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1 Introduction

The isomorphism problem for finitely generated Coxeter groups is the prob-
lem of deciding if two finite Coxeter matrices define isomorphic Coxeter
groups. Coxeter [3] solved this problem for finite irreducible Coxeter groups.
Recently there has been considerable interest and activity on the isomor-
phism problem for arbitrary finitely generated Coxeter groups. For a recent
survey, see Mühlherr [10].

The isomorphism problem for finitely generated Coxeter groups is equiv-
alent to the problem of determining all the automorphism equivalence classes
of sets of Coxeter generators for an arbitrary finitely generated Coxeter group.
In this paper, we prove a series of matching theorems for two sets of Cox-
eter generators of a finitely generated Coxeter group that identify common
features of the two sets of generators. As an application, we describe an algo-
rithm for finding a set of Coxeter generators of maximum rank for a finitely
generated Coxeter group.

In §2, we state some preliminary results. In §3, we prove a matching
theorem for two systems of a finite Coxeter group. In §4, we prove our
Basic Matching Theorem between the sets of maximal noncyclic irreducible
spherical subgroups of two systems of a finitely generated Coxeter group.
In §5, we study nonisomorphic basic matching. In §6, we prove a matching
theorem between the sets of noncyclic irreducible spherical subgroups of two
systems of a finitely generated Coxeter group. As an application, we prove
the Edge Matching Theorem. In §7, we discuss twisting and flattening visual
graph of groups decompositions of Coxeter systems. In §8, we prove the
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Decomposition Matching Theorem. In §9, we prove the Simplex Matching
Theorem. In §10, we describe our algorithm for finding a set of Coxeter
generators of maximum rank for a finitely generated Coxeter group.

2 Preliminaries

A Coxeter matrix is a symmetric matrix M = (m(s, t))s,t∈S with m(s, t)
either a positive integer or infinity and m(s, t) = 1 if and only if s = t.
A Coxeter system with Coxeter matrix M = (m(s, t))s,t∈S is a pair (W,S)
consisting of a group W and a set of generators S for W such that W has
the presentation

W = 〈S | (st)m(s,t) : s, t ∈ S and m(s, t) <∞〉

If (W,S) is a Coxeter system with Coxeter matrix M = (m(s, t))s,t∈S, then
the order of st is m(s, t) for each s, t in S by Prop. 4, p. 92 of Bourbaki
[1], and so a Coxeter system (W,S) determines its Coxeter matrix; moreover,
any Coxeter matrix M = (m(s, t))s,t∈S determines a Coxeter system (W,S)
where W is defined by the above presentation. If (W,S) is a Coxeter system,
then W is called a Coxeter group and S is called a set of Coxeter generators
for W , and the cardinality of S is called the rank of (W,S).

Proposition 2.1 A Coxeter system (W,S) has finite rank if and only if W
is finitely generated.

Proof: This follows Theorem 2 (iii), p. 20 of Bourbaki [1]. �

Let (W,S) be a Coxeter system. A visual subgroup of (W,S) is a subgroup
of W of the form 〈A〉 for some A ⊂ S. If 〈A〉 is a visual subgroup of (W,S),
then (〈A〉, A) is also a Coxeter system by Theorem 2 (i), p. 20 of Bourbaki
[1].

When studying a Coxeter system (W,S) with Coxeter matrix M it is
helpful to have a visual representation of (W,S). There are two graphical
ways of representing (W,S) and we shall use both depending on our needs.

The Coxeter diagram (C-diagram) of (W,S) is the labeled undirected
graph ∆ = ∆(W,S) with vertices S and edges

{(s, t) : s, t ∈ S and m(s, t) > 2}
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such that an edge (s, t) is labeled by m(s, t). Coxeter diagrams are useful for
visually representing finite Coxeter groups. If A ⊂ S, then ∆(〈A〉, A) is the
subdiagram of ∆(W,S) induced by A.

A Coxeter system (W,S) is said to be irreducible if its C-diagram ∆ is
connected. A visual subgroup 〈A〉 of (W,S) is said to be irreducible if (〈A〉, A)
is irreducible. A subset A of S is said to be irreducible if 〈A〉 is irreducible.

A subset A of S is said to be a component of S if A is a maximal irreducible
subset of S or equivalently if ∆(〈A〉, A) is a connected component of ∆(W,S).
The connected components of the ∆(W,S) represent the factors of a direct
product decomposition of W .

