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Abstract

For n ≥ 0, we exhibit CAT(0) groups that are n-connected at infin-
ity, and have boundary which is (n− 1)-connected, but this boundary
has non-trivial n

th-homotopy group. In particular, we construct 1-
ended CAT(0) groups that are simply connected at infinity, but have
a boundary with non-trivial fundamental group. Our base examples
are 1-ended CAT(0) groups that have non-path connected boundaries.
In particular, we show all parabolic semidirect products of the free
group of rank 2 and Z have a non-path connected boundary.

1 Introduction

A locally finite and connected complex Y is simply connected at infinity if
given any compact set C ⊂ Y , there exists a compact D ⊂ Y such that
loops in Y − D are homotopically trivial in Y − C. A finitely presented
group G is simply connected at infinity if given some (equivalently any) finite
connected complex X with π1(X) isomorphic to G, the universal cover of X
is simply connected at infinity. This note centers around our examples, their
implications and the natural questions that arise about possible examples in
associated settings.

We present two base examples that induce the type of pathology we are
interested in, but in entirely different ways.

The first example is a group that C. Croke and B. Kleiner [5] used to
exhibit a CAT(0)group with more than one boundary. Croke and Kleiner re-
cently observed [6] that the “right angled” boundary of this group is not path
connected. As this group is 1-ended, any of its boundaries are connected.
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The group in question is denoted H and has presentation

〈a, b, c, d : [a, b] = [b, c] = [c, d] = 1〉

and hence decomposition 〈a, b〉 ∗〈b〉 〈b, c〉 ∗〈c〉 〈c, d〉 (with all vertex groups
isomorphic to Z×Z). Completely analogous arguments show the groups P =
〈t, x, y : [x, y] = 1, t−1xt = y〉 and Q = 〈x, y : [x2, y2] = 1〉 have connected
but non-path connected CAT(0) boundary. The group P is a “parabolic”
semi-direct product of F2, the free group of rank 2, and Z. Every parabolic
semi-direct product of F2 and Z is isomorphic to a subgroup of finite index in
P and so all such groups have a non-path connected CAT(0) boundary. The
semi-direct products of F2 and Z are of three types, the parabolics, those
such that some iterate of the automorphism is an inner automorphism and
those that are “hyperbolic”. If an iterate of the automorphism is inner, then
the only possible CAT(0) boundary for a resulting semi-direct product is the
(path connected and non-locally connected) suspension of a Cantor set. In
[18], K. Ruane shows the only possible CAT(0) boundary for a semi-direct
product arising from a hyperbolic automorphism is the (path connected and
locally path connected) Sierpinski carpet. The group Q is shown to be a
semi-direct product of the free group of rank 3 and Z. The groups P and Q
are in a sense the smallest ones for which our techniques work.

The Cayley 2-complex K of the above presentation of H is a contractible
2-complex that is a union of planes any two of which have empty intersection
or a line of intersection. If each square of K is given the geometry of [0, 1]×
[0, 1], (the “right angled” geometry), then K becomes a CAT(0) space and
H acts geometrically (discontinuously by isometries and cocompactly) on K.
Our goals for this example are as follows. We first detail a proof of Croke-
Kleiner’s observation that ∂K, the boundary of K, (with this geometry) is
not path connected. As H is 1-ended, the direct product H × Z is simply
connected at infinity (see [12] or [20]). I.e. π∞1 (H × Z) = 0. A boundary of
H×Z is the boundary of K×R, which is simply the (unreduced) suspension of
∂K. (The unreduced suspension S(X), of a Hausdorff space X is the quotient
space of X× [0, 1], with X×{0} and X×{1} identified to (separate) points).
As ∂K is not path connected, a simple Mayer-Vietoris argument shows that
the rank of the first homology of the suspension of ∂K is 1 less than the
cardinality of the set of path components of ∂K. In particular, π1(∂(H×Z))
is non-trivial. Using the Hurewicz and Mayer-Vietoris theorems repeatedly,
we see that H × Z

n, for n ≥ 1, is n-connected at infinity (see [7]), but has
boundary with trivial homotopy in dimensions 0 through n−1 and non-trivial
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nth homotopy group. At the end of §3, it will be clear that a right angled
Coxeter group version of H exists with the same pathology at infinity.

Our second example (labeled G) has various amalgamated product de-
compositions. This group acts geometrically on a 3-dimensional CAT(0)
space with 2-dimensional boundary. We exhibit faithfully embedded suspen-
sions of Hawiian earrings joined at their common vertex in ∂G. The group
G is easily seen to be simply connected at infinity, but ∂G (with right angled
geometry) is not simply connected. The point of this example is to give a
different construction than that for H×Z of a group that is simply connected
at infinity and has non-simply connected boundary. Models on G may be
relevant to the questions in §6.

2 The boundary of H is not path connected

The proof here is not the same as that in [6]. The latter two authors of
this paper only became aware of the argument in [6] after developing the
proof presented in this section. Our argument works equally well to show
the groups P = 〈t, x, y : [x, y] = 1, t−1xt = y〉 (an HNN-extension of 〈x, y〉 ≡
Z× Z) and Q = 〈x, y : [x2, y2] = 1〉 have a non-path connected boundary.

