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1 Introduction

The isomorphism problem for finitely generated Coxeter groups is the prob-
lem of deciding if two finite Coxeter matrices define isomorphic Coxeter
groups. Coxeter [4] solved this problem for finite irreducible Coxeter groups.
Recently there has been considerable interest and activity on the isomor-
phism problem for arbitrary finitely generated Coxeter groups.

In this paper we describe a family of isomorphism invariants of a finitely
generated Coxeter group W . Each of these invariants is the isomorphism
type of a quotient group W/N of W by a characteristic subgroup N . The
virtue of these invariants is that W/N is also a Coxeter group. For some
of these invariants, the isomorphism problem of W/N is solved and so we
obtain isomorphism invariants that can be effectively used to distinguish
isomorphism types of finitely generated Coxeter groups.

We emphasize that even if the isomorphism problem for finitely generated
Coxeter groups is eventually solved, several of the algorithms described in our
paper will still be useful because they are computational fast and would most
likely be incorporated into an efficient computer program that determines if
two finite rank Coxeter systems have isomorphic groups.

In §2, we establish notation. In §3, we describe two elementary quotient-
ing operations on a Coxeter system that yields another Coxeter system. In
§4, we describe the even part isomorphism invariant of a finitely generated
Coxeter group. In §5, we review some matching theorems. In §6, we describe
the even isomorphism invariant of a finitely generated Coxeter group. In
§7, we define basic characteristic subgroups of a finitely generated Coxeter
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group. In §8, we describe the spherical rank two isomorphism invariant of a
finitely generated Coxeter group. In §9, we make some concluding remarks.

2 Preliminaries

A Coxeter matrix is a symmetric matrix M = (m(s, t))s,t∈S with m(s, t)
either a positive integer or infinity and m(s, t) = 1 if and only if s = t.
A Coxeter system with Coxeter matrix M = (m(s, t))s,t∈S is a pair (W,S)
consisting of a group W and a set of generators S for W such that W has
the presentation

W = 〈S | (st)m(s,t) : s, t ∈ S and m(s, t) <∞〉.

We call the above presentation of W , the Coxeter presentation of (W,S). If
(W,S) is a Coxeter system with Coxeter matrix M = (m(s, t))s,t∈S, then the
order of st is m(s, t) for each s, t in S by Prop. 4, p. 92 of Bourbaki [3],
and so a Coxeter system (W,S) determines its Coxeter matrix; moreover,
any Coxeter matrix M = (m(s, t))s,t∈S determines a Coxeter system (W,S)
where W is defined by the corresponding Coxeter presentation. If (W,S) is
a Coxeter system, then W is called a Coxeter group and S is called a set
of Coxeter generators for W , and the cardinality of S is called the rank of
(W,S). A Coxeter system (W,S) has finite rank if and only if W is finitely
generated by Theorem 2 (iii), p. 20 of Bourbaki [3].

Let (W,S) be a Coxeter system. A visual subgroup of (W,S) is a subgroup
of W of the form 〈A〉 for some A ⊂ S. If 〈A〉 is a visual subgroup of (W,S),
then (〈A〉, A) is also a Coxeter system by Theorem 2 (i), p. 20 of Bourbaki
[3].

When studying a Coxeter system (W,S) with Coxeter matrix M it is
helpful to have a visual representation of (W,S). There are two graphical
ways of representing (W,S) and we shall use both depending on our needs.

The Coxeter diagram (C-diagram) of (W,S) is the labeled undirected
graph ∆ = ∆(W,S) with vertices S and edges

{(s, t) : s, t ∈ S and m(s, t) > 2}

such that an edge (s, t) is labeled by m(s, t). Coxeter diagrams are useful for
visually representing finite Coxeter groups. If A ⊂ S, then ∆(〈A〉, A) is the
subdiagram of ∆(W,S) induced by A.
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A Coxeter system (W,S) is said to be irreducible if its C-diagram ∆ is
connected. A visual subgroup 〈A〉 of (W,S) is said to be irreducible if (〈A〉, A)
is irreducible. A subset A of S is said to be irreducible if 〈A〉 is irreducible.