The presentation diagram (P-diagram) of (W,S) is the labeled undirected
graph Γ = Γ(W,S) with vertices S and edges

{(s, t) : s, t ∈ S and m(s, t) <∞}

such that an edge (s, t) is labeled by m(s, t). Presentation diagrams are useful
for visually representing infinite Coxeter groups. If A ⊂ S, then Γ(〈A〉, A)
is the subdiagram of Γ(W,S) induced by A. The connected components of
Γ(W,S) represent the factors of a free product decomposition of W .

Example Consider the Coxeter group W generated by the four reflections
in the sides of a rectangle in E2. The C-diagram of (W,S) is the disjoint
union of two edges labeled by ∞.

s s s s∞ ∞

Therefore W is the direct product of two infinite dihedral groups. The P-
diagram of W is a square with edge labels 2.

s s
ss

2

2

2

2

Let (W,S) and (W ′, S ′) be Coxeter systems with P-diagrams Γ and Γ′,
respectively. An isomorphism φ : (W,S)→ (W ′, S ′) of Coxeter systems is an
isomorphism φ : W → W ′ such that φ(S) = S ′. An isomorphism ψ : Γ→ Γ′

of P-diagrams is a bijection from S to S ′ that preserves edges and their labels.
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Proposition 2.2 Let (W,S) and (W ′, S ′) be Coxeter systems with P-dia-
grams Γ and Γ′, respectively. Then

1. (W,S) ∼= (W ′, S ′) if and only if Γ ∼= Γ′,

2. W ∼= W ′ if and only if W has a set of Coxeter generators S ′′ such that
(W,S ′′) ∼= (W ′, S ′),

3. W ∼= W ′ if and only if W has a P-diagram Γ′′ such that Γ′′ ∼= Γ′.

Proof: (1) If φ : (W,S) → (W ′, S ′) is an isomorphism, then φ restricts to
an isomorphism φ : Γ → Γ′ and if ψ : Γ → Γ′ is an isomorphism, then ψ
extends to a unique isomorphism ψ̂ : (W,S)→ (W ′, S ′).

(2) If φ : W → W ′ is an isomorphism, then S ′′ = φ−1(S ′) is a set of
Coxeter generators for W and φ : (W,S ′′)→ (W ′, S ′) is an isomorphism.

(3) Statement (3) follows from (1) and (2). �

Proposition 2.3 Let W be a Coxeter group and let S be the collection of
sets of Coxeter generators for W . Then

1. The group Aut(W ) acts on S.

2. Sets of Coxeter generators S and S ′ for W are in the same Aut(W )-
orbit if and only if (W,S) ∼= (W,S ′).

3. The set of Aut(W )-orbits S/Aut(W ) is in one-to-one correspondence
with the set of isomorphism classes of P-diagrams for W .

Proof: (1) and (2) are obvious. (3) follows from (2) and Prop. 2.2(1). �

A Coxeter group W is said to be rigid if for any two sets of Coxeter
generators S and S ′ for W , there is an automorphism α : (W,S) → (W,S ′)
or equivalently any two sets of Coxeter generators S and S ′ for W determine
isomorphic P-diagrams for W . A Coxeter group W is said to be strongly
rigid if any two sets of Coxeter generators for W are conjugate.

A Coxeter system (W,S) is said to be complete if the underlying graph
of the P-diagram of (W,S) is complete. A Coxeter system (W,S) is said to
be finite (resp. infinite) if W is finite (resp. infinite).

Theorem 2.4 (Caprace, Franzsen, Haglund, Howlett, and Mühlherr [2],[7])
If (W,S) is an infinite, complete, irreducible Coxeter system of finite rank,
then W is strongly rigid.
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3 Coxeter Systems of Finite Coxeter Groups

We shall use Coxeter’s notation on p. 297 of [4] for the irreducible spherical
Coxeter simplex reflection groups except that we denote the dihedral group
Dk

2 by D2(k). Subscripts denote the rank of a Coxeter system in Coxeter’s
notation. Coxeter’s notation partly agrees with but differs from Bourbaki’s
notation on p.193 of [1].

Coxeter [3] proved that every finite irreducible Coxeter system is isomor-
phic to exactly one of the Coxeter systems An, Bn, Cn, D2(k), E6, E7, E8,
F4, G3, G4 described below. Each of these Coxeter groups, of rank n, is a
finite group of orthogonal n×n matrices. The center of each of these Coxeter
groups is either {I} or {±I}. We denote the center of a group G by Z(G). If
G is a group of orthogonal matrices, we denote the subgroup of determinant
1 matrices in G by G+.