Some background on the basics of CAT(0) geometry and connectivity at
infinity for groups is necessary. Our basic reference for CAT(0)-geometry is
[3] and for connectivity at infinity for groups [7]. A connected, locally finite
complex Y is semi-stable at ∞ if any two proper rays r, s : [0,∞)→ Y that
converge to the same end of Y are properly homotopic. A finitely presented
group G is semistable at ∞ if for some (equivalently any) connected finite
complex X with fundamental group G, the universal cover of X is semistable
at ∞. It is elementary to see that any two proper rays in R

2 are properly
homotopic, and any two proper rays that converge to the same end of R are
properly homotopic, so Z × Z and Z are semistable at ∞. The main result
of [16] states that if a finitely presented group has a finite graph of groups
decomposition with semistable at ∞ vertex groups and finitely generated
edge groups, then that group is semistable at ∞. An application of this
result (see [17]) is that all 1-relator groups are semistable at ∞. Hence the
groups H , P and Q are semistable at ∞. Our goal in this section is to
define geodesic rays in CAT(0) universal covers for these groups that cannot
be connected by a path in the boundary of this CAT(0) space (even though
these rays are properly homotopic).
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A CAT(0) space is a geodesic metric space Y such that for any three
points x, y, z of Y , the geodesic triangle (x, y, z) of Y is “at least as thin”
as the comparison Euclidean triangle (x′, y′, z′). This means the distance in
Y between any two points of (x, y, z) is less than or equal to the distance
between the corresponding points of (x′, y′, z′). Consequentially, there are
unique geodesics between points of Y , and so Y is contractible. A metric
space Y is proper if for any y ∈ Y and real r > 0, the ball of radius r at
y is compact. The only CAT(0) metric spaces considered in this paper are
proper. For a CAT(0) space Y and base point y ∈ Y , the set of geodesic
rays r : [0,∞) → Y based at y is given a topology and denoted ∂Y . The
space ∂Y is independent of base point. When Y is proper, ∂Y compactifies
Y so that the space ∂Y ∪Y is compact metric (see [3]). The correct intuition
is that if two geodesic rays in Y stay “close” for a long time, then they are
close in ∂Y . For A ⊂ Y , the limit set of A in ∂Y is the intersection of ∂Y
with the closure of A in ∂Y ∪ Y . Denote it by L(A). If a ∈ L(A), there
is a sequence {a1, a2, . . .} in A such that limi→∞ai = a where the limit is
taken in ∂Y ∪ Y . In particular, if A is a closed convex subset of Y , then for
each x ∈ L(A), there is a geodesic ray in A converging to x. A boundary of
a CAT(0) space Y is a boundary for a finitely generated group G if G acts
geometrically (properly discontinuously and cocompactly by isometries) on
Y .

The Cayley graph of the presentation 〈a, b, c, d : [a, b] = [b, c] = [c, d] = 1〉
of H is a labeled graph with vertex set H , and a directed edge labeled t from
the vertex u to the vertex v if ut = v for some t ∈ {a, b, c, d}. Hence any
edge path in this Cayley graph is labeled by elements in {a±1, b±1, c±1, d±1},
where the label t−1 simply indicates traversing an edge labeled t in the direc-
tion opposite its orientation. The Cayley 2-complex of this presentation is
obtained from the Cayley graph by attaching 2-cells at each vertex according
to the relations. Let K be the Cayley 2-complex of our presentation of H
with geometry such that each edge is isometric to [0, 1] and each 2-cell to
[0, 1] × [0, 1]. With this geometry, K is a CAT(0) complex. The remainder
of this section is devoted to showing that the boundary of K is not path
connected.

Consider the Cayley graph paths represented by infinite words

r = cdab(cb)2cdab(cb)6cdab . . . =

∞
∏

i=1

(cb)kicdab
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Figure 1: Schematic diagram of rays in 〈a, b, c, d : [a, b] = [b, c] = [c, d] = 1〉.

and

s = dbcb2adbc(b2c)2b2adbc(b2c)6b2a . . . =

∞
∏

i=1

dbc(b2c)kib2a

where the exponents ki are recursively defined by k0 = −1 and, for all i ≥ 0,
ki+1 = 2ki + 2 (see figure 1).

Let v′−1 = b−1 and w0 = ∗. For n ≥ 0 define

vn =

(

n
∏

i=1

(cb)kicdab

)

(cb)kn+1cd
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For n ≥ 1 define

wn =

(

n
∏

i=1

dbc(b2c)kib2a

)

For n ≥ 0 define v′n = vna and w′n = wnd. Then v0 = cd, v′0 = cda, v1 =
cdab(cb)2cd and w′0 = d, w1 = dbcb2a. The 〈b, c〉-cosets of K intersected by
r (respectively s) are vi〈b, c〉 and v′i−1〈b, c〉 (respectively wi〈b, c〉 and w′i〈b, c〉)
for all i ≥ 0.

Claim 1 For all n ≥ 0,

1. vn = v′n−1b(cb)
kn+1cd

2. wn+1 = w′nbc(b
2c)kn+1b2a

3. vn = w′nbc(b
2c)kn+1b2 b−kn+2−1 so vn = w′nc

kn+1+1

4. v′n−1b(cb)
kn+1c c−kn+1−1 = wn so v′n−1b

kn+1+1 = wn.

In particular, r and s pass through the same 〈b, c〉-cosets of K, and vn and w′n
(respectively v′n−1 and wn) are in the same 〈c〉-coset (respectively 〈b〉-coset).

