgroup with presentation diagram a maximal
complete subgraph of Γ(W,S).

Our results identify certain properties of a Coxeter group recognizable
directly from a particular presentation of the group, properties apparent in
the presentation diagram. There can be different Coxeter systems (W,S) and
(W,S ′) where S ′ is not simply a conjugate of S (and may not even correspond
under any automorphism of W ), and so conjugates of special subgroups with
respect to S need not correspond to conjugates of special subgroups with
respect to S ′. However, these results do imply that certain special subgroups
are, up to conjugation, special for any Coxeter system. This investigation
thus has significant application to rigidity questions and the determination
of when Coxeter groups are isomorphic.
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As a final applications of these ideas we give a visual classification of
finitely generated virtually free Coxeter groups in section 8.

2 Graphs of Groups

Our main tool in this investigation is the connection between group actions
on trees and fundamental groups of graphs of groups. As reference the reader
is referred to [9] and [17]. We review some of the pertinent definitions and
results.

A graph of groups Λ consists of a set V (Λ) of vertices, a set E(Λ) of
edges, and maps ι, τ : E(Λ) → V (Λ) giving the initial and terminal vertices
of each edge in a connected graph, together with vertex groups Λ(V ) for
V ∈ V (Λ), edge groups Λ(E) for E ∈ E(Λ), with Λ(E) ⊂ Λ(ι(E)) and an
injective group homomorphism tE : Λ(E) → Λ(τ(E)), called the edge map of
E and denoted by tE : g 7→ gtE . The fundamental group π1(Λ) of a graph of
groups Λ is the group with presentation having generators the disjoint union
of Λ(V ) for V ∈ V (Λ), together with a symbol tE for each edge E ∈ E(Λ),
and having as defining relations the relations for each Λ(V ), the relations
gtE = tEg

tE for E ∈ E(Λ) and g ∈ Λ(ι(E)), and relations tE = 1 for E in
a given spanning tree of Λ (the result, up to isomorphism, is independent of
the spanning tree taken).

An amalgamated product A ∗C B is realized as the fundamental group of
the graph of groups with 2 vertices having vertex groups A and B, a single
edge between, with edge group (the image in A of) C, and edge map tE
determined by the injection of the edge group into B. Similarly, an HNN-
extension of A by tE : C → A is realized as the fundamental group of a
graph of groups with a single vertex and single edge. In general, the funda-
mental group of a graph of groups can be understood as taking amalgamated
products of the vertex groups along the edge groups in the spanning tree, fol-
lowed by HNN-extensions over the remaining edge groups. The tE for edges
not in the spanning tree correspond to a stable letter of an HNN extension.
For edges in the spanning tree the relations amount to identifying Λ(E) in
Λ(ι(E)) with its image Λ(E)tE in Λ(τ(E)) as in an amalgamated product.
Each vertex and edge group of a graph of groups Λ injects into the funda-
mental group of Λ (Britton’s lemma) and we usually identify these with the
corresponding subgroups of the fundamental group of Λ.

A graph of groups on a graph which is not simply connected will have
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Z as a homomorphic image (take a tE not in the spanning tree to 1 and all
other generators to 0). Since the generators of a Coxeter group are of order
2, a homomorphism into Z must have trivial image. Thus if a Coxeter group
is the fundamental group of a graph of groups the graph must be a tree and
the group arises as successive amalgamated products. In working with such
trees of groups we will often simply assume suitable identifications have been
made and the edge maps are simply inclusion maps.

Given a graph of groups Λ, the Bass-Serre tree for Λ is defined with ver-
tices the disjoint union over V ∈ V (Λ) of the different cosets gΛ(V ) of Λ(V )
in π1(Λ), and edges the disjoint union over E ∈ E(Λ) of the different cosets
gΛ(E) of Λ(E) in π1(Λ), taken with ι(gΛ(E)) = gΛ(ι(E)) and τ(gΛ(E)) =
gΛ(τ(E)). The Bass-Serre tree is in fact a tree and the fundamental group
of Λ acts on this tree by taking for h ∈ π1(Λ), h(gΛ(V )) = (hg)Λ(V ) and
h(gΛ(E)) = (hg)Λ(E).

If a group G acts on a tree T (as a directed graph, the action preserving
the orientation of edges), then a transversal for this action consists of a vertex
and edge from each orbit of the action of G on vertices and edges. There
must always exist a transversal having a spanning subtree such that each
other edge of the transversal originates in the subtree. (E.g., if Λ has a
single vertex and single edge, giving G = π1(Λ) as an HNN extension, then
G acts on the Bass-Serre tree T for Λ with transversal consisting of a single
vertex and an edge originating at that vertex, that does not include the
terminal vertex, and has spanning subtree just the single vertex.) From such
a transversal, a graph of groups is defined by taking as graph the quotient
of T under the action of G, and taking vertex and edge groups to be the
stabilizers of the corresponding vertices and edges in the transversal. For
edges in the spanning subtree of the transversal the edge maps are given by
inclusion. An edge of the transversal not in the spanning subtree connects
a vertex in the transversal to a translate by an element g ∈ G of a vertex
in the transversal and the edge map is given by conjugation by g. Then
the fundamental group of this graph of groups is naturally isomorphic to G
by the homomorphism extending the inclusion map of vertex groups into G.
Choosing a different transversal in T gives rise to a different graph of groups
decomposition of G with vertex groups each conjugate to vertex groups of the
first graph of groups, i.e., having isomorphic vertex groups but corresponding
with different subgroups of G.

Suppose Λ is a graph of groups and X is a subset of the edges in Λ.
Contracting the graph of Λ along the edges in X gives rise to a graph whose
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vertices are the equivalence classes of vertices modulo the equivalence relation
defined by identifying endpoints of edges in X, taking edges E ∈ E(Λ)−X
with endpoints the equivalence classes of endpoints of E. Define a graph of
groups Λ′ on this graph, having the same fundamental group as Λ, by taking
as vertex groups Λ′(V ) the fundamental group of the graph of groups with
vertices of Λ identified to V and edges in X between these vertices, with
edge groups Λ′(E) corresponding to the remaining edge groups in Λ with
corresponding edge maps. We call Λ′ the graph of groups resulting from
collapsing the edges X in Λ. If Λ is a tree of groups, then collapsing edges
in Λ results in another tree of groups.

A graph of groups will be called reduced if no edge group is equal to its
originating vertex group nor has image equal to its terminating vertex group,
EXCEPT for an edge which is a loop at a vertex. If a graph of groups is not
reduced, then we may collapse a vertex across an edge, where the edge group
is (or has image) the same as the endpoint vertex group, giving a smaller
graph of groups with vertex and edge groups among the original vertex and
edge groups and having the same fundamental group. Repeated reductions
of this sort in a finite graph of groups must eventually end with a reduced
graph of groups all of whose vertex and edge groups were present in the
original graph of groups and having the same fundamental group.

The following is well-known. We include a proof as this result is frequently
referenced throughout the paper.

Lemma 3 Suppose Λ is a reduced graph of groups decomposition of a group
G, the underlying graph for Λ is a tree, V and U are vertices of Λ, and
gΛ(V )g−1 ⊂ Λ(U) for some g ∈ G, then V = U and g ∈ Λ(V ).