A subset A of S is said to be a component of S if A is a maximal irreducible
subset of S or equivalently if ∆(〈A〉, A) is a connected component of ∆(W,S).
The connected components of the ∆(W,S) represent the factors of a direct
product decomposition of W .

The presentation diagram (P-diagram) of (W,S) is the labeled undirected
graph Γ = Γ(W,S) with vertices S and edges

{(s, t) : s, t ∈ S and m(s, t) <∞}

such that an edge (s, t) is labeled bym(s, t). Presentation diagrams are useful
for visually representing infinite Coxeter groups. If A ⊂ S, then Γ(〈A〉, A)
is the subdiagram of Γ(W,S) induced by A. The connected components of
Γ(W,S) represent the factors of a free product decomposition of W .

For example, consider the Coxeter group W generated by the four reflec-
tions in the sides of a rectangle in E2. The C-diagram of (W,S) is the disjoint
union of two edges labeled by ∞ while the P-diagram of W is a square with
edge labels 2.

Let (W,S) and (W ′, S ′) be Coxeter systems with P-diagrams Γ and Γ′,
respectively. An isomorphism φ : (W,S) → (W ′, S ′) of Coxeter systems is an
isomorphism φ : W → W ′ such that φ(S) = S ′. An isomorphism ψ : Γ → Γ′

of P-diagrams is a bijection from S to S ′ that preserves edges and their labels.
Note that (W,S) ∼= (W ′, S ′) if and only if Γ ∼= Γ′.

We shall use Coxeter’s notation on p. 297 of [5] for the irreducible spher-
ical Coxeter simplex reflection groups except that we denote the dihedral
group Dk

2 by D2(k). Subscripts denote the rank of a Coxeter system in
Coxeter’s notation. Coxeter’s notation partly agrees with but differs from
Bourbaki’s notation on p.193 of [3].

Coxeter [4] proved that every finite irreducible Coxeter system is isomor-
phic to exactly one of the Coxeter systems An, n ≥ 1, Bn, n ≥ 4, Cn, n ≥ 2,
D2(k), k ≥ 5, E6, E7, E8, F4, G3, G4. For notational convenience, we define
B3 = A3, D2(3) = A2, and D2(4) = C2

The type of a finite irreducible Coxeter system (W,S) is the isomorphism
type of (W,S) represented by one of the systems An, Bn, Cn, D2(k), E6,
E7, E8, F4, G3, G4. The type of an irreducible subset A of S is the type of
(〈A〉, A).
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The C-diagram of An is a linear diagram with n vertices and all edge
labels 3. The C-diagram of Bn is a Y-shaped diagram with n vertices and
all edge labels 3 and two short arms of consisting of single edges. The C-
diagram of Cn is a linear diagram with n vertices and all edge labels 3 except
for the last edge labelled 4. The C-diagram of D2(k) is a single edge with
label k. The C-diagrams of E6, E7,E8 are star shaped with three arms and
all edge labels 3. One arm has length one and another has length two. The
C-diagram of F4 is a linear diagram with edge labels 3, 4, 3 in that order. The
C-diagram of G3 is a linear diagram with edge labels 3, 5. The C-diagram of
G4 is a linear diagram with edge labels 3, 3, 5 in that order.

3 Elementary Quotient Operations

In this section we describe two types of elementary edge quotient opera-
tions on a Coxeter system (W,S) of finite rank. The first we call edge label
reduction and the second we call edge elimination.

Suppose s and t are distinct elements of S with m(s, t) <∞. Let d be a
positive divisor of m = m(s, t), with d < m, and let N be the normal closure
of the element (st)d of W . Then a presentation for W/N is obtained from the
Coxeter presentation for (W,S) by adding the relator (st)d. As m = (m/d)d,
the relator (st)m is derivable from the relator (st)d and so the relator (st)m

can be removed from the presentation for W/N .
Assume d > 1. Then the presentation for W/N is a Coxeter presentation

whose P-diagram is obtained from the P-diagram for (W,S) by replacing the
label m on the edge (s, t) with the label d. We call the operation of passing
from the Coxeter system (W,S) to the quotient Coxeter system (W/N, {sN :
s ∈ S}) the (s, t) edge label reduction from m to d. For example, if we reduce
the 4 edge of F4 to 2, we obtain the Coxeter system A2 ×A2.