Proof: The first two identities follow directly from the definitions. In every
case the third identity follows from the others by multiplying both sides of
the fourth identity (on the right) by dbc(b2c)kn+1b2 b−kn+2−1 since

c−kn+1−1dbc(b2c)kn+1b2 b−kn+2−1 = dc−kn+1−1cckn+1bb2kn+1b2b−kn+2−1

= db2kn+1+2−kn+2 = d

by the recursion relation. The fourth identity holds trivially for n = 0. If the
third identity holds for a given n, then the fourth identity for n + 1 follows
by multiplying both sides of the third (on the right) by ab(cb)kn+2c c−kn+2−1

since

b−kn+2−1ab(cb)kn+2c c−kn+2−1 = ab−kn+2−1bbkn+2ckn+2cc−kn+2−1 = a. �

The 〈b, c〉-cosets traversed by r and s are Pi ≡ vi〈b, c〉 for i ≥ 0 and
P̂i ≡ v′i〈b, c〉 for i ≥ −1. By claim 1, and the definitions of v′n and w′n,
w′n ∈ Pn and wn ∈ P̂n−1 for all n ≥ 0. Since v′n = vna, there is a unit wide
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strip Bn connecting the line/coset vn〈b〉 of Pn with the line v′n〈b〉(= wn+1〈b〉)
of P̂n for each n ≥ 0 . Each unit square of Bn has two opposite sides labeled
b and the other two opposite sides labeled a. Since w′n = wnd, part 1) of
claim 1, shows for n ≥ 0 there is a unit wide strip Cn connecting the line
v′n−1b(cb)

kn+1〈c〉(= wn〈c〉) of P̂n−1 to the line vn〈c〉(= w′n〈c〉) of Pn. Each
unit square of Cn has two opposite sides labeled c and the other two opposite
sides labeled d. Portions of the strips Bn and Cn are drawn in figure 1.

Summarizing, the rays r and s have their images in the union of (and
consecutively pass through) the sets C1, P1, B1, P̂1, C2, P2, . . . The planes
Pn and P̂n contain parallel 〈b〉-lines spanned by Bn, and the planes P̂n and
Pn+1 contain parallel 〈c〉-lines spanned by Cn+1. These sets are disjoint
except for the those overlaps:

1. Cn ∩ P̂n−1 = v′n−1b(cb)
kn+1〈c〉 = wn〈c〉,

2. Cn ∩ Pn = vn〈c〉 = w′n〈c〉,

3. Bn ∩ Pn = vn〈b〉, and

4. Bn ∩ P̂n = v′n〈b〉 = wn+1〈b〉.

From 2) and 3), Cn ∩ Bn = {vn}. From 1) and 4), Bn ∩ Cn+1 = {wn+1}.
Each 〈b, c〉 coset is a flat plane of K, its boundary is a circle corresponding
to the slopes of rays from a point in the plane. Noting that our group can
be represented as an amalgamated product

〈a, b〉 ∗〈b〉 〈b, c〉 ∗〈c〉 〈c, d〉

we observe that for any vertex k of K, the line k〈b〉 (respectively k〈c〉) sepa-
rates K. The group 〈a, b, c〉 = 〈a, c〉×〈b〉 is the direct product of a 2-generated
free group and an infinite cyclic group, its boundary being the suspension
of a Cantor set with the 〈b〉±∞ points being the suspension points. For any
vertex k of K, the set k〈a, b, c〉 is isometric to the direct product T ×R of a
valence 4 tree T and real line. The set k〈a, b, c〉 − k〈b〉 has four components,
but the points kc and kc−1 can be connected in K − k〈b〉, by a path (be-
ginning at kc−1) with consecutive edge labels (d, c, c, d−1) and so K − k〈b〉
has only three components. Similarly K − k〈c〉 has three components. It
is necessary to understand the limit sets of these triples of components and,
when k is a point of r or s, how the sets Ci, Bi, Pi and P̂i are distributed
among such components.
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For k a vertex of K, let Q(k〈b〉, ka) be the component of K − k〈b〉 con-
taining ka, Q(k〈b〉, ka−1) the component containing ka−1 and Q(k〈b〉, kc)
the component containing kc±1 and kd±1. Similarly define the components
of K − k〈c〉 to be Q(k〈c〉, kd), Q(k〈c〉, kd−1) and Q(k〈c〉, kb) (so this last
component contains kb±1 and ka±1). For appropriate k, t and s, denote the
closure of Q(k〈s〉, ks) in K by Q̄(k〈t〉, ks) (= Q(k〈t〉, ks) ∪ k〈t〉).

Claim 2 For t = b and s ∈ {a, a−1, c} or t = c and s ∈ {d, d−1, b}

1. The set Q̄(〈k〈t〉, ks) is convex in K.

2. ∂K = L(Q̄(k〈b〉, ka)) ∪ L(Q̄(k〈b〉, ka−1)) ∪ L(Q̄(k〈b〉, kc))

= L(Q̄(k〈c〉, kd)) ∪ L(Q̄(k〈c〉, kd−1)) ∪ L(Q̄(k〈c〉, kb))

3. Any two sets in {L(Q̄(k〈b〉, ka)), L(Q̄(k〈b〉, ka−1)), L(Q̄(k〈b〉, kc))} (re-
spectively {L(Q̄(k〈c〉, kd)), L(Q̄(k〈c〉, kd−1)), L(Q̄(k〈c〉, kb))}) intersect
in the 2-point set L(k〈b〉) (respectively L(k〈c〉)). Furthermore, this 2-
point set separates any two such sets in ∂K.

Proof: For part (1), the only way out of this set is through the geodesic line
k〈t〉. Since geodesics are unique in a CAT(0) space, convexity follows.

Part (1) implies that once a geodesic ray leaves one of these sets, it cannot
return. Hence any geodesic ray, must eventually stay in one of the three sets.
Part (2) follows.