Proof: If U 6= V or if U = V and g 6∈ Λ(V ), then in the Bass-Serre tree for
Λ, Λ(V ) stabilizes the distinct vertices Λ(V ) and g−1Λ(U). But then Λ(V )
also stabilizes a geodesic path between these vertices and hence stabilizes the
first edge hΛ(E) for an edge E of Λ at V . This would mean Λ(V ) is equal to
Λ(E) (or its image in Λ(V )), and we could collapse V across E, contradicting
that Λ was reduced. �

In the other direction, given a graph of groups Λ and a graph of groups
decomposition of a vertex group Λ(V ) as π1(Φ), we would like to see when Λ
results from collapsing out Φ in a larger graph of groups Λ′. Say that Φ is a
compatible decomposition of Λ(V ) if each edge group of Λ incident at V is a
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subgroup of a Λ(V ) conjugate of a vertex group of Φ. In general then, given
Λ and Φ a compatible decomposition of Λ(V ), construct Λ′ by replacing V
in Λ by Φ and attaching edges of Λ incident at V instead to vertices in Φ
with edge groups and edge maps appropriately adjusted so each such edge
group has image in a vertex group of Φ (for edges ending in Φ in Λ′ or V in
Λ) or is an isomorphic subgroup of a vertex group of Φ (for edges originating
in Φ in Λ′ or V in Λ). This adjustment of edge maps means that the image
in π1(Λ

′) of a vertex group of Λ′ not in Φ is conjugate to the image of the
corresponding vertex group of Λ in π1(Λ) = π1(Λ

′).
Alternatively, the Bass-Serre tree T ′ for Λ′ can be constructed from the

Bass-Serre tree for Λ with each coset of Λ(V ) replaced by the Bass-Serre
tree for Φ with a π1(Λ) group action. Contracting the edges in the orbit of
Φ in T ′ gives T , and a transversal of T ′ with a spanning subtree contracts
to a transversal of T with a spanning subtree. Starting with a transversal
with spanning subtree of T and a transversal with spanning subtree of the
Bass-Serre tree for Φ we may need to translate the parts of the T transversal
in different components of T − {V } so that they attach to the transversal of
the Bass-Serre tree for Φ in T ′. The result is still a transversal of T with the
same quotient graph as Λ but with vertex groups identified with conjugates
of the vertex groups of π1(Λ).

Suppose (W,S) is a Coxeter system. A visual graph of groups decom-
position Ψ of W has special vertex and edge groups, edge maps given by
inclusion, and is such that the inclusion of vertex groups in W extends to
an isomorphism of π1(Ψ) with W . As noted above, Ψ is a tree. In terms of
presentation diagrams, Γ(W,S) must be the union of the subdiagrams cor-
responding to the vertex groups of Ψ, with the edge groups corresponding
to the intersections of adjacent vertex subdiagrams. To understand in vi-
sual terms exactly when a graph of special subgroups has fundamental group
isomorphic to W we have the following essential lemma.

Lemma 4 Suppose (W,S) is a Coxeter system. A graph of groups Ψ with
graph a tree, where each vertex group and edge group is a special subgroup
and each edge map is given by inclusion, is a visual graph of groups decom-
position of W iff each edge in the presentation diagram of W is an edge in
the presentation diagram of a vertex group and, for each generator s ∈ S,
the set of vertices and edges with groups containing s is a nonempty subtree
in Ψ.

Proof: Suppose Ψ is a visual graph of groups decomposition of W so that
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the homomorphism ψ extending the inclusion map on vertex groups is an
isomorphism of π1(Ψ) and W . Since each vertex group is generated by the
elements of S it contains, the image of ψ is generated by the set of all s ∈ S
that belong to some vertex group. Since a proper subset of S generates a
proper subgroup of W , each element of S must be an element of a vertex
group of Ψ. Let T be the Bass-Serre tree for Ψ. Then since the edge maps are
inclusions, the subgraph of T consisting of the identity cosets of vertex and
edge groups of Ψ is a transversal of T , a subtree of T , and the stabilizers of
the vertices and edges of the transversal are simply the corresponding vertex
and edge groups of Ψ. If s ∈ S belongs to two vertex groups, then ψ−1(s)
stabilizes the corresponding vertices of the transversal, hence stabilizes all
the edges and vertices in a geodesic path in T between these vertices, and
so s belongs to all the vertex and edge groups in the path in Ψ between
these vertices. Hence the vertices and edges with groups containing s form
a subtree in Ψ. If there is an edge in Γ(W,S) between s, t ∈ S, then the
subgroup U of W generated by s and t is finite. But then ψ−1(U) is a finite
subgroup of π1(Ψ) acting on T and so must stabilize a vertex V of T . Let
V ′ be the vertex of the transversal closest to V in T . Then V ′ lies between
V and a vertex of the transversal stabilized by s and so is also stabilized by
s, and similarly for t. Thus V ′ corresponds to a vertex of Ψ having vertex
group containing both s and t and this special subgroup has an edge between
s and t in its presentation diagram as well.

Conversely, suppose Ψ is a graph of groups with each edge of the presen-
tation diagram of W in the presentation diagram of some vertex group, and
such that, for each generator s ∈ S, the vertices and edges of Ψ with groups
containing s form a subtree in Ψ. All of the occurrences of an s ∈ S in dif-
ferent vertex groups of Ψ are identified by the relators of π1(Ψ) along edges
in the subtree of vertex and edge groups containing s. Take ψ : π1(Ψ) → W
extending the inclusion map of the generators S in π1(Ψ) into W . We get
that ψ is an isomorphism by checking that each of the defining relators of W
is already a relator of π1(Ψ). But each generator of W belongs to some ver-
tex group of Ψ where it has order 2, and the other relators of W correspond
to edges of the presentation diagram and these relators also already hold in
some vertex group of Ψ. �

If Ψ is a visual graph of groups decomposition for the Coxeter system
(W,S), it is convenient to label a vertex of Ψ by the subset of S that generates
the corresponding vertex group. So if Q ⊂ S is a vertex label of Ψ, then
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Ψ(Q) = 〈Q〉. If Ψ is reduced, its vertex labels are distinct and we identify
vertices with their labels. Even if Ψ is reduced, two distinct edges may have
the same edge group, so we do not extend this labeling to edges.

The following two technical results are useful tools.

Corollary 5 Suppose (W,S) is a finitely generated Coxeter system, Ψ is a
visual graph of groups decomposition of W , and E ⊂ S is such that 〈E〉 =
Ψ(E ′) for E ′ an edge of Ψ. If {x, y} ⊂ S − E, and x ∈ X and y ∈ Y for
X and Y labels of vertices of Ψ on opposite sides of E ′, then as a subset of
Γ(W,S), E separates x and y in Γ.

Proof: Otherwise, among all such x, y that fail the conclusion, let α be a
shortest path in Γ from x to y avoiding E. Note that by lemma 4, x 6= y.
If x ≡ x0, x1, . . . xn ≡ y are the consecutive vertices of α, then by lemma 4
{x0, x1} ⊂ V for some vertex label V of Ψ. As x0 6∈ E, lemma 4 implies V
and X label vertices on the same side of E ′ in Ψ. But then x1 and y satisfy
the hypothesis of the corollary contradicting the minimality of α. �

Corollary 6 Suppose (W,S) is a finitely generated Coxeter system, and Ψ
is a visual graph of groups decomposition of W . If C is a complete subset of
the presentation diagram Γ(W,S), then there is a vertex labeled V (⊂ S) of
Ψ such that C ⊂ V .

Proof: We may assume Ψ is reduced. If C is not a subset of a vertex
of Ψ, then there is a vertex U ⊂ S of Ψ containing a maximal number of
elements of C and V ⊂ S a vertex of Ψ closest to U such that V contains an
element c of C −U . If E ′ is the last edge of the Ψ-geodesic from U to V and
Ψ(E ′) = 〈E〉 for E ⊂ S, then (U ∩ C) 6⊂ E and c 6∈ E. By corollary 5, E
separates (U ∩ C)− E from c in Γ. This is impossible as C is complete. �

3 Proof of Main Results

We begin this section with a proof of theorem 1 and conclude with a proof of
theorem 2. Several examples are presented to introduce the reader to visual
decompositions.

Proof of Theorem 1: Suppose (W,S) is a Coxeter system and suppose Λ is
a graph of groups with W a subgroup of π1(Λ). We may identify the vertex
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and edge groups of Λ with subgroups of π1(Λ). Then π1(Λ) acts on the Bass-
Serre tree T such that the stabilizers of vertices of the tree are conjugates of
the vertex groups of Λ and stabilizers of edges of the tree are conjugates of
the edge groups of Λ.