Now assume d = 1. We delete from the presentation for W/N the gen-
erator t and the relator st and replace all occurrences of t in the remaining
relators by s. Suppose r is in S and k = m(r, s) <∞ and ` = m(r, t) <∞.
Then we have the relators (rs)k and (rs)` in the presentation for W/N . Let
d be the greatest common divisor of k and `. Then there are integers a and
b such that d = ak + b`. This implies that (rs)d is derivable from (rs)k and
(rs)` and so we may add the relator (rs)d to the presentation for W/N . Then
(rs)k and (rs)` are derivable from (rs)d and so we can eliminate the relators
(rs)k and (rs)` from the presentation for W/N . We do this for each r in S
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such that m(r, s) < ∞ and m(r, t) < ∞. On the P -diagram level, we have
eliminated the edge (s, t) and identified the vertices s and t and we have
coalesced each edge (r, s) with label k < ∞ with the edge (r, t) with label
` <∞ to form an edge with label d the greatest common divisor of k and `.
If each common divisor d is greater than one, we obtain a Coxeter presenta-
tion for W/N . If some common divisor d is one, we delete the corresponding
generator r and repeating the above reduction procedure on the presentation
of W/N . As the set S of generators is finite, we will eventually stop deleting
generators and obtain a Coxeter presentation for W/N with generators the
subset S ′ of {sN : s ∈ S} corresponding to the undeleted elements of S. We
call the operation of passing from the Coxeter system (W,S) to the quotient
Coxeter system (W/N, S ′) the (s, t) edge elimination. For example, if we
eliminate the 3 edge from C3, we obtain the Coxeter system A1 ×A1.

4 The Even Part Isomorphism Invariant

Let (W,S) be a Coxeter system of finite rank. For each pair of elements
s, t of S with m(s, t) < ∞, let e(s, t) be the even part of m(s, t), that is,
e(s, t) is the largest power of 2 that divides m(s, t). If m(s, t) = ∞, we define
e(s, t) = ∞. Let Ne be the normal closure in W of all the elements of the
form (st)e(s,t) with e(s, t) <∞, and let We = W/Ne. Let η : W → We be the
quotient homomorphism, and let Se = η(S).

Proposition 4.1 The pair (We, Se) is a Coxeter system such that if s and t
are in S, then η(s) = η(t) if and only if s and t are conjugate in W . If s and
t are nonconjugate elements of S, then the order of η(s)η(t) is the minimum
of the set of all e(u, v) such that u and v are in S and u is conjugate to s
and v is conjugate to t. In particular, the order of η(s)η(t) is a power of 2
or ∞.

Proof: The system (We, Se) can be obtained from (W,S) by a sequence
of elementary quotient operations. First we can do a series of edge label
reductions of all the even labelled edges of the P-diagram of (W,S) to their
even parts. Then we do a series of edge eliminations of all the odd labelled
edges. Each element of the form (st)e(s,t) with e(s, t) <∞ is in the commu-
tator subgroup of W . Therefore abelianizing W factors through the quotient
W/Ne, and so η(s) = η(t) if and only if s and t are the same odd component
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of the P-diagram of (W,S). Hence η(s) = η(t) if and only if s and t are
conjugate in W by Prop. 3, p. 12 of Bourbaki [3].

Suppose s and t are nonconjugate elements of S and u and v are in S,
with m(u, v) < ∞, and u is conjugate to s and v is conjugate to t. Then
u and v are not conjugate, and so m(u, v) is even, and therefore e(u, v) is a
power of 2 greater than 1. In the coalescence of two such edges, the greatest
common divisor is the minimum of the two edge labels. Therefore the order
of η(s)η(t) is the minimum of the set of all e(u, v) such that u and v are in
S and u is conjugate to s and v is conjugate to t. �

Theorem 4.2 Let (W,S) be a Coxeter system of finite rank. For each pair
of elements s, t of S with m(s, t) < ∞, let e(s, t) be the largest power of 2
that divides m(s, t). Let Ne be the normal closure in W of all the elements
of the form (st)e(s,t) with m(s, t) <∞, Then Ne is the normal closure in W
of the set of all elements of W of odd order. Therefore Ne is a characteristic
subgroup of W that does not depend on the choice of Coxeter generators S.