If q is a ray in two limit sets of part (3), then by convexity, there are rays
q1 and q2 in these sets respectively, that both stay a bounded distance from q.
Hence they stay a bounded distance from k〈b〉 and the first part of part (3)
is proved. If α : [0, 1]→ ∂K connects points from two distinct such sets and
α avoids k〈b〉, then the inverse image under α of the three (closed) subsets of
∂K under consideration, give three disjoint closed sets whose union is [0, 1]
and two of these are non-empty. But [0, 1] is connected, so (3) is proved. �

By claim 1 vi〈c〉 = w′i〈c〉 and v′i〈b〉 = wi+1〈b〉. Define

1. Q+
i = Q̄(vi〈c〉, b) = Q̄(w′i〈c〉, b).

2. Q−i = Q̄(vi〈c〉, d
−1) = Q̄(w′i〈c〉, d

−1)

3. Q̂+
i = Q̄(v′i〈b〉, c) = Q̄(wi+1〈b〉, c)

4. Q̂−i = Q̄(v′i〈b〉, a
−1) = Q̄(wi+1〈b〉, a

−1).
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Claim 3 For k ≥ i,

1. Q̂+
k ∪Q+

k ∪ Pk ∪Bk ∪ P̂k ∪ Ck+1 ⊂ Q+
i ,

2. Q̂+
k ∪Q+

k+1 ∪ P̂k ∪ Ck+1 ∪ Pk+1 ∪Bk+1 ⊂ Q̂+
i .

For k ≤ i,

3. Q̂−k−1 ∪Q−k ∪ Pk−1 ∪Bk−1 ∪ P̂k−1 ∪ Ck ⊂ Q−i ,

4. Q̂−k ∪Q−k ∪ P̂k−1 ∪ Ck ∪ Pk ∪Bk ⊂ Q̂−i . �

The limit set of Cn (respectively Bn), L(Cn) (respectively L(Bn)), is
a 2-point set {c+∞

n , c−∞n } (respectively {b+∞
n , b−∞n }) determined by the Cn

(respectively Bn) geodesic rays from vn with either all edges labeled c or all
edges labeled c−1 (respectively b or b−1).

Claim 4 For n ≥ 1,

1. {c±∞n } = L(Cn) = L(wn〈c〉) = L(v′n−1〈c〉) = L(w′n〈c〉) = L(vn〈c〉),

2. {b±∞n } = L(Bn) = L(vn〈b〉) = L(v′n〈b〉) = L(wn+1〈b〉) = L(w′n〈b〉)

3. {c±∞n } ⊂ L(P̂n−1) ∩ L(Cn) ∩ L(Pn)

4. {b±∞n } ⊂ L(Pn) ∩ L(Bn) ∩ L(P̂n).

Proof: The equalities of the pairs of limits points in parts 1) and 2) follow
directly from claim 1. Parts 3) and 4) follow from the definitions. �

Recall, the rays r and s have their images in the union of (and consecu-
tively intersect) the sets Cn, Pn, Bn, P̂n, Cn+1, Pn+1, . . . Let L(r) and L(s)
be the limits sets of the image of r and s respectively. Later we show r and s
track (diverging) geodesics and so L(r) and L(s) are distinct single element
sets.

Claim 5 For n ≥ 1,

1. L(r) ∪ L(s) ⊂ L(Q+
n ) ∩ L(Q̂+

n ).

2. ∪∞i=n{c
±∞
i , b±∞i }) ⊂ L(∪∞i=n(Pi)) ⊂ L(Q+

n )

3. {c±∞n } ∪ (∪n−1
i=1 {c

±∞
i , b±∞i }) ⊂ L(P̂n−1) ∪ L(∪n−1

i=1 Pi)) ⊂ L(Q−n )
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4. The sets ∪n−1
i=1 {c

±∞
i , b±∞i } and (L(r) ∪ L(s)) ∪ (∪∞i=n{c

±∞
i+1 , b±∞i }) are

separated in ∂K by {c±∞n }.

5. ∪∞i=n{c
±∞
i+1 , b±∞i } ⊂ L(P̂n) ∪ L(∪∞i=n+1Pi) ⊂ L(Q̂+

n )

6. ∪n
i=1{c

±∞
i , b±∞i } ⊂ L(∪n

i=1Pi) ⊂ L(Q̂−n )

7. The sets {c±∞n }∪(∪n−1
i=1 {c

±∞
i , b±∞i }) and (L(r)∪L(s))∪(∪∞n+1{c

±∞
i , b±∞i })

are separated in ∂K, by {b±∞n }.

Proof: The first inclusions of parts 2), 3), 5) and 6) follow from claim
4. The second inclusions follow from claim 3. Parts 4) and 7) follow from
part 3) of claim 2, part 1), and respectively the two preceeding parts of this
claim. �

Parts 4) and 7) of claim 5 imply our next result.

Claim 6 If there is a path in ∂(X) between either c+∞
i or c−∞i and a point

of L(r), then it must pass through either b+∞
i or b−∞i . If there is a path

in ∂(X) between either b+∞
i or b−∞i and a point of L(r), then it must pass

through c+∞
i+1 or c−∞i+1 . If there is a path from c+∞

1 to a point of L(r), then it
must successively pass through either b+∞

1 or b−∞1 , then through either c+∞
2

or c−∞2 , then through either b+∞
2 or b−∞2 , etc. �

In the remainder of this section we show r and s track geodesics that
determine distinct points in ∂K, and there are geodesic rays r±n (respectively
s±n ) at ∗ that pass through v′n (respectively w′n) and have boundary points
c±∞n (respectively b±∞n ). This implies the b±∞n (respectively c±∞n ) converge to
the limit of r (respectively s) in ∂K.

Claim 7 If t ∈ {v′i, w
′
i} and i ≥ 0, then t is the closest point of t〈b, c〉 to ∗

(and the first point of r (if t = v′i) and s (if t = w′i) in t〈b, c〉).