We build a visual graph of groups decomposition Ψ of W with this tree
as its graph. For each vertex V (resp. edge E) of Ψ take vertex group
Ψ(V ) (resp. edge group Ψ(E)) to be the subgroup of W generated by the
s ∈ S stabilizing V (resp. E). The edge groups inject into the vertex groups
by inclusion maps. Clearly, each vertex group (resp. edge group) of Ψ is a
special subgroup of W and a subgroup of a conjugate of a vertex group (resp.
edge group) of Λ. Each generator s ∈ S is of order 2 and so stabilizes some
vertex of T . If two vertices of T are stabilized by s, then s stabilizes the
geodesic path between the vertices, thus the subgraph of T of vertices and
edges stabilized by s is a subtree. Suppose there is an edge in the presentation
diagram for (W,S) between s and t in S. The subgroup generated by s and
t has finite order, so stabilizes some vertex of T , with s and t belonging to
that vertex group. By Lemma 4 then, π1(Ψ) is isomorphic to W and Ψ is a
visual graph of groups decomposition of W .

Finally, if U is a special subgroup and a subgroup of a conjugate of one of
the vertex groups of Λ, then U stabilizes a vertex in T and so U is a subgroup
of the vertex group of that vertex. �

Generally, Ψ will be an infinite tree. If W is finitely generated, by taking
the subtree spanning a finite set of vertices whose vertex groups between
them include all of the elements of S, we get a finite visual graph of groups
decomposition of W . Reducing this graph of groups results in a reduced
visual graph of groups decomposition for W .

Remark 1. If W , Λ and Ψ are as in theorem 1, then each edge E of Λ defines
a splitting of W as A ∗Λ(E) B where A is generated by the vertex groups of
the vertices on one side of E in Λ and B is generated by those on the other
side of E in Λ. There is a quotient map from the Bass-Serre tree for Λ to
that of A ∗Λ(E) B which respects the action of W . If A 6= Λ(E) 6= B then
W is not a subgroup of a conjugate of A or B and the proof above shows
that there is an edge of Ψ such that the edge divides Ψ into two components,
neither alone having all of the generators of W in its vertex groups, and such
that the corresponding edge group lies in a conjugate of Λ(E) (and so also
after applying possible reductions to Ψ).
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Example 1. As an example of the main theorem consider the Coxeter group
W with presentation

P = 〈s1, s2, s3, s4, s5 : s2
i , (s1s2)

2 = (s2s3)
2 = (s3s4)

2 = (s4s5)
2 = 1〉

Note that (s3s5s3)
2 = (s4s3s5s3)

2 = 1 so the map φ : W → W defined
on generators by φ(si) = si for i < 5, and φ(s5) = s3s5s3, extends to a
homomorphism, is surjective, is its own inverse, and so is an automorphism
of W . Consider subgroups A = 〈s1, s2, s4, s3s5s3〉, B = 〈s2, s3, s4〉, and
C = 〈s2, s4〉. Then W = A∗CB is the image under φ of a visual amalgamated
product decomposition of W , but A is not a visual subgroup of W . We refine
this decomposition to a visual graph of groups decomposition following the
proof of theorem 1.

The Bass-Serre tree on which W acts has vertices corresponding to the
different cosets of A and B and edges corresponding to the different cosets of
C with hC connecting hA and hB for each h ∈ W . The vertex A (respectively
B) of this tree has one edge for each coset aC (resp. bC) of C in A (resp. B).
An element g ∈ W acts on this tree by mapping hA to ghA and similarly for
cosets of B and C. The stabilizer of gA is the conjugate gAg−1. The graph
of groups Ψ is defined on this tree by taking the vertex and edge groups
generated by the si which stabilize that vertex or edge. Thus s1, s2, and s4

stabilize the A vertex in the tree, s2 and s4 stabilize both the C edge and the
s3C edge, s2, s3, and s4 stabilize the B = s3B vertex, s2, s4, and s5 stabilize
the s3A vertex (etc.). Since the vertex groups of these three vertices include
all of the generators of W , the vertex and edge groups for the rest of the
tree collapse back to this three vertex subgraph with the same fundamental
group as the graph of groups. The visual decomposition reduces to a three
factor amalgamated product

W = 〈s1, s2, s4〉 ∗C B ∗C 〈s2, s4, s5〉

where the first and third factors are generated by those generators of W
stabilizing A and s3A, respectively, are subgroups of conjugates of A, and
are special subgroups of W .

This simple example illustrates that an amalgamated product decompo-
sition of a Coxeter group need not refine to a visual amalgamated product
decomposition of only two factors. Instead the visual graph of groups de-
composition we have produced is sometimes necessary.
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Proof of Theorem 2: Let ΦV be the decomposition of Λ(V ) given by
selecting a fundamental transversal for its action on TΨ, the Bass-Serre tree
for Ψ. That is, take the graph of ΦV to be a subtree of TΨ containing a
single vertex and edge from each orbit of the action of Λ(V ) on TΨ and take
the group of a vertex or edge to be the subgroup of Λ(V ) stabilizing that
vertex or edge. If U is a vertex of ΦV , then U ∈ TΨ corresponds to a coset
gΨ(X) of a vertex group Ψ(X) of Ψ. The stabilizer in W of U is simply the
conjugate gΨ(X)g−1, and so ΦV (U) = Λ(V )∩(gΨ(X)g−1). The group Ψ(X)
is a subgroup of a conjugate hΛ(Y )h−1 of a vertex group Λ(Y ) of Λ. Hence
ΦV (U) is a subgroup of Λ(V ) and of a conjugate ghΛ(Y )h−1g−1 of Λ(Y ), and
so stabilizes the vertices of TΛ corresponding to Λ(V ) and ghΛ(Y ). If V = Y
and gh ∈ Λ(V ), then these are the same vertex of TΛ, and gΨ(X)g−1 ⊂
ghΛ(Y )h−1g−1 = Λ(V ) so ΦV (U) = Λ(V ) ∩ (gΨ(X)g−1) = gΨ(X)g−1 is
equal to a conjugate of a vertex group of Ψ. Otherwise, Λ(V ) and ghΛ(Y )
are different vertices of TΛ. The group ΦV (U) stabilizes both vertices and so a
geodesic path between the two. In particular, ΦV (U) stabilizes the first edge
kΛ(E) in this path, where E is an edge of Λ incident with V and k ∈ Λ(V ),
and thus ΦV (U) ⊂ kΛ(E)k−1. Reducing ΦV gives the desired graph of groups
decomposition. �

The next corollary and example examine technical aspects of the decom-
positions of theorem 2.

Corollary 7 Suppose (W,S) is a finitely generated Coxeter system, Λ is a
graph of groups decomposition of W , Ψ is a reduced (W,S)-visual decomposi-
tion from Λ and ΦV is a reduced graph of groups decomposition for the vertex
group Λ(V ) as given in the proof of theorem 2. If X is a vertex of Ψ, V is
a vertex of Λ, and gΨ(X)g−1 is a subgroup of Λ(V ) for some g ∈ W , then
vgΨ(X)g−1v−1 is a vertex group of ΦV for some v ∈ Λ(V ).