Proof: Every element of the form (st)e(s,t) with m(s, t) <∞ has odd order,
and so Ne is contained in the normal closure of all the elements of odd order.
Let w be an element of odd order, then η(w) has odd order in We = W/Ne.
By the previous proposition, (We, Se) is a Coxeter system with all edge labels
a power of 2. Therefore η(w) is conjugate to an element of odd order of a
finite visual subgroup of (We, Se) by [3], Ch. V, §4, Ex. 2. The finite visual
subgroups of (We, Se) are direct products of groups of type A1 and C2, and
so are 2-groups. Therefore We has no nontrivial elements of odd order. Hence
η(w) = 1, and so w is in Ne. Thus Ne is the normal closure of all the elements
of W of odd order. �

P. Bahls proved in his Ph.D. thesis [1] that any finitely generated Coxeter
group has at most one P-diagram, up to isomorphism, with all edge labels
even; see Theorem 5.2 in Bahls and Mihalik [2]. Therefore the isomorphism
type of the P-diagram of (We, Se) is an isomorphism invariant of W by The-
orem 4.2. We call the isomorphism type of the P-diagram of (We, Se) the
even part isomorphism invariant of W .

In Figure 1, we illustrate two P-diagrams and their even part isomorphism
invariant P-diagrams below them. The even diagrams are not isomorphic,
and so the top two P-diagrams represent nonisomorphic Coxeter groups.
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Figure 1

5 Matching Theorems

Let (W,S) be a Coxeter system. A basic subgroup of (W,S) is a noncyclic,
maximal, finite, irreducible, visual subgroup of (W,S). A base of (W,S) is a
subset B of S such that 〈B〉 is a basic subgroup of (W,S). The theorems in
this section are proved in our paper [8].

Theorem 5.1 (Basic Matching Theorem) Let W be a finitely generated Cox-
eter group with two sets of Coxeter generators S and S ′. Let B be a base of
(W,S). Then there is a unique irreducible subset B′ of S ′ such that [〈B〉, 〈B〉]
is conjugate to [〈B′〉, 〈B′〉] in W . Moreover,

1. The set B′ is a base of (W,S ′),

2. If |〈B〉| = |〈B′〉|, then B and B′ have the same type and there is an
isomorphism φ : 〈B〉 → 〈B′〉 that restricts to conjugation on [〈B〉, 〈B〉]
by an element of W .

3. If |〈B〉| < |〈B′〉|, then either B has type B2q+1 and B′ has type C2q+1

for some q ≥ 1 or B has type D2(2q + 1) and B′ has type D2(4q + 2)
for some q ≥ 1. Moreover, there is a monomorphism φ : 〈B〉 → 〈B′〉
that restricts to conjugation on [〈B〉, 〈B〉] by an element of W .
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Let W be a finitely generated Coxeter group with two sets of Coxeter
generators S and S ′. A basic subgroup 〈B〉 of (W,S) is said to match a basic
subgroup 〈B′〉 of (W,S ′) if [〈B〉, 〈B〉] is conjugate to [〈B′〉, 〈B′〉] in W . A
base B of (W,S) is said to match a base B′ of (W,S ′) if 〈B〉 matches 〈B′〉.

Theorem 5.2 Let (W,S) be a Coxeter system of finite rank. Let B be a
base of (W,S) of type C2q+1 for some q ≥ 1, and let a, b, c be the elements
of B such that m(a, b) = 4 and m(b, c) = 3. Then W has a set of Coxeter
generators S ′ such that B matches a base B′ of (W,S ′) of type B2q+1 if and
only if m(s, t) = 2 for all (s, t) ∈ (S −B)×B such that m(s, a) <∞.