Proof: Figure 1 is an appropriate diagram for this claim. Let x be a closest
point of the plane v′i〈b, c〉 to ∗. As the line v′i〈b〉 separates v′i〈b, c〉 from ∗, x
is a point of v′i〈b〉. Since vi〈c〉 separates v′i〈b, c〉 from ∗, a geodesic α, from x
to ∗ intersects the line vi〈c〉, at say t. But the geodesic from v′i to t (along
the edge a−1 at v′i followed by a path in vi〈c〉) is of shorter length than the
subgeodesic of α connecting t and x, unless x = v′i (the Euclidean geodesic
triangle (x, t, v′i) has a right angle at v′i). Similarly for w′i. �
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Figure 2: Detail of rays showing 〈b, c〉 cosets as parallel planes.

The geodesic lines v′n〈b〉 and w′n〈c〉 determine the points b±∞n and c±∞n

respectively. Unfortunately, the geodesic from ∗ to v′n followed by a non-
trivial geodesic on the line v′n〈b〉 is not geodesic. Instead, for n ≥ 1, define
r±n (respectively s±n ) to be the geodesic from ∗ to v′n (respectively to w′n)
followed by the infinite geodesic in the positive/negative direction of the line
v′n〈c〉 (respectively w′n〈b〉). In figure 3, ri and r meet at v′i, and si overlaps s
on a b-edge at w′i.

Claim 8 The rays r±n and s±n are geodesic, r+
n (respectively r−n ) have limit

point c+∞
n+1 (respectively c−∞n+1) and s+

n (respectively s−n ) has limit point b+∞
n

(respectively b−∞n ).

Proof: If x is a point of v′n〈c〉 in the image of r+
n , then any path from x to

∗ must cross the line v′n〈b〉. The shortest path from x to v′n〈b〉 is along the
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Figure 3: Detail of rays flattened into plane showing geodesics.
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c-line through x (perpendicular to v′n〈b〉), so v′n is the closest point of v′n〈b〉
to x. As v′n is the closest point of v′n〈b, c〉 to ∗, r+

n is geodesic. Similarly for
r−n and s±n .

By part 1) (respectively part 2)) of claim 4, r±n (respectively s±n ) has c±∞n+1

(respectively b±∞n ) as limit in ∂K. �

Cayley graph geodesics need not stay a bounded distance from a CAT(0)
space geodesic. The Cayley graph geodesics r and s are tracked by CAT(0)
geodesics and have been introduced in the interest of defining rays in exact
detail. To see the correct CAT(0) geometry we can conveniently flatten out
into a plane the pertinent parts of the Pn, and P̂n planes and Bn and Cn

strips. This is illustrated in figure 3. A true CAT(0) geodesic with slope 1
passes through every other vertex in the r path. A CAT(0) geodesic with
slope 1/2 passes through every third vertex in the s path. That is, r and s
track CAT(0) space geodesics determining distinct points in the boundary,
since these geodesics obviously diverge. Recall, points in ∂K are close if
geodesic rays from ∗ converging to these points stay close for a long time.
As the geodesic rays r±i pass through v′n, and a geodesic for r passes within
1-unit of v′n, {c±∞n } converges in ∂K to the limit point of r. Similarly, {b±∞n }
converges to the limit point of s. By claim 5 the c±∞i and b±∞i are all distinct.
In summary,

Claim 9 Each of the Cayley graph paths r, s, are each within 2-units of
some CAT(0) space geodesic. The points of the boundary determined by r
and s as well as the points b±∞n , c±∞n are all distinct. As ∂K is a metric
space, there are disjoint closed neighborhoods of the limit points of r and s.
For any neighborhood of the limit point of r, there is an n such that c±∞i ,
the limit points of each r±i−1, for i ≥ n, all lie in the neighborhood. Likewise,
for any neighborhood of the limit point of s, there is an n such that b±∞i , the
limit points of each s±i , for i ≥ n, all lie in the neighborhood. �

By claim 6, a path from c+
1 to the limit point of r passes through one of

the limit points of b±∞i and one of the limit points of c±∞i+1 , alternately for
i = 1, 2, 3, . . .. But then this path alternately passes progressively closer to
the limit points of r and s infinitely many times. The least upper bound of
the inverse images of c±∞i is the same as the least upper bound of the inverse
images of b±∞i , and the image of this least upper bound would have to be
both r and s. Thus there can be no path from c+∞

1 to the limit point of r
and ∂K is not path connected.
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Figure 4: Schematic diagram of rays in 〈t, x, y : [x, y] = 1, t−1xt = y〉.

Essentially the same proof applies to the group

P ≡ 〈t, x, y : [x, y] = 1, t−1xt = y〉

with rays

r = xt2y(xy)2xt2y(xy)6xt2y . . . =

∞
∏

i=1

(xy)kixt2y

and

s = txyx2ttxy(x2y)2x2ttxy(x2y)6x2t . . . =
∞
∏

i=1

txy(x2y)kix2t

where the exponents ki are recursively defined by k1 = 0 and, for all i ≥ 1,
ki+1 = 2ki + 2 as before (see figure 4) to show this boundary for the group
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is not path connected. This group is an HNN extension with base group
〈x, y〉 ≡ Z× Z associated subgroups 〈x〉 and 〈y〉 and stable letter t.