Proof: Let Φ′
V be the decomposition of Λ(V ) given by selecting a funda-

mental transversal for its action on TΨ, the Bass-Serre tree for Ψ, and let ΦV

be reduced from Φ′
V . By the definition of transversal, there is v ∈ Λ(V ) such

that the coset vgΨ(X) corresponds to a vertex B of the transversal. Then
Φ′

V (B) = Λ(V ) ∩ vgΨ(X)g−1v−1 = vgΨ(X)g−1v−1. It remains to show that
this vertex group survives reduction. Otherwise, there is a vertex Q of Φ′

V

such that vgΨ(X)g−1v−1 is a proper subgroup of Φ′
V (Q) ≡ Λ(V )∩hΨ(Z)h−1

(where Q ∈ TΨ corresponds to the coset hΨ(Z)). But then Ψ(X) is a proper
subgroup of g−1v−1hΨ(Z)h−1vg which is impossible by lemma 3. �
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The next example shows that the previous corollary cannot be extended
to show that a vertex group of Ψ is conjugate to a vertex group of ΦV for a
unique vertex V of Λ. In fact, all vertex groups of a particular ΦV may be
equal to vertex groups of other ΦQ for Q a vertex of Λ.

Example 2. Consider the group W with Coxeter presentation 〈w, x, y, z :
w2 = x2 = y2 = z2 = 1〉 (and free product decomposition 〈w〉∗〈x〉∗〈y〉∗〈z〉).
There is an automorphism ofW that fixes w and y, and maps x to wyxyw and
z to y(wyxyw)z(wyxyw)y. Observe that W has the decomposition 〈w, x〉∗〈x〉
〈x, z〉 ∗〈z〉 〈y, z〉. Hence the automorphism induces a decomposition Λ, with
vertices V1 and V2 and V3, where V1 and V2 are connected by an edge E1, and
V2 and V3 are connected by an edge E2. The decomposition Λ ≡ Λ(V1)∗Λ(E1)

Λ(V2) ∗Λ(E2) Λ(V3) of W is such that
Λ(V1) = 〈w,wyxyw〉
Λ(E1) = 〈wyxyw〉
Λ(V2) = 〈wyxyw, y(wyxyw)z(wyxyw)y〉
Λ(E2) = 〈y(wyxyw)z(wyxyw)y〉 and
Λ(V3) = 〈y, y(wyxyw)z(wyxyw)y〉.
A visual decomposition Ψ, from Λ is 〈w〉∗〈x〉∗〈y〉∗〈z〉. The decomposition

ΦV1 of theorem 2 is 〈w〉 ∗ 〈wyxyw〉, ΦV2 is 〈wyxyw〉 ∗ 〈y(wyxyw)z(wyxyw)y〉,
and ΦV3 is 〈y〉∗ 〈y(wyxyw)z(wyxyw)y〉. Hence the vertex groups 〈x〉 and 〈z〉
of Ψ are conjugate to vertex groups of ΦV for more than one vertex V of Λ.
Furthermore, both vertex groups of ΦV2 are equal to vertex groups of other
ΦVi

.

Example 3. Consider the Coxeter presentation 〈a, b, c : a2 = b2 = c2 = 1〉.
This group splits as Λ ≡ 〈a, bc〉∗〈bc〉〈b, c〉. The visual decomposition from this
splitting is Ψ ≡ 〈a〉 ∗ 〈b, c〉. If Λ(V ) is the vertex group 〈a, bc〉, then its graph
of groups decomposition ΦV , induced by its action on TΨ, the Bass-Serre
tree for Ψ, is Z2 ∗ Z. This group also has a decomposition with underlying
graph not tree, but it is not induced by its action on TΨ. We wonder if every
decomposition of a finitely generated Coxeter group and corresponding visual
decomposition can only induce ΦV have underlying graph a tree.

In their accessibility paper [2], Bestvina and Feighn limit the number of
vertex groups that can occur in a reduced graph of groups decomposition with
“small” edge groups, for a given finitely presented group. Strong accessibility
results for Coxeter groups over “minimal” splittings are the focus of [14].

14



While theorem 2 limits how far a vertex group of an arbitrary decomposition
of a Coxeter group can stray from visual, the following example shows that
one cannot expect an accessibility result for Coxeter groups over arbitrary
splittings.

Example 4. For a virtually free (non-virtually cyclic) group, the follow-
ing technique is standard for creating non-trivial reduced graph of groups
decompositions with n vertex groups for any n ∈ {1, 2, . . .}. Let W be the
Coxeter group with presentation 〈s1, s2, s3, s4, s5, s6 : s2

i = 1〉. Then W has
free product decomposition A ∗ B where A = 〈s1, s2, s3〉 and B = 〈s4, s5〉.
The element b ≡ s4s5 generates an infinite cyclic subgroup of finite index in
B and A contains a non-abelian free subgroup of finite index. Let {a1, a2, . . .}
be a free generating set for an infinite rank free subgroup of A. Then W has
the decomposition

Λ1 = 〈A ∪ {b}〉 ∗〈a1,b〉 〈B ∪ {a1}〉

The group 〈A ∪ {b}〉 has the following non-trivial reduced graph of groups
decomposition, which is compatible with Λ1 :

〈A ∪ {b2}〉 ∗〈a1,a2,b2〉 〈a1, a2, b〉

Hence W has the reduced decomposition:

Λ2 = 〈A ∪ {b2}〉 ∗〈a1,a2,b2〉 〈a1, a2, b〉 ∗〈a1,b〉 〈B ∪ {a1}〉

Defining En = 〈a1, . . . , an, b
(2n−2)〉, Cn = 〈a1, . . . , an, b

(2n−1)〉 and An = 〈A ∪
{b(2n−1)}〉, we have a reduced decomposition for W with n+1 vertex groups:

Λn = An ∗Cn En ∗Cn−1 En−1 ∗Cn−2 ∗ . . . ∗ E2 ∗C1 〈B ∪ {a1}〉

For each n, A ∗B is a visual decomposition from Λn.

4 Technical Results

As mentioned in the introduction, our basic reference for Coxeter groups is
[3]. The technical results of this section are well-known and can be derived
from two fundamental facts: the first concerning special subgroups of Coxeter
groups and the second called the “deletion condition”.
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Proposition 8 Suppose (W,S) is a Coxeter system and P = 〈S : (st)m(s,t)

for m(s, t) < ∞〉 (where m : S2 → {1, 2, . . . ,∞}) is a Coxeter presentation
for W . If A ⊂ S, then (〈A〉, A) is a Coxeter system with Coxeter presentation
〈A : (st)m′(s,t) for m′(s, t) <∞〉 (where m′ = m|A2).

Given a group G and a generating set S, an S-geodesic for g ∈ G is a
shortest word in S ∪ S−1 such that the product of the letters of this word
is g. The number of letters in an S-geodesic for g is the S-length of g. We
include an elementary proof of the deletion condition pointed out to us by
A. Y. Ol’shanskii, and based on the theory of van Kampen diagrams (see
chapter 5 of Lyndon and Schupp’s book [13] for a basic introduction to van
Kampen diagrams).

Proposition 9 (The Deletion Condition) Suppose (W,S) is a Coxeter
system and w = a1 · · · an for ai ∈ S. If a1 · · · an is not geodesic then there are
indices i < j in {1, 2, . . . , n} such that w = a1 · · · ai−1ai+1 · · · aj−1aj+1 · · · an.
I.e. ai and aj can be deleted.

Proof: Let b1 · · · bm be an S-geodesic for w, so that m < n. Let D be a
van Kampen diagram for the word a1 · · · anbm · · · b1. The relation 2-cell r1
containing a1 is of even length and so there is an edge e1 of r1 “opposite”
a1. The two subpaths of the boundary of r1 separated by a1 and e1 have
the exact same labeling. Let r2 be the relation 2-cell of D that shares e1
with r1, and let e2 be the edge of r2 opposite e1. Again the labeling of the
two subpaths of the boundary of r2 separated by e1 and e2 are the same.
Continue until ek is on the boundary of D. The “strip” determined ∪k

i=1ri

is such that the two subpaths of the boundary of this strip separated by a1

and ek have the same labeling. This creates a unique paring of edges on the
boundary of D. Since m < n there are indices i < j in {1, 2, . . . , n} such
that ai is paired with aj. If the two subpaths of the boundary of the strip for
ai, separated by ai and aj are labeled β, then (as the product of edge path
labels of loops in D are trivial in W ) ai+1 · · · aj−1 = β = ai · · · aj. I.e. ai and
aj delete. �

Lemma 10 Suppose (W,S) is a Coxeter system, A ⊂ S, and a ∈ 〈A〉. If
a = a1 · · · an = b1 · · · bn are S-geodesics then {a1, . . . , an} = {b1, . . . , bn}.