Theorem 5.3 Let B be a base of (W,S) of type C2q+1 for some q ≥ 1, and
let a, b, c be the elements of B such that m(a, b) = 4 and m(b, c) = 3. Suppose
that m(s, t) = 2 for all (s, t) ∈ (S − B) × B such that m(s, a) < ∞. Let
d = aba, and let z be the longest element of 〈B〉. Let S ′ = (S −{a})∪ {d, z}
and B′ = (B − {a}) ∪ {d}. Then S ′ is a set of Coxeter generators for W
such that

1. The set B′ is a base of (W,S ′) of type B2q+1 that matches B,

2. m(z, t) = 2 for all t ∈ B′,

3. If (s, t) ∈ (S−B)×{d, z}, then m(s, t) <∞ if and only if m(s, a) <∞,
moreover if m(s, t) <∞, then m(s, t) = 2.

Theorem 5.4 Let (W,S) be a Coxeter system of finite rank, and let B =
{a, b} be a base of (W,S) of type D2(4q + 2) for some q ≥ 1. Then W has
a set of Coxeter generators S ′ such that B matches a base B′ of (W,S ′) of
type D2(2q + 1) if and only if either v = a or v = b has the property that if
s ∈ S −B and m(s, v) <∞, then m(s, a) = m(s, b) = 2.

Theorem 5.5 Let B = {a, b} be a base of (W,S) of type D2(4q + 2) for
some q ≥ 1. Suppose that if s ∈ S − B and m(s, a) < ∞, then m(s, a) =
m(s, b) = 2. Let c = aba and let z be the longest element of 〈B〉. Let
S ′ = (S−{a})∪{c, z} and B′ = {b, c}. Then S ′ is a set of Coxeter generators
of W such that

1. The set B′ is a base of (W,S ′) of type D2(2q + 1) that matches B,

2. m(z, b) = m(z, c) = 2,

3. if (s, t) ∈ (S−B)×{c, z}, then m(s, t) <∞ if and only if m(s, a) <∞,
moreover if m(s, t) <∞, then m(s, t) = 2.
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6 The Even Isomorphism Invariant

Let (W,S) be a Coxeter system of finite rank. A pair of elements (a, b) of
S is said to be special if (a, b) satisfy the conditions of Theorem 5.4, that
is, if m(a, b) ≡ 2 mod 4 and either v = a or v = b has the property that if
s ∈ S − {a, b} and m(s, v) <∞, then m(s, a) = m(s, b) = 2.

Let (a, b) be a pair of elements of S. If (a, b) is special, define m(a, b) = 2
and if (a, b) is nonspecial, define m(a, b) = m(a, b).

Let Neven be the normal closure in W of all the elements of the form ab
with a and b elements of S such that m(a, b) is odd together with all the
elements of the form (ab)2 such that (a, b) is a special pair of elements of S.
Let Weven = W/Neven, let η : W → Weven be the quotient homomorphism,
and let Seven = η(S).

Proposition 6.1 The pair (Weven, Seven) is a Coxeter system such that if s
and t are in S, then η(s) = η(t) if and only if s and t are conjugate in W .
If s and t are nonconjugate elements of S, then the order of η(s)η(t) is the
greatest common divisor of the set of all m(u, v) such that u and v are in S
and u is conjugate to s and v is conjugate to t. In particular, the order of
η(s)η(t) is either even or ∞.

Proof: The system (Weven, Seven) can be obtained from (W,S) by a sequence
of elementary quotient operations. First we reduce to 2 all the edge labels
of special edges (a, b) to obtain a Coxeter system with Coxeter matrix M =
(m(s, t))s,t∈S. Then we eliminate all the odd labelled edges. Each element
of the form either st, with m(s, t) odd, or (st)2, with (s, t) special, is in the
commutator subgroup of W . Therefore abelianizing W factors through the
quotient W/Neven, and so η(s) = η(t) if and only if s and t are the same odd
component of the P-diagram of (W,S). Hence η(s) = η(t) if and only if s
and t are conjugate in W by Prop. 3, p. 12 of Bourbaki [3].

Suppose s and t are nonconjugate elements of S and u and v are in S,
with m(u, v) < ∞, and u is conjugate to s and v is conjugate to t. Then
u and v are not conjugate, and so m(u, v) is even. In the coalescence of
two such edges, the greatest common divisor is even. Therefore the order of
η(s)η(t) is the greatest common divisor of the set of all m(u, v) such that u
and v are in S and u is conjugate to s and v is conjugate to t. �
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Let (W,S) be a Coxeter system of finite rank. A base B of (W,S) is said
to be of odd type if there are elements a and b in B, with m(a, b) odd. A base
B of (W,S) is said to be special if B = {a, b} with (a, b) special.