In [14], P is shown to be a “parabolic” semi-direct product of F2, the
free group on two generators, and Z. Another presentation for the group
P is 〈a, b, s : sas−1 = ab, sbs−1 = b〉 (let a = t, b = yx−1 and s = x
(so y = bx = bs) to derive the original presentation of P ). For n > 0,
the parabolic semi-direct products of F2 and Z are denoted Pn and have
presentation 〈a, b, s : sas−1 = abn, sbs−1 = b〉. Note that the automorphism
for Pn is the nth iterate of that for P = P1. This implies every parabolic semi-
direct product of F2 and Z is isomorphic to a subgroup of finite index of P .
Hence every CAT(0) boundary for P is also a CAT(0) boundary for every
parabolic semi-direct product of F2 and Z. If S is a semi-direct product of
F2 and Z and some iterate of the corresponding automorphism of F2 is inner,
then S has a subgroup of finite index isomorphic to F2×Z. If S acts on the
CAT(0) space Y , then the “min set” of Z in Y splits as a metric product F×R

and is quasi-dense in Y . Hence ∂Y is homeomorphic to the (path connected)
suspension of a Cantor set (see [3]). If an automorphism of F2 is not parabolic
and no iterate of the automorphism is inner, then the automorphism is called
hyperbolic. Every semi-direct product of F2 and Z contains a Z×Z subgroup,
and so hyperbolic automorphisms do not give word hyperbolic semi-direct
products (the automorphism must take the commutator for F2 to a conjugate
of itself or its inverse). In [18], K. Ruane shows the only CAT(0) boundary
possible for a hyperbolic semi-direct product of F2 and Z is the Sierpinski
carpet, a compact, connected and locally path connected metric space. In [1],
T. Brady shows that every semi-direct product of F2 and Z acts geometrically
on a CAT(0) space, but in [10], Gersten constructs semi-direct products of
F3, the free group of rank 3, and Z which do not act geometrically on any
CAT(0) space. Sumarizing,

Theorem There is a CAT(0) space X with connected, but non-path connected
boundary such that every parabolic semi-direct product of the free group of
rank 2 and Z acts geometrically on X.

If an iterate of an automorphism of the free group of rank 2 is inner, the
only possible CAT(0) boundary for the resulting semi-direct product is the
(path connected and non-locally connected) suspension of a Cantor set.

(Ruane [18]) If an automorphism of the free group of rank 2 is hyper-
bolic, the only possible boundary for the resulting semi-direct product is the
(connected and locally path connected) Sierpinski carpet.
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Figure 5: Schematic of rays and flattenings for 〈x, y : [x2, y2] = 1〉.

Our final example of this type is the group Q ≡ 〈x, y : [x2, y2] = 1〉. This
group decomposes as 〈x〉∗〈x2〉 〈x

2, y2〉∗〈y2〉 〈y〉. Define m0 = 1, mi+1 = 4mi+2
for i ≥ 0, or in closed form

mi =
5 · 4i − 2

3

so m0 = 1, m1 = 6, m2 = 26, m3 = 106, m4 = 426 . . .
Take rays

r =
∞
∏

i=0

(b2a2)miba(b2a2)2mi+1ba

= b2a2ba(b2a2)3ba(b2a2)6ba(b2a2)13ba(b2a2)26ba(b2a2)53ba . . .

and

s = a2b

∞
∏

i=0

(a4b2)mia3b(a4b2)2mi+1ab

= a2ba4b2a3b(a4b2)3ab(a4b2)6a3b(a4b2)13ab(a4b2)26a3b(a4b2)53ab . . .

As in the previous examples Q has connected, but non-path connected bound-
ary (see figure 5).

We end this section with some observations about the (two dimensional)
1-relator group Q ≡ 〈x, y : [x2, y2] = 1〉. The group Q is a semi-direct
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product of F3 and Z where the subgroup Q1 = 〈xy−1, x−1y, x2y−2〉 is free of
rank 3, and normal in Q with quotient Z. If A is an arbitrary semi-direct
product of a finitely generated non-abelian free group with Z, then as in the
case with Q and all parabolic semi-direct products of F2 and Z, A may have
boundary which is not path connected. It may be that A is word hyperbolic
(see for example [2]) or A is a hyperbolic semi-direct product of F2 and Z,
in either case ∂A is connected and locally path connected. If A = Fn × Z

for some n > 1, then the suspension of a Cantor set (a path connected, but
non-locally connected space) is the only CAT(0) boundary for A. Let α be
the automorphism of Q1 induced by conjugation by x. No iterate of α, is
inner as can be easily checked, but the fact that a boundary for Q is not
path connected also implies no iterate of α is inner (if an iterate of α were
inner, then the only possible CAT(0) boundary would be the suspension of
a Cantor set).

Recall that Gersten [10] has constructed semi-direct products of F3 and
Z which do not act geometrically on any CAT(0) space. Hence, when they
exist, CAT(0) boundaries of semi-direct products of finitely generated free
groups and Z can realize a wide range of behavior with respect to path
connectedness and local connectedness.