The type of a finite irreducible Coxeter system (W,S) is the isomorphism
type of (W,S) represented by one of the systems An, Bn, Cn, D2(k), E6,
E7, E8, F4, G3, G4. The type of an irreducible subset A of S is the type of
(〈A〉, A).

The Coxeter group An is the group of symmetries of a regular n-simplex
for each n ≥ 1, and so An is isomorphic to the symmetric group Sn+1 for
each n ≥ 1. The C-diagram of An is the following linear diagram with n
vertices and all edge labels 3:

. . .s s s s s
The Coxeter generators a1, . . . , an of An, indexed so that m(ai, ai+1) = 3 for
i = 1, . . . , n, correspond to the transpositions (12), (23), . . . , (nn+1) of Sn+1.
The group An has order (n + 1)! for all n ≥ 1. The center of An is trivial
for all n ≥ 2.

The Coxeter group Cn is the group of symmetries of an n-cube for each
n ≥ 2, and Cn is represented by the group of all n × n orthogonal matrices
in which each column has all zero entries except for one, which is ±1. Thus
we have a split short exact sequence

1 −→ Dn −→ Cn
π−→ Sn −→ 1

where Dn = {diag(±1,±1, . . . ,±1)} and π maps a permutation matrix to
the corresponding permutation. The C-diagram of Cn is the following linear
diagram with n vertices:
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. . .s s s s s s3 3 3 4

The Coxeter generators c1, . . . , cn of Cn are indexed so that m(ci, ci+1) = 3
for i = 1, . . . , n − 2 and m(cn−1, cn) = 4. The generators c1, . . . , cn−1 are
represented by the permutation matrices corresponding to the transpositions
(12), (23), . . . , (n−1n) and cn is represented by the matrix diag(1, . . . , 1,−1).
The order of the group Cn is 2nn! and Z(Cn) = {±I}.

The Coxeter group Bn, with n ≥ 4, is a subgroup of Cn of index 2 with
Coxeter generators bi = ci, for i = 1, . . . , n− 1, and bn = cncn−1cn. We have
bn−1bn = diag(1, . . . , 1,−1,−1) and m(bn−2, bn) = 3. The group Bn contains
D+
n and the group of permutation matrices, and so we have a split short

exact sequence
1 −→ D+

n −→ Bn
π−→ Sn −→ 1.

The C-diagram of Bn is the following Y-shaped diagram with n vertices and
all edge labels 3:

. . . �
�

@
@

s s s s s s
s

In order to have uniformity of notation, we extend the above definition
of Bn to include the rank n = 3. The group B3 is of type A3 and represents
the degenerate case when there are no horizontal edges in the above diagram.
The order of the group Bn is 2n−1n! for each n ≥ 3. The center of the group
Bn is trivial if n is odd and is {±I} if n is even.

If n 6= 4, we call the two right most vertices, bn−1 and bn, of the above
C-diagram of Bn the split ends of the diagram. We call any two endpoints
of the C-diagram of B4 a pair of split ends of the diagram.

The group D2(k) is the group of symmetries of a regular k-gon for each
k ≥ 5. In order to have uniformity of notation, we extend the definition of
D2(k) to include the cases k = 3, 4, and so D2(k) is a dihedral group of order
2k for each k ≥ 3. Note that D2(3) is of type A2 and D2(4) is of type C2.

The C-diagram of D2(k) is an edge with label k:

s sk

Let a and b be Coxeter generators for D2(k). The center of D2(k) is trivial
if k is odd and is generated by (ab)k/2 if k is even.
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The orders of E6,E7,E8 are 72 ·6!, 8 ·9!, 192 ·10!, respectively. The center
of E6 is trivial while the centers of E7 and E8 are {±I}. The C-diagrams of
E6, E7,E8 are the following diagrams with all edge labels 3:

s s s
s

s s
s s s

s
s s s

s s s
s

s s s s
The Coxeter group F4 is the group of symmetries of a regular 24-cell.

The order of F4 is 1152 and Z(F4) = {±I}. The C-diagram of F4 is the
linear diagram:

s s s s3 4 3

The Coxeter group G3 is the group of symmetries of a regular dodeca-
hedron. The order of G3 is 120 and the center of G3 has order two. The
Coxeter group G4 is the group of symmetries of a regular 120-cell. The order
of G4 is 1202 and Z(G4) = {±I}. The C-diagrams of G3 and G4 are the
linear diagrams:

s s s3 5

s s s s3 3 5

Lemmas 3.1 through 3.7 are either elementary or well known.