Theorem 6.2 Let (W,S) be a Coxeter system of finite rank. Then Neven is
a characteristic subgroup of W that does not depend on the choice of Coxeter
generators S.

Proof: Observe that Neven is the normal closure in W of the commutator
subgroups of all the basic subgroups 〈B〉 of (W,S) such that the base B is
either of odd type or special. Let S ′ be another set of Coxeter generators of
W . By the Basic Matching Theorem and Theorem 5.4, the group Neven is
also the normal closure in W of the commutator subgroups of all the basic
subgroups 〈B′〉 of (W,S ′) such that the base B′ is either of odd type or
special. Therefore Neven is the normal closure in W of all the elements of the
form s′t′ with s′ and t′ in S ′ and m(s′, t′) odd together with all the elements
of the form (s′t′)2 with (s′, t′) a special pair of elements of S ′. Thus Neven is a
characteristic subgroup of W that does not depend on the choice of Coxeter
generators S. �

Let (W,S) be a Coxeter system of finite rank. P. Bahls proved in his
Ph.D. thesis [1] that any finitely generated Coxeter group has at most one
P-diagram, up to isomorphism, with all edge labels even. Therefore the iso-
morphism type of the P-diagram of (Weven, Seven) is an isomorphism invariant
of W by Theorem 6.2. We call the isomorphism type of the P-diagram of
(Weven, Seven) the even isomorphism invariant of W . For example, the even
isomorphism invariant of the system D2(6) is the isomorphism type of the
P-diagram of the system A1 ×A1.

7 Basic Characteristic Subgroups

Let (W,S) be a Coxeter system of finite rank. A basic subgroup 〈B〉 of
(W,S) is said to be stable if for every set of Coxeter generators S ′ of W , the
base B matches a base B′ of (W,S ′) with |〈B〉| ≤ |〈B′〉|. Note that a basic
subgroup 〈B〉 of (W,S) is unstable precisely when the base B satisfies the
conditions of either Theorem 5.2 or 5.4. In particular, every special base is
unstable.
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Let F be a family of finite irreducible Coxeter system isomorphism types.
Let N(F) be the normal closure in W of the commutator subgroups of all the
stable basic subgroups of (W,S) of isomorphism type contained in F together
with the commutator subgroups of all the unstable basic subgroups of (W,S)
that match a stable basic subgroup of isomorphism type contained in F . Let
W (F) = W/N(F), let η : W → W (F) be the quotient homomorphism, and
let S(F) = η(S).

Theorem 7.1 The pair (W (F), S(F)) is a Coxeter system that can be ob-
tained from (W,S) be a finite series of elementary edge quotient operations.
The group N(F) is a characteristic subgroup of W that does not depend on
the choice of Coxeter generators S.

Proof: Quotienting out the commutator subgroup of a basic subgroup 〈B〉
of (W,S) can be realized by reducing all the even labelled edges of the C-
diagram of (〈B〉, B) to 2 and eliminating all the odd labelled edges of the C-
diagram. Therefore (W (F), S(F)) is a Coxeter system that can be obtained
from (W,S) be a finite series of elementary edge quotient operations.

Let S ′ be another set of Coxeter generators of W . By the Basic Matching
Theorem, N(F) is also the normal closure inW of the commutator subgroups
of all the stable basic subgroups of (W,S ′) of isomorphism type contained
in F together with the commutator subgroups of all the unstable basic sub-
groups of (W,S) that match a stable basic subgroup of isomorphism type
contained in F . Thus N(F) is a characteristic subgroup of W that does not
depend on the choice of Coxeter generators S. �

We call a subgroup ofW of the form N(F) a basic characteristic subgroup.

Corollary 7.2 If W is a finitely generated Coxeter group and N(F) is a
basic characteristic subgroup of W , then the isomorphism type of W (F) =
W/N(F) is an isomorphism invariant of W .