3 Principal components of the constructions

We analyze the key components of the proof that H , Q and P have a bound-
ary that is not path connected. When H is written as 〈A〉∗D〈B〉∗E 〈C〉 where
A = 〈a, b〉, B = 〈b, c〉, C = 〈c, d〉, D = 〈b〉 and E = 〈c〉 we have used the
fact the limit sets determined by D and E are disjoint. Correspondingly, for
Q = 〈x, y : [x2, y2] = 1〉 = 〈x〉∗〈x2〉 〈x

2, y2〉∗〈y2〉 〈y〉, the limit sets of the amal-
gams 〈x2〉 and 〈y2〉 are disjoint and for P = 〈t, x, y : [x, y] = 1, t−1xt = y〉
the limit sets of the associated subgroups 〈x〉 and 〈y〉 are disjoint. If one
considers H1 ≡ H × Zt where Zt is infinite cyclic with generator t, then
an analogous attempt at our constructions would lead to an H1-action on
a CAT(0) space with boundary the suspension of our boundary for H . In
particular, we would obtain a path connected boundary for H1. Where an
argument corresponding to the one showing H has a non-path connected
boundary would fail is in the fact that the corresponding amalgamated sub-
groups for H1 would be 〈b, t〉 and 〈c, t〉. The limit sets determined by these
groups overlap at the two limit points determined by 〈t〉.
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It was necessary to construct geodesic rays r and s that converge to
different points of the boundary and pass through the same infinite collection
of 〈B〉 cosets. This means the corresponding rays in the Bass-Serre tree
for our decomposition traverse the same infinite collection of edges, which
alternate between D and E cosets. We used the fact that the set A − D
(respectively C−E) contained an element a (respectively d) that commuted
with D (respectively E), in order to build strips that together with portions
of the B cosets traversed by r and s formed “flat” subsets of the CAT(0)
space Y . In particular, if say A, B and C are replaced by hyperbolic closed
surface groups, and the resulting group is word hyperbolic, then its boundary
is in fact locally connected and path connected by [21]. A final important
aspect of the geometry of our examples was the fact that r and s alternately
entered B cosets at points which are the closest points of the coset to the
identity vertex. This fact ensured that our r±∞n and s±∞n constructions were
geodesic and that the limit sets of r±∞n (respectively s±∞n ) converge to the
limit point of r (respectively s).

Our examples are in some sense the smallest we can find for which our
techniques succeed. At this time, the only general results we are able to
obtain are simply results that faithfully embed our examples with the pre-
scribed geometry (or simple variants) into groups. For this reason we forgo
such statements. General questions are postponed until the last section.

4 Higher dimensional examples

We use [19] as a basic reference for this section. Let S(∂X) be the suspension
of ∂X. As noted earlier H × Z is simply connected at infinity and has
boundary S(∂X). Let U1 be the upper cone in S on ∂X, U2 be the lower
cone on ∂X and U0 the base copy of ∂X in S (so that U1 ∩ U2 = U0). The
reduced Mayer-Vietoris theorem implies that the following sequence is exact:

H1(U1)⊕H1(U2)→ H1(S)→ H#
0 (U0)→ H#

0 (U1)⊕H#
0 (U2)

As U1 and U2 are contractible, the rank of H1(S) is one less than the
number of path components of U0. In particular π1(S) is non-trivial.

The group H × Z
2 acts geometrically on X ×R

2, with boundary S2, the
suspension of S. Note that S2 is 1-connected (Van Kampen’s theorem). By
the Hurewicz theorem, π2(S2) is isomorphic to H2(S2). As above, we let V1
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and V2 be the upper and lower cone on V0, the base copy of S in S2. The
Mayer-Vietoris theorem implies that the following sequence is exact:

H2(V1)⊕H2(V2)→ H2(S2)→ H1(V0)→ H1(V1)⊕H1(V2)

As V1 and V2 are contractible, H2(S2) is isomorphic to H1(V0) = H1(S).
Since the rank of H1(S) is one less than the cardinality of the number of
path components of ∂X, we see that while H ×Z

2 is 2-connected at infinity
and the boundary, S2, of H × Z

2 is 1-connected, π2(S2) is non-trivial.
Inductively, we see H ×Zn is n-connected at infinity, with boundary Sn,

the n-fold suspension of ∂H (with right angled geometry) and that πi(Sn) = 0
for i ∈ {0, . . . , n− 1}, but πn(Sn) 6= 0.

With a slight modification of our presentation of H a right angled Coxeter
group can be constructed with the same pathology at infinity as H . We
simply replace a and d by order 2 elements and exchange the cyclic groups
〈c〉 and 〈d〉 with copies of Z2 ∗ Z2. A presentation for this group is

〈a, b1, b2, c1, c2, d : a2 = b2
i = c2

i = d2 = 1 = [a, bi] = [bi, cj] = [ck, d]〉

5 A second construction

The point of this section is to produce a second construction for simply
connected at infinity, 1-ended CAT(0) groups with non-simply connected
boundary. Our next example, G, has the following presentation:

〈x1, y1, t, s, x2, y2, z1, z2 :

[xi, yi] = [t, s] = [zi, s] = [zi, xi] = [zi, yi] = [zi, t] = 1, t−1xit = yi〉

This group, should be thought of as the amalgamated product:

A1 ∗Zs⊕Zt
A2

where Ai is presented as the direct product Bi × Zi by

〈xi, yi, t, s : t−1xit = yi, [xi, yi] = [t, s] = 1〉 × 〈zi〉

and the amalgamated subgroup, Zs ⊕ Zt, is 〈s, t : [s, t] = 1〉. The group
Bi is easily seen to be 1-ended so Ai is simply connected at infinity. The
product of two simply connected at infinity groups amalgamated along a
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Figure 6: Schematic diagram of Hawiian earrings in 〈t, x, y : [x, y] =
1, t−1xt = y〉.

finitely presented 1-ended group is simply connected at infinity [11] and so
G is simply connected at infinity.

This brings us to the geometry of G. First of all, Bi is Ci∗Zt
(Zt⊕Zs) where

Ci has the presentation 〈xi, yi, t : t−1xit = yi, [xi, yi] = 1〉. The amalgamated
subgroup Zt is 〈t〉 and the factor Zt ⊕ Zs is 〈t, s : [t, s] = 1〉. In boundaries
of the CAT(0) group Ci, one finds “Hawaiian earrings” arising from the
t-translates of the circles generated by the Z ⊕ Z subgroup 〈xi, yi〉. Two
consecutive circles (translates by tj and tj+1) share two points. The circles
corresponding to translates by tn for n > 0, limit to t∞ in the boundary. The
point t∞ should be thought of as the vertex of a Hawaiian earring (see figure
6).