Proof: Assume n is minimal among all counterexamples to the lemma.
By proposition 8, n 6= 1. Note that a1 · · · anbn = b1 · · · bn−1. By the
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deletion condition, bn deletes with some ai in the first expression. Induc-
tively {b1, . . . , bn−1} ⊂ {a1, . . . , an}. Similarly, b1a1 · · · an = b2, · · · bn so that
{b2, . . . , bn} ⊂ {a1, . . . , an}. �

If G is a group with generating set S, then the Cayley graph K(G,S) is
a labeled graph with vertex set G and a directed edge (labeled s) from the
vertex g to the vertex gs for each s ∈ S. Given a vertex x of K(G,S), there
is a bijective correspondence between edge paths at x and words in S ∪ S−1,
where traversing an edge labeled s opposite its orientation is read as s−1.
Hence S-geodesics and K(G,S)-geodesics at a given vertex are the same.

The next result is a straightforward application of the deletion condition.

Lemma 11 Suppose (W,S) is a Coxeter system, {x, y} ⊂ W and A ⊂ S.
Then in the Cayley graph K(W,S) there is a unique closest point z of the
coset y〈A〉 to x. Furthermore, if α is the S-geodesic from x to z, and β is
any A-geodesic at z, then αβ is an S-geodesic.

The next lemma follows by a result of Kilmoyer (see Theorem 2.7.4 of
[6]), but we include a direct proof for completeness.

Lemma 12 Suppose (W,S) is a Coxeter system, I, J ⊆ S, and d is a mini-
mal length double coset representative in 〈I〉d〈J〉. Then 〈I〉∩d〈J〉d−1 = 〈K〉
where K = I ∩ (dJd−1). Hence g〈I〉g−1 ∩ h〈J〉h−1 = f〈K〉f−1 for K ⊂ I.

Proof: With K = I ∩ (dJd−1), clearly, 〈K〉 ⊂ 〈I〉 ∩ d〈J〉d−1. Suppose a is
a shortest element in 〈I〉 ∩ d〈J〉d−1 but not in 〈K〉. Write a = a1a2 . . . am

geodesically with ai ∈ I and d−1ad = b1b2 . . . bn geodesically for bi ∈ J .
Write d = d1d2 . . . dk geodesically for di ∈ S. Then since d is a minimal length
double coset representative, ad = a1a2 . . . amd1d2 . . . dk = d1d2 . . . dkb1b2 . . . bn
are each geodesic. Hence m = n. Clearly a 6= 1, and a /∈ S else a =
a1 = db1d

−1 ∈ K by definition. Instead, m > 1. Now b1b2 . . . bmd
−1 and

d−1am are geodesic but d−1a1 . . . am−1 = b1b2 . . . bmd
−1am so this last is not

geodesic and, by the deletion condition, am deletes with some bi to give
b1b2 . . . bmd

−1am = b1 . . . bi−1bi+1 . . . bmd
−1 (if 1 < i < m and similarly if i = 1

or i = m). But then a1a2 . . . am−1 = db1 . . . bi−1bi+1 . . . bmd
−1 ∈ 〈I〉 ∩ d〈J〉d−1

and, by the minimality of a and lemma 10, we have {a1, a2, . . . , am−1} ⊂ K.
Likewise {am, . . . , a2} ⊂ 〈I〉 ∩ d〈J〉d−1 so am ∈ K. But then a ∈ 〈K〉
contradicting the choice of a. Instead, every a ∈ 〈I〉 ∩ d〈J〉d−1 is in 〈K〉.
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Given conjugates g〈I〉g−1 and h〈J〉h−1 of special subgroups, take d of
minimal length in 〈I〉g−1h〈J〉 so g−1h = adb−1 for a ∈ 〈I〉 and b ∈ 〈J〉,
〈I〉g−1h〈J〉 = 〈I〉d〈J〉, and 〈I〉 ∩ d〈J〉d−1 = 〈K〉 as above. Then

g〈I〉g−1 ∩ h〈J〉h−1 = ga〈I〉a−1g−1 ∩ hb〈J〉b−1h−1

= ga(〈I〉 ∩ d〈J〉d−1)a−1g−1

= ga〈K〉a−1g−1

�

We will use the following corollary in section 6 in our analysis of FA
subgroups.

Corollary 13 Suppose (W,S) is a finitely generated Coxeter system, I, J ⊆
S, the induced subgraph on I is a maximal complete subgraph of Γ(W,S),
and I ⊆ w〈J〉w−1 for some w ∈ W . Then I ⊆ J and w ∈ 〈J〉.

Proof: Take d a minimal length double coset representative in 〈I〉w〈J〉 so
w = adb−1 for a ∈ 〈I〉 and b ∈ 〈J〉. Then since

〈I〉 ∩ d〈J〉d−1 = a−1(a〈I〉a−1 ∩ adb−1〈J〉bd−1a−1)a

= a−1(〈I〉 ∩ w〈J〉w−1)a

= 〈I〉

we have I ⊆ dJd−1 so d−1Id ⊆ J . If d 6= 1 and d = d1d2 . . . dk geodesically,
then by the minimality of d, d1 /∈ I. There is some s ∈ I unrelated to d1,
since I induces a maximal complete subgraph of the Coxeter diagram. But
if a1 . . . ak is any geodesic and s is unrelated to ak then a1 . . . aks is geodesic
(apply lemma 11 with x = 1, y = a1 · · · ak−1, A = {ak, s} and β = β1aks,
where β1 is the {ak, s} geodesic from z to y). Hence d−1sd cannot have length
1 and cannot be in J . Instead then, d = 1, I ⊆ J and w = adb−1 ∈ 〈J〉. �

The following corollaries find application in the analysis of rigidity of
Coxeter groups.

Corollary 14 If (W,S) is a finitely generated Coxeter system, I ⊆ S, and
w−1〈I〉w ⊂ 〈I〉, for some w ∈ W , then w−1〈I〉w = 〈I〉.

18



Proof: Let d be a minimal length double coset representative in 〈I〉w〈I〉, so
w = adb−1 for a, b ∈ 〈I〉. Then

〈I〉 = 〈I〉 ∩ w〈I〉w−1

= a−1(〈I〉 ∩ d〈I〉d−1)a

Hence 〈I〉 = 〈I〉 ∩ d〈I〉d−1 = 〈I ∩ dId−1〉, by lemma 12. By propositions 8
and 9, a proper subset of I cannot generate the same Coxeter group as I, so
I = dId−1. Hence d−1Id = I and w−1〈I〉w = bd−1〈I〉db−1 = b〈I〉b−1 = 〈I〉.
�

Corollary 15 Suppose (W,S) and (W,S ′) are finitely generated Coxeter sys-
tems for the same Coxeter group W . Suppose I ⊂ S is such that the induced
subgraph of I separates Γ(W,S) (its complement has at least two compo-
nents). Then there are sets J ⊂ S and J ′ ⊂ S ′ such that the induced sub-
graphs of J and J ′ separate Γ(W,S) and Γ(W,S ′), respectively, 〈J〉 and 〈J ′〉
are conjugate, and 〈J〉 is conjugate to a subgroup of 〈I〉.