Lemma 3.1 The Coxeter groups An and Bn are indecomposable with respect
to direct products for all n.
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Lemma 3.2 The Coxeter group Cn is decomposable with respect to direct
products if and only if n is odd. If n is odd and Cn = H×K with 1 < |H| ≤
|K|, then H = {±I} and K = Bn or θ(Bn) where θ is the automorphism of
Cn defined by θ(ci) = −ci, for i = 1, . . . , n− 1, and θ(cn) = cn.

Lemma 3.3 The Coxeter group D2(n), with Coxeter generators a and b, is
decomposable with respect to direct products if and only if n ≡ 2 mod 4. If
n ≡ 2 mod 4 and D2(n) = H ×K with 1 < |H| ≤ |K|, then H = 〈(ab)n/2〉
and K = 〈a, bab〉 or 〈b, aba〉, moreover K ∼= D2(n/2).

Lemma 3.4 The Coxeter groups E6 and E8 are indecomposable with respect
to direct products.

Lemma 3.5 The Coxeter group E7 is decomposable with respect to direct
products. If E7 = H ×K with 1 < |H| ≤ |K|, then H = {±I} and K = E+

7 ,
moreover E+

7 is a nonabelian simple group.

Lemma 3.6 The Coxeter groups F4 and G4 are indecomposable with respect
to direct products.

Lemma 3.7 The Coxeter group G3 is decomposable with respect to direct
products. If G3 = H×K with 1 < |H| ≤ |K|, then H = {±I} and K = G+

3 ,
moreover G+

3 is a nonabelian simple group.

The next lemma follows from the Krull-Remak-Schmidt Theorem (KRS-
Theorem), Theorem 4.8 in [13].

Lemma 3.8 Let G be a finite group with direct product decompositions

G = H1 ×H2 × · · · ×Hr and G = K1 ×K2 × · · · ×Ks

such that Hi and Kj are nontrivial and indecomposable with respect to direct
products for each i and j. Let ιi : Hi → G be the inclusion map for each
i and let πj : G → Kj be the projection map for each j. Suppose Hp is
nonabelian. Then there is a unique q such that Hp ∩ Kq 6= {1}. Moreover
πqιp : Hp → Kq is an isomorphism and Z(G)Hp = Z(G)Kq. Furthermore
[Hp, Hp] = [Kq, Kq] and πqιp : Hp → Kq restricts to the identity on [Hp, Hp].
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Theorem 3.9 (Matching Theorem for Systems of a Finite Coxeter Group)
Let W be a finite Coxeter group with two sets of Coxeter generators S and
S ′. Let

(W,S) = (W1, S1)× · · · × (Wm, Sm)

and
(W,S ′) = (W ′

1, S
′
1)× · · · × (W ′

n, S
′
n)

be the factorizations of (W,S) and (W,S ′) into irreducible factors. Let k be
such that Wk is noncyclic. Then there is a unique ` such that W ′

` is noncyclic
and [Wk,Wk] = [W ′

`,W
′
`]. Moreover,

1. Z(W )Wk = Z(W )W ′
`.

2. If |Wk| = |W ′
`|, then (Wk, Sk) ∼= (W ′

`, S
′
`) and there is an isomorphism

φ : Wk → W ′
` that restricts to the identity on [Wk,Wk].

3. If |Wk| < |W ′
`|, then either (Wk, Sk) has type B2q+1 and (W ′

`, S
′
`) has

type C2q+1 for some q ≥ 1 or (Wk, Sk) has type D2(2q+1) and (W ′
`, S

′
`)

has type D2(4q + 2) for some q ≥ 1, and there is a monomorphism
φ : Wk → W ′

` that restricts to the identity on [Wk,Wk].

Proof: By Lemmas 3.1-3.7, we can refine the decomposition W = W1 ×
· · · ×Wm to a decomposition W = H1 × · · · × Hr, with Hi nontrivial and
indecomposable with respect to direct products, by replacing each Wi that
factors into a direct product Wi = Hj−1×Hj, with |Hj−1| = 2, by Hj−1×Hj.
Likewise refine the decomposition W = W ′

1 × · · · ×W ′
` to a decomposition

W = K1 × · · · × Ks, with Ki nontrivial and indecomposable with respect
to direct products, by replacing each W ′

i that factors into a direct product
W ′
i = Kj−1 × Kj, with |Kj−1| = 2, by Kj−1 × Kj. Then r = s by the