If we consider C1 and C2 we see two Hawaiian earrings joined at their
common vertex t∞. The effect of considering Bi × Zi is to suspend the
boundary of Bi. This produces two suspended Hawaiian earrings joined at
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the point t∞, faithfully in ∂G. Even though the suspended Hawaiian earrings
are separately simply connected, together they are not. (There is no Van
Kampen Theorem here!)

Hence in exactly the same way as with the first example, for n ≥ 1 and
i ∈ {0, . . . , n}, π∞i (G × Z

n) = 0. For i ∈ {1, . . . , n − 1}, πi(∂G × Z
n) = 0,

but πn(∂G× Z
n) 6= 0.

As noted earlier, the base group of our construction here C = 〈x, y, t :
t−1xt = y, [x, y] = 1〉 has non-path connected boundary, but our construction
of a simply connected at infinity group with non-simply connected boundary
is not the same as before. It is this second construction that is of interest
here. This is discussed again after question 1 of the next section.

6 Questions and more observations

Word hyperbolic groups have unique boundary. By [21], 1-ended word hy-
perbolic groups have locally connected boundary and hence path connected
and locally path connected boundary. (By classical topology the boundary
is a Peano space.)

We give a discussion of n-connectedness at infinity for CAT(0) spaces.
Analogous statements can be made about word hyperbolic groups. Let X
be a non-compact proper CAT(0) space with cone-topology boundary ∂X.
Choose base points x0 ∈ X and e0 ∈ ∂X. The geodesic ray starting at x0

and ending at e0 is the base ray, denoted ω : [0,∞) → X. A convenient
basic system of neighborhoods of ∂X in X is {Uk}, where Uk ≡ X −Bk(x0),
the complement of the ball of radius k. As explained in Ross Geoghegan’s
book [7], there are three ways of making precise the vague notion of “n-
connectedness of ∂X” or “n-connectedness of X at ∞”.

(1) ∂X is an n-connected space.
(2) For all p ≤ n every proper map f : Sp × [0,∞) → X extends to a

proper map F : Bp+1 × [0,∞) → X. One says “X is strongly n-connected
at ∞”.

(3) For all p ≤ n and all k there exists l ≥ k such that singular spheres in
X−Bl(x0) bound singular balls in X−Bk(x0) . One says “X is n-connected
at ∞”.
These are in decreasing order of strength: (1) implies (2) implies (3).

For p ≤ n, we have an inverse sequence of homotopy groups (sets in
dimension 0).
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(∗){πp(U1, w1)← πp(U2, w2)← · · ·}

where wn = ω(n+1) and the bonding morphisms are defined using the usual
change of base points along ω. We have:

(3) holds iff the sequence (∗) is pro-trivial for all p ≤ n; i.e. given i there
exists j ≥ i such that the image of πp(Uj , wj)→ πp(Ui, wi) is trivial.

(2) holds iff (3) holds and lim1
←(∗) is trivial in dimension p = n + 1.

The following statement is well-known and an easy exercise in geometric
point-set topology. If ∂X is locally n-connected (LCn), and X is n-connected
at ∞ then ∂X is n-connected.

For n = 0, (1) says that ∂X is path connected, (2) says that any two
proper rays in X are properly homotopic, and (3) says that X has one end,
or, equivalently, that ∂X is connected. For a further discussion of these
issues, see the introduction to [8] and the Appendix to [9].

The following is a restatement of the main result of [21]: If the word
hyperbolic group G is 0-connected at infinity (i.e. 1-ended), then ∂(G) is
locally 0-connected (i.e. locally path connected).

Question 1 If a word hyperbolic group G is n-connected at infinity
1. is ∂(G) locally n-connected?
2. is ∂(G) n-connected?

As noted, an affirmative answer to part 1 of Question 1 implies part 2.
Alternatively, our construction of G in §5 seems to give some promise for
constructing a word hyperbolic group that is simply connected at infinity, but
with non-simply connected boundary. See [13], [14] and [15] for a discussion
of Coxeter groups and general CAT(0) groups with non-locally connected
boundary.

A more general type of question should be considered. Given a group G
acting geometrically on a CAT(0) space X, there is a natural map f(X,ω) :
π1(∂X, ω) → π∞1 (X, ω) ≡ π∞1 (G, ω) where π∞1 (X, ω) is the fundamental
group at infinity of X with base ray ω, a geodesic in X. Similarly for any word
hyperbolic group G there is a natural map f(G,ω) : π1(∂G, ω) → π∞1 (G, ω).
(See [7] and [9] for a complete discussion of π∞1 (G) for any finitely presented
group G.)

Question 2 When is f(X,ω) (f(G,ω)) injective?

If G is a word hyperbolic group it makes sense to ask if f(G,ω) is always
injective. Observe that, if G is word hyperbolic and ∂G is locally 1-connected
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then f(G,ω) is injective. If G acts geometrically on the CAT(0) space X and
∂X is locally 1-connected then f(X,ω) is injective. In [4], G.R. Conner and
H. Fischer consider question 2 in a more general setting. In particular, they
show the map is π1-injective when the boundary is 1-dimensional.

Question 3 Given two boundaries for a 1-ended CAT(0) group, must the
homotopy (homology) groups of these spaces agree? In particular, must they
agree at the π0-level.
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