Proof: As noted in the introduction, since I separates Γ(W,S), W = A∗〈I〉B,
for A the (S) special subgroup generated by I and the generators in some
components of the complement of I, and B the (S) special subgroup gener-
ated by I and the generators in the other components of the complement of
I in Γ(W,S), A 6= 〈I〉 6= B. Taking this amalgamated product decomposi-
tion of W to be Λ, we consider a corresponding visual decomposition Ψ with
respect to the alternate generating set S ′. As noted in remark 1, there must
be an edge of Ψ, with not all of the generators S ′ appearing on one side,
having edge group 〈I ′1〉, for an I ′1 ⊂ S ′, which is a subgroup of a conjugate of
〈I〉. That is, there is an I ′1 ⊂ S ′ which separates Γ(W,S ′) and for which 〈I ′1〉
is a subset of a conjugate of 〈I〉.

But then I ′1 gives a proper splitting of W and by the same reasoning there
is an I2 ⊂ S which separates Γ(W,S) and which is a subset of a conjugate of
〈I ′1〉. Continuing in this fashion, we can find I ′2k+1 ⊂ S ′ separating Γ(W,S ′),
generating a subgroup of a conjugate of 〈I2k〉, and an I2k+2 ⊂ S separating
Γ(W,S) and generating a subgroup of a conjugate of 〈I ′2k+1〉.

Since there are only finitely many subsets of S or S ′, for some k1 < k2 <
k3, I

′
k1

= I ′k3
. Take J ′ = I ′k1

= I ′k3
and J = Ik2 . Since 〈Ij〉 and 〈I ′j+1〉 are

subgroups of conjugates of 〈Ii〉 and 〈I ′i+1〉 for i < j, take a1, a2 ∈ W such
that

〈I ′k3
〉 ⊂ a2〈Ik2〉a−1

2 ⊂ a2a1〈I ′k1
〉a−1

1 a−1
2
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Then a−1
2 a−1

1 〈J ′〉a1a2 ⊂ 〈J ′〉, so by corollary 14 these are equal, and we get

〈J ′〉 ⊂ a2〈J〉a−1
2 ⊂ a2a1〈J ′〉a−1

1 a−1
2 = 〈J ′〉

so 〈J ′〉 = a2〈J〉a−1
2 and J and J ′ generate subgroups of conjugates of 〈I〉 that

separate Γ(W,S) and Γ(W,S ′) respectively. �

5 Ends

Stalling’s theorem [18] states that if a finitely generated group has more
than one end then it splits nontrivially as an amalgamated product or HNN-
extension over a finite group. The following result is then an easy consequence
of our main theorem. It can also be obtained from work of M. Davis [8].

Corollary 16 For any finitely generated Coxeter group W with presentation
diagram Γ, the following are equivalent

1. W has more than one end

2. W decomposes as a nontrivial amalgamated product A ∗C B where C is
finite and A, B, and C are special subgroups

3. Γ contains a complete separating subgraph, the vertices of which gener-
ate a finite subgroup of W .

Proof: If W is not 1-ended or finite, then by Stallings’ splitting theorem,
W = A ∗C B with C finite (and not as an HNN-extension since an HNN-
extension maps onto Z but a homomorphism of a Coxeter group into Z must
take generators to the identity). Then by theorem 1, W has a reduced visual
graph of groups decomposition in which each edge group is a subgroup of a
conjugate of C and so is finite. This decomposition cannot be trivial since
each vertex group is a subgroup of a conjugate of A or B neither of which is
W in the given nontrivial splitting, and so no vertex group can be W . Hence
there is at least one edge after reducing Ψ and collapsing the other edges
gives W as a visual amalgamated product of special subgroups over a finite
special subgroup. The remaining implications are easy. �

By Stallings’ theorem and theorem 1, a 2-ended Coxeter group splits as
a visual amalgamated product over a finite group which is of index two in
each factor, the following result then characterizes 2-ended Coxeter groups.
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Corollary 17 A Coxeter group with system (W,S) and diagram Γ is 2-ended
iff Γ contains a separating subdiagram Γ0 which is the presentation diagram of
a finite group, and Γ−Γ0 consists of two vertices each of which is connected
to each vertex of Γ0 by edges labeled 2 (but not connected to each other).
Equivalently, W = 〈x, y〉 × 〈H〉 where {x, y} ∪H = S, x and y are unrelated
and 〈H〉 is finite.

Thus the number of ends of a Coxeter group can be easily determined from
an analysis of separating subdiagrams of a Coxeter diagram, and checking
which subdiagrams correspond to finite subgroups. A Coxeter group whose
presentation diagram is complete is either finite or 1-ended. The finite Cox-
eter groups have been enumerated [3].

A Dunwoody decomposition of a finitely presented group is a graph of
groups decomposition of the group with finite edge groups and 1-ended and
finite vertex groups. In [10], Dunwoody shows that any finitely presented
group has such a decomposition.

Corollary 18 Suppose (W,S) is a finitely generated Coxeter system and W
is the fundamental group of a graph of groups Λ where each edge group is
finite. Then W has a visual decomposition Ψ where each vertex group is
1-ended or finite and a subgroup of a conjugate of a vertex group of Λ, and
where each edge group is finite.

Proof: Take Ψ the reduced visual graph of groups from Λ as given by
theorem 1. Then each edge group of Ψ is a subgroup of a conjugate of an
edge group of Λ and so is finite. Suppose some vertex V (⊂ S) of Ψ is such that
〈V 〉 is not 1-ended or finite. Then 〈V 〉 visually splits nontrivially over a finite
subgroup. If E(⊂ S) is an edge of Ψ with endpoint V , then E ⊂ V and 〈E〉 is
finite. In particular, E induces a complete subgraph in Γ(W,S). By corollary
6, E must be contained in a vertex group of the visual decomposition of 〈V 〉,
i.e., the splitting of 〈V 〉 is visually compatible with Ψ. Replacing 〈V 〉 in Ψ
by this splitting gives a visual graph of groups decomposition with finite edge
groups. Since a special vertex group is replaced by special vertex groups with
fewer generators, repeating this process eventually must end with a visual
graph of groups decomposition having finite edge groups and finite or 1-ended
vertex groups. �

One might wonder how “visual” a Dunwoody decomposition must be.
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Theorem 19 Suppose (W,S) is a finitely generated Coxeter system. If Λ is
a reduced Dunwoody graph of groups decomposition of W and Ψ is a reduced
visual decomposition for (W,S) such that each edge group of Ψ is finite and
each vertex group of Ψ is a subgroup of a conjugate of a vertex group of Λ
(in particular if Ψ is a reduced visual graph of groups decomposition from Λ),
then

1. Ψ is a Dunwoody decomposition

2. There is a (unique) bijection α of the vertices of Λ to the vertices of Ψ
such that for each vertex V of Λ, Λ(V ) is conjugate to Ψ(α(V ))

3. Each edge group of Λ is conjugate to a special subgroup for (W,S).

Proof: If Φ is a graph of groups decomposition of W with finite edge groups,
then any finite or 1-ended subgroup of W is a subgroup of a conjugate of
a vertex group of Φ (otherwise, the action of this group on the Bass-Serre
tree for Φ would induce a non-trivial splitting over a finite group). Hence
each vertex group of Λ is a subgroup of a conjugate of a vertex group of Ψ.
If a vertex group A = Λ(V ) of Λ is a subgroup of a conjugate of Ψ(V ′) for
V ′ a vertex of Ψ, then since Ψ(V ′) is a subgroup of a conjugate of a vertex
group of Λ, A is a subgroup of a conjugate of a vertex group of a vertex
V ′′ of Λ. As noted in lemma 3, in a reduced graph of groups, the vertex
group A at V is a subgroup of a conjugate of a vertex group at V ′′ only if
V = V ′′ and the conjugate is by an element of A. But then A is conjugate
to Ψ(V ′). Again, since no vertex group of Ψ is contained in a conjugate
of another, V ′ is uniquely determined, and we set α(V ) = V ′. Since each
vertex group Ψ(V ′) is contained in a conjugate of some Λ(V ) which is in turn
conjugate to Ψ(α(V )) we must have V ′ = α(V ) and each V ′ is in the image
of α. In particular, each vertex group of Ψ is 1-ended or finite and so Ψ is a
Dunwoody decomposition of W .