8 The Spherical Rank Two Invariant

B. Mühlherr [7] has announced a solution of the isomorphism problem for
finitely generated Coxeter groups W such that W has no basic subgroups
of rank greater than 2 with respect to some set of Coxeter generators. By
the Basic Matching Theorem, if W has no basic subgroups of rank greater
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than 2 with respect to some set of Coxeter generators, then W has no basic
subgroups of rank greater than 2 with respect to every set of Coxeter gen-
erators. Therefore it makes sense to say that W has no basic subgroups of
rank greater than 2 without regard to a set of Coxeter generators.

In this section we describe a characteristic subgroup N2 of a finitely gen-
erated Coxeter group W such that W2 = W/N2 is a Coxeter group with no
basic subgroups of rank greater than 2 and such that the isomorphism type
of W2 is an isomorphism invariant of W .

Let Xn be one of the finite irreducible Coxeter systems An, Bn, Cn, E6,
E7, E8, F4, G3, G4 of rank n ≥ 3. We now define a characteristic subgroup
N(Xn) of Xn for each Xn. Let N(Xn) be the commutator subgroup of the
Coxeter group Xn if n ≥ 5 or if Xn = A4,G3, or G4.

Let a1, a2, a3 be the Coxeter generators of A3 indexed so that m(a1, a2) =
m(a2, a3) = 3. Let N(A3) be the normal closure in the group A3 of the
element a1a3. Then N(A3) is a characteristic subgroup of A3 characterized
by the property that N(A3) is the unique normal subgroup of A3 such that
A3/N(A3) is isomorphic to A2 according to Table 3 of Maxwell [6].

Let b1, b2, b3, b4 be the Coxeter generators of B4 indexed so that

m(b1, b4) = m(b2, b4) = m(b3, b4) = 3.

Let N(B4) be the normal closure in the group B4 of the elements b1b2
and b2b3. Then N(B4) is a characteristic subgroup of B4 characterized by
the property that N(B4) is the unique normal subgroup of B4 such that
B4/N(B4) is isomorphic to A2 according to Table 3 of Maxwell [6].

Let c1, c2, c3 be the Coxeter generators of C3 such that m(c1, c2) = 3
and m(c2, c3) = 4. Let N(C3) be the normal closure in the group C3 of the
element (c2c3)

2. Then N(C3) is a characteristic subgroup of C3 characterized
by the property that N(C3) is the unique normal subgroup of C3 such that
C3/N(C3) is isomorphic to A2 ×A1 according to Table 3 of Maxwell [6].

Let c1, c2, c3, c4 be the Coxeter generators of C4 indexed so that

m(c1, c2) = m(c2, c3) = 3 and m(c3, c4) = 4.

Let N(C4) be the normal closure in the group C4 of the element c1c3. Then
N(C4) is a characteristic subgroup of C4 characterized by the property that
N(C4) is the unique normal subgroup of C4 such that C4/N(C4) is isomor-
phic to A2 ×A1 according to Table 3 of Maxwell [6].
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Let f1, f2, f3, f4 be the Coxeter generators of F4 indexed so that

m(f1, f2) = m(f3, f4) = 3 and m(f2, f3) = 4.

Let N(F4) be the normal closure in the group F4 of the element (f2f3)
2.

Then N(F4) is a characteristic subgroup of F4 characterized by the property
that N(F4) is the unique normal subgroup of F4 such that F4/N(F4) is
isomorphic to A2 ×A2 according to Table 3 of Maxwell [6].

Let (W,S) be a Coxeter system of finite rank. Let N(W ) be the normal
closure in W of the subgroups N(〈B〉) defined above for every base B of
(W,S) of rank greater than 2. Let W (2) = W/N(W ). Let η : W → W (2) be
the quotient homomorphism, and let S(2) = η(S).

Theorem 8.1 The pair (W (2), S(2)) is a Coxeter system that can be obtained
from (W,S) be a finite series of elementary edge quotient operations. The
group N(W ) is a characteristic subgroup of W that does not depend on the
choice of Coxeter generators S.

Proof: Quotienting out the group N(〈B〉) for each base B of (W,S) of
rank greater than 2 can be realized by elementary edge quotient operations.
Therefore (W (2), S(2)) is a Coxeter system that can be obtained from (W,S)
be a finite series of elementary edge quotient operations.