Since Λ is a tree, we can take each edge group of Λ as contained in its
endpoint vertex groups taken as subgroups of W . Hence each edge group
is simply the intersection of its adjacent vertex groups (up to conjugation).
Since vertex groups of Λ correspond to conjugates of vertex groups in Ψ,
their intersection is conjugate to a special subgroup by Lemma 12. �

In Example 1 we have a visual Dunwoody decomposition

〈s1, s2〉 ∗〈s2〉 〈s2, s3〉 ∗〈s3〉 〈s3, s4〉 ∗〈s4〉 〈s4, s5〉
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which is carried by the automorphism φ to the Dunwoody decomposition
where the last factor is replaced by 〈s4, s3s5s3〉. Thus in this theorem we
cannot expect a single element to conjugate all factors of a Dunwoody de-
composition to the corresponding factors of the corresponding visual decom-
position. The connection between an arbitrary Dunwoody decomposition
and a visual Dunwoody decomposition is however clearly quite close.

It is worthwhile to see how this analysis of Coxeter groups leads to an
understanding of why finitely generated Coxeter groups are accessible. While
this argument only re-proves a special case of Dunwoody’s accessibility the-
orem, it is the base case of the main theorems of our papers [14] and [15],
where we prove a strong accessibility result for Coxeter groups and splittings
over “minimal” splitting subgroups, and a JSJ result for Coxeter groups and
splittings over virtually abelian subgroups.

Lemma 20 Suppose (W,S) is a finitely generated Coxeter system and Λ is
a graph of groups decomposition of W with finite edge groups. Suppose a
vertex group of Λ splits nontrivially as A ∗C B over a finite C. Then there is
a special subgroup or a subgroup of a finite special subgroup of W contained
in a conjugate of B which is not also contained in a conjugate of A (and then
also with A and B reversed).

Proof: Let Λ′ be the graph of groups resulting from replacing the vertex
whose group splits by the graph corresponding to A ∗C B. Let Ψ be the
corresponding visual graph of groups decomposition of W and let T be the
Bass-Serre tree for Ψ. The intersection of any conjugates of A and B, or the
intersection of distinct conjugates of B, is contained in a conjugate of an edge
group and so is finite. If an infinite vertex group of Ψ lies in a conjugate of
B, it cannot also lie in a conjugate of A, so suppose no infinite vertex group
of Ψ lies in a conjugate of B. From the action of B on T we get a reduced
graph of groups decomposition of B with vertex and edge groups contained
in conjugates of vertex and edge groups of Ψ, in particular all of the edge
groups are finite. If any vertex group B1 of this decomposition is infinite, it
is contained in a conjugate of an infinite vertex group of Ψ which is in turn
contained in a conjugate of a vertex group of Λ′ other than B. But B1 would
then be an infinite subgroup of B and contained in a conjugate of another
vertex group of Λ′ which is impossible. Instead, the vertex groups of the
decomposition of B are finite and conjugate to subgroups of finite special
subgroups. Replace B in Λ′ by this graph of groups decomposition and
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collapse the edge C if it equals one of the vertex groups of the decomposition
of B to get a new graph of groups decomposition Λ′′ where A is adjacent to
a vertex group B1 of the decomposition of B by an edge labeled C1, a proper
subgroup of B1 (either with C1 = C, if no collapse happens, or with C1 an
edge group of the decomposition of B). Now B1 is finite, contained in B, but
B1 cannot also be contained in a conjugate of A, since otherwise B1 would
stabilize a path from a coset of A to B1 in the Bass-Serre tree for Λ′′ and
hence stabilize a coset of C1, i.e., would be contained in a conjugate of C1

which has fewer elements than B1. �

As mentioned earlier, our next theorem follows from Dunwoody’s acces-
sibility theorem, and the proof of this theorem leads to a general approach
to more complex accessibility and JSJ results.

Theorem 21 Finitely generated Coxeter groups are accessible.

Proof: Suppose (W,S) is a finitely generated Coxeter system. There are only
finitely many special subgroups of W and finitely many subgroups of finite
special subgroups. For G a subgroup of W let n(G) be the number of special
subgroups or subgroups of finite special subgroups which are contained in any
conjugate of G (which includes the trivial group), so 1 ≤ n(G) ≤ n(W ). For
Λ a finite graph of groups decomposition of W let c(Λ) = (cn(W ), . . . , c2, c1)
where ci is the count of vertex groupsG of Λ with n(G) = i. Let < order these
n(W )-tuples lexicographically, a well ordering of n(W )-tuples of nonnegative
integers. If Λ reduces to Λ′ then clearly no ci increases and some ci must
decrease. If a vertex group G of Λ splits as A ∗C B to produce a new Λ′,
then every subgroup of a conjugate of A or B is a subgroup of a conjugate
of G, but, by the last lemma, some special subgroup or subgroup of a finite
special subgroup is contained in a conjugate of B, and so of G, but not in
a conjugate of A. Hence n(A) < n(G), and similarly n(B) < n(G), and
so c(Λ′) < c(Λ) since cn(G) decreases by 1 in going from Λ to Λ′ and the
only other components that change are cn(A) and cn(B) which are later in
the tuples. Since < is a well ordering, there can be no infinite sequence of
graph of group decompositions of W resulting from successive reductions or
splittings over finite subgroups, i.e., W is accessible. �
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6 Maximal FA subgroups of Coxeter Groups

Let (W,S) be a finitely generated Coxeter system. A set of vertices of a
complete subgraph of Γ(W,S) is called a simplex of (W,S) and the subgroup
of W generated by a simplex of (W,S) is called a simplex group of (W,S). If
V is a vertex of a graph Γ, define lk(V ), the link of V , to be the set of all
vertices V ′ of Γ such that V ′ is connected to V by an edge. Define st(V ), the
star of V , to be lk(V ) ∪ {V }.

A group G is called FA if for every tree on which G acts, the set of fixed
points of G in the tree is non-empty. In §6 of [17], we find basic results on
FA groups. In particular we find:

Proposition 22 If G is denumerable then G is FA iff G is finitely generated,
no quotient of G is isomorphic to the infinite cyclic group and G does not
split non-trivially as an amalgamated product.

Proposition 23 If an FA group G is a subgroup of A ∗C B then G is a
subgroup of a conjugate of A or B.

Proposition 24 Every simplex subgroup of a Coxeter system is FA.

We have then the following result.

Lemma 25 Suppose (W,S) is a Coxeter system and G is an FA-subgroup
of W, then G is a subgroup of a conjugate of a simplex subgroup of (W,S).

Proof: If the presentation diagram Γ(W,S) is not complete, choose vertices
s and t that are not related. Then lk(s) separates s and t in Γ(W,S). Hence

W ∼= 〈st(s)〉 ∗〈lk(s)〉 〈S − {s}〉
By proposition 23, G is a subgroup of a conjugate of 〈st(s)〉 or 〈S−{s}〉.

Continue splitting until the conclusion is realized. �

The following theorem is the main result of this section. Our proof is
based in group actions on trees. A more combinatorial approach works
equally well.

Theorem 26 The maximal FA subgroups of a Coxeter group W are precisely
the conjugates of the special subgroups whose diagrams are the maximal com-
plete subdiagrams of a (and equivalently any) presentation diagram for W .
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Proof: We have that simplex subgroups are FA and any FA subgroup is
contained in a conjugate of a simplex subgroup. If A is a maximal simplex
subgroup contained in wBw−1 for B another simplex subgroup, then by
corollary 13, A = B and w ∈ B. �

By a result of Tits [3], up to conjugacy there are only finitely many
elements of order 2 in a finitely generated Coxeter group. Hence we have:

Proposition 27 Suppose (W,S) is a finitely generated Coxeter system. Then
the subgroup of automorphisms a of W such that a(s) is a conjugate of s for
all s ∈ S, is of finite index in Aut(W ). In particular, there exists an integer
n(W,S) such that for any a ∈ Aut(W ), an(s) is conjugate to s for all s ∈ S.