Let S ′ be another set of Coxeter generators of W . By the Basic Matching
Theorem and the characteristic properties of the groups N(Xn), the group
N(W ) defined in terms of the generators S is the same as the group N(W )
defined in terms of the generators S ′. Thus N(F) is a characteristic subgroup
of W that does not depend on the choice of generators S. �

Corollary 8.2 If W is a finitely generated Coxeter group, then the isomor-
phism type of W (2) = W/N(W ) is an isomorphism invariant of W .

It may happen that (W (2), S(2)) has a base of rank greater than 2. To
get a quotient system with no bases of rank greater than 2, we may have
to quotient out N(W (2)), and then perhaps repeat the above quotienting
process several times. This leads to a finite nested sequence

{1} = N (1)(W ) ⊂ N (2)(W ) ⊂ · · · ⊂ N (`)(W )
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of characteristic subgroups of W such that if W (i) = W/N (i)(W ) and if
ηi : W → W (i) is the quotient homomorphism, then

N (i+1)(W ) = η−1
i (N(W (i)))

for each i = 1, . . . , ` − 1, and W (`) has no basic subgroups of rank greater
than 2, and ` is as small as possible. We have that W (i+1) = (W (i))(2) for
each i = 1, . . . , ` − 1. Therefore the isomorphism type of W (i) for each
i = 1, . . . , ` is an isomorphism invariant of W . It follows from the Basic
Matching Theorem that ` does not depend on a choice of Coxeter generators
for W , and so ` is an isomorphism invariant of W . We call ` the spherical
rank 2 class of W . We have ` ≥ 1 with ` = 1 if and only if W has no
basic subgroups of rank greater than 2. Figure 2 shows the P-diagrams of a
sequence W (1), . . . ,W (`) with ` = 4 for the Coxeter group W = W (1).

Define N2 = N (`)(W ). Then N2 is a characteristic subgroup of W such
that W2 = W/N2 has no basic subgroups of rank greater than 2. The iso-
morphism type of W2 is an isomorphism invariant of W which we call the
spherical rank 2 isomorphism invariant of W .

Let η : W → W2 be the quotient homomorphism, and let S2 = η(S).
Then (W2, S2) is a Coxeter system that can be obtained from (W,S) by a
finite series of elementary edge quotient operations.
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9 Conclusion

Let (W,S) be a Coxeter system of finite rank. In this paper, we have de-
scribed three characteristic subgroups Ne, Neven, N2 of W each leading to a
quotient isomorphism invariant of W . It is interesting to note that

N2 ⊂ Neven ⊂ Ne,

and so the quotient isomorphism invariants corresponding to Ne, Neven, N2

are progressively stronger. The algorithm for finding a P-diagram for the
system (We, Se) starting from a P-diagram of (W,S) is computational fast.

The algorithm for finding a P-diagram for the system (Weven, Seven) is
slower since it has to determine the bases of (W,S) of type D2(4q + 2) that
satisfy the conditions of Theorem 5.4; but, this algorithm is only slightly
slower since the conditions of Theorem 5.4 are easy to check. The algorithm
for finding a P-diagram for the system (Weven, Seven) would most likely be
incorporated into an efficient computer program that determines if two finite
rank Coxeter systems have isomorphic groups, since the even isomorphism
invariant would usually determine that two random finite rank Coxeter sys-
tems have nonisomorphic groups.

The algorithm for finding a P-diagram for the system (W2, S2) is the
slowest, but it is not much slower, since it only has to find a subdiagram of
the P-diagram of (W,S) of type A3, C3 or G3 before it performs an edge
quotient operation on an edge of the subdiagram. If the subdiagram is of
type A3 or G3, then the edge with label 2 is eliminated. If the subdiagram
is of type C3, then the 4 edge label is reduced to 2. The algorithm then
repeats the routine of searching for a subdiagram of type A3, C3 or G3 and
performing the corresponding edge quotient operation.

The algorithm for finding a P-diagram for the system (W2, S2) would most
likely be useful in an efficient program that determines if two finite rank Cox-
eter systems have isomorphic groups, since the solution of the isomorphism
problem for finite rank Coxeter systems that have no bases of rank greater
than 2 is considerably simpler than any general solution of the isomorphism
problem.
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