Next we prove:

Theorem 28 Suppose (W,S) is a finitely generated Coxeter system with
maximal simplices σ1, . . . , σm. If C is the subgroup of all c ∈ Aut(W ) such
that, for i ∈ {1, . . . ,m} there exists a wi,c ∈ W so that, c(x) = wi,cxw

−1
i,c when

x ∈ 〈σi〉 (i.e., c restricted to 〈σi〉 is conjugation by a wi,c ∈ W depending only
on c and σi), then C has finite index in Aut(W ).

Proof: If a ∈ Aut(W ) and σ1, . . . , σm are the maximal simplicies of (W,S),
then a(〈σi〉) = wi,a〈σα(i)〉w−1

i,a for some α(i) ∈ {1, . . . ,m}, by theorem 26.
Observe that σα(j) 6= σα(k) for k 6= j, since otherwise

a−1(w−1
k,a)〈σk〉a−1(wk,a) ≡ a−1(〈σα(k)〉) = a−1(〈σα(j)〉) ≡ a−1(w−1

j,a )〈σj〉a−1(wj,a)

implies σk = σj by corollary 13. Hence α is a permutation of (1, . . . ,m). If
b ∈ Aut(W ) and b(〈σj〉) = wj,b〈σβ(j)〉w−1

j,b then

ba(〈σi〉) = b(wi,a〈σα(i)〉w−1
i,a ) = b(wi,a)wα(i),b〈σβ(α(i))〉w−1

α(i),bb(wi,a)
−1

Hence the map of Aut(W ) into the group of permutations of (1, . . . ,m) de-
fined by a 7→ α is a homomorphism. If K is the kernel of this homomorphism,
then K has finite index in Aut(W ) and for all a ∈ K, a(〈σi〉) = wi,a〈σi〉w−1

i,a

for all i.
For each a ∈ K and for each i, we see that a(x) = wi,aτi(x)w

−1
i,a for all

x ∈ 〈σi〉, where τi ∈ Aut(〈σi〉). The map qi : K → Aut(〈σi〉) defined by
a 7→ τi is a homomorphism. The main result of [12] shows that I(〈σi〉),
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the inner automorphism group of 〈σi〉 has finite index in Aut(〈σi〉). Hence
C ≡ ∩m

i=1q
−1
i (I(〈σi〉)) is a subgroup of finite index in Aut(W ). �

Example 5. This example has a subgroup generated by an edge in the
Coxeter diagram that is conjugate to that of a disjoint edge.

〈a, b, c, d : a2 = · · · = d2 = 1, (ab)2, (ac)2, (cd)2, (bc)3, (ad)3〉

The element bc conjugates 〈a, b〉 to 〈a, c〉 and the element ad conjugates 〈a, c〉
to 〈c, d〉. Hence the subgroup 〈a, b〉 is conjugate to 〈c, d〉. Neither group is a
maximal FA subgroup.

7 Visually Stable Subgroups

If (W,S) is a finitely generated Coxeter system, and A is a special subgroup
for this system, then A is W-visually stable (or W -V S) if for any other Cox-
eter system (W,S ′) for W , A is conjugate to a special subgroup for (W,S ′).

Knowledge of the visually stable subgroups of a Coxeter group is of in-
terest in several important questions related to the isomorphism problem for
Coxeter groups. In particular, this knowledge is useful for “rigidity” ques-
tions (see for example [7] and [4] and the references there) and questions
about when reflections are preserved when passing between different Coxeter
systems for W (see [1]).

Maximal finite special subgroups are visually stable (see [11]). Clearly
W and the trivial group are W -V S. The following elementary observation is
useful.

Lemma 29 If H is W -V S and K is H-V S then K is W -V S.

The next result is a direct corollary to theorem 26.

Corollary 30 The maximal FA subgroups of a finitely generated Coxeter
group W are W -V S.

Suppose (W,S) is finitely generated. By Dunwoody’s accessibility the-
orem, W decomposes as a graph of groups Λ, with finite edge groups such
that each vertex group is finite or 1-ended. Suppose Ψ is a reduced visual
decomposition for (W,S) derived from Λ as given in theorem 1. Any finite
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or 1-ended subgroup of W is a subgroup of a conjugate of a vertex group of
Ψ and so by theorem 19 there is a bijection γ from the vertices of Λ to the
vertices of Ψ such that Λ(V ) is conjugate to Ψ(γ(V )). Note that the vertex
groups of Ψ are finite or maximal 1-ended special subgroups of (W,S). In
particular we have

Proposition 31 The maximal 1-ended special subgroups of (W,S) are W -
V S.

The results of [14] and [15] imply that vertex groups of the JSJ decom-
positions and strong accessibility splittings considered there are V S. One
example of these implications is the following

Proposition 32 If Ψ is a visual and irreducible with respect to 2-ended split-
tings decomposition for a 1-ended Coxeter system (W,S) and V is a vertex
of Ψ, then Ψ(V ) is W -V S.

An interesting situation occurs during repeated applications of Lemma 29,
Proposition 31 and Proposition 32 to an arbitrary finitely generated Coxeter
system. Suppose H1 is a maximal 1-ended special subgroup for (W,S), and
H2 is a maximal 1-ended special subgroup of a vertex group of Ψ, a visual
irreducible with respect to 2-ended splittings decomposition of H1. Then H2

may split over a 2-ended group (just not in a way compatible with Ψ). The
vertex groups of an irreducible with respect to 2-ended splittings decompo-
sition of H2 are W -V S. Continuing on this line we have

Theorem 33 Suppose (W,S) is a finitely generated Coxeter system, and
A ⊂ S is maximal in the set of all A′ ⊂ S such that the induced diagram for
A′ is not separated by a subdiagram for a finite or 2-ended special subgroup
for (W,S). Then 〈A〉 is W -V S.

8 A Final Application

Theorem 1 and Corollary 16 can be applied to “visually” characterize virtu-
ally free Coxeter groups.

Theorem 34 The following are equivalent for any Coxeter system (W,S)
with presentation diagram Γ(W,S):
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1. W is virtually free,

2. W has a visual graph of groups decomposition in which each vertex
group is finite,

3. a) every complete subgraph of Γ(W,S) is that of a finite Coxeter group,
and b) no induced subgraph of Γ(W,S) is a circuit of more than three
vertices.

Proof: Virtually free groups cannot contain 1-ended subgroups. So by Dun-
woody’s accessibility theorem, every finitely generated virtually free group
is the fundamental group of a graph of groups with finite vertex groups. By
theorem 1, (1) implies (2). Conversely, any graph of groups with finite vertex
groups has fundamental group which is virtually free, and (2) implies (1).

Again, as W contains no 1-ended subgroup, corollary 16 can be applied
to show (2) implies (3a). A circuit of more than three vertices determines a
1-ended group.

Now suppose condition (3) holds in Γ(W,S). If Γ(W,S) were a complete
graph then by a) it would be finite. Instead take x and y in Γ(W,S) not
connected by an edge. Consider a component K of the complement of st(x)
in Γ(W,S). Let S1 be the vertices in st(x) adjacent to a vertex in K. We
claim that any two vertices a and b in S1 are connected by an edge in Γ(W,S),
otherwise a minimal length path from a to b in S1∪K meeting S1 only at its
endpoints, together with the edges from b to x and x to a would be a circuit in
Γ(W,S) of more than three vertices contradicting b). Thus S1 is a complete
graph, and so generates a finite subgroup C. Since S1 separates Γ(W,S), W
splits as a nontrivial visual amalgamated product A ∗C B. Inductively, (3)
implies (2). �
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