KRS-Theorem.
Suppose that Wk is noncyclic. Then Wk is nonabelian, since (Wk, Sk)

is irreducible. Now Wk = Hp or Hp−1 × Hp, with |Hp−1| = 2, for some p.
In either case Hp is nonabelian by Lemmas 3.1-3.7. By Lemma 3.8, there
is a unique q such that Hp ∩ Kq 6= {1}. Moreover [Hp, Hp] = [Kq, Kq] and
πqιp : Hp → Kq restricts to the identity on [Hp, Hp]. Then Kq is nonabelian.
Now there is an ` such that W ′

` = Kq or Kq−1 ×Kq with |Kq−1| = 2. Then
W ′
` is noncyclic and

[Wk,Wk] = [Hp, Hp] = [Kq, Kq] = [W ′
`,W

′
`].
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Now suppose W ′
i is noncyclic and [Wk,Wk] = [W ′

i ,W
′
i ]. Then W ′

i is
nonabelian, since Wk is nonabelian. Now W ′

i = Kj or Kj−1 × Kj, with
|Kj−1| = 2, for some j. Then we have

[Hp, Hp] = [Wk,Wk] = [W ′
i ,W

′
i ] = [Kj, Kj].

Hence Hp ∩ Kj 6= {1}, and so j = q by the uniqueness of q. Therefore
Kq ⊂ W ′

` ∩W ′
i , and so i = ` and ` is unique.

(1) By Lemma 3.8, we haveZ(W )Wk = Z(W )Hp = Z(W )Hq = Z(W )W ′
`.

(2) Suppose |Wk| = |W ′
`|. As Hp

∼= Hq, we have either Wk = Hp and
W ′
` = Kq or Wk = Hp−1 × Hp, with |Hp−1| = 2, and W ′

` = Kq−1 × Kq,
with |Kq−1| = 2. Hence Wk

∼= W ′
` and (Wk, Sk) ∼= (W ′

`, S
′
`), since (Wk, Sk)

and (W ′
`, S

′
`) are irreducible. Moreover πqιp : Hp → Kq is an isomorphism

that restricts to the identity on [Hp, Hp]. If Wk = Hp and W ′
` = Kq, let

φ = πqιp. If Wk = Hp−1 ×Hp and W ′
` = Hq−1 ×Hq extend πqιp : Hp → Kq

to an isomorphism φ : Wk → W ′
` by mapping the generator of Hp−1 to the

generator of Hq−1. Then φ : Wk → W ′
` is an isomorphism that restricts to

the identity on [Wk,Wk] = [Hp, Hp].
(3) Suppose |Wk| < |W ′

`|. As Hp
∼= Hq, we have Wk = Hp and W ′

` =
Kq−1 × Kq, with |Kq−1| = 2. By Lemmas 3.1-3.7, either (Wk, Sk) ∼= B2q+1

and (W ′
`, S

′
`)
∼= C2q+1 for some q ≥ 1 or (Wk, Sk) ∼= D2(2q+1) and (W ′

`, S
′
`)
∼=

D2(4q + 2) for some q ≥ 1. Moreover πqιp : Hp → Kq is an isomorphism
that restricts to the identity on [Hp, Hp]. Hence πqιp : Hp → Kq extends to
a monomorphism φ : Wk → W ′

` that restricts to the identity on [Wk,Wk]. �

4 The Basic Matching Theorem

Let (W,S) be a Coxeter system. The undirected Cayley graph of (W,S) is
graph K = K(W,S) with vertices W and edges unordered pairs (v, w) such
that w = vs for some element s of S. The element s = v−1w of S is called the
label of the edge (v, w). We represent an edge path in K beginning at vertex
v by “α = (s1, . . . , sn) at v” where si is the label of the ith edge of the path.
The length of an edge path α = (s1, . . . , sn) is |α| = n. The distance between
vertices v and w in K is the minimal length d(v, w) of an edge path from v
to w. A geodesic in K is an edge path α from a vertex v to a vertex w such
that |α| = d(v, w) in K. The length of an element w of W is l(w) = d(1, w).
A word w = s1s2 · · · sn, with si in S, is said to be reduced if n = l(w).
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Lemma 4.1 If A ⊂ S, then for any pair of vertices v, w in K, there is a
unique element x of the coset w〈A〉 nearest to v and for any geodesic α from
v to x and geodesic β at x in w〈A〉 (i.e. all edge labels of β are in A), the
path αβ is geodesic. Moreover an element x of w〈A〉 is the nearest element
of w〈A〉 to v if and only if for any geodesic α from v to x the path (α, a) is
a geodesic for each a in A.

Proof: Suppose x and y are distinct elements of w〈A〉 that are nearest to v.
Let α and γ be geodesics from v to x and y, respectively. Then |α| = |γ|. Let
β be a geodesic, with labels in A, from x to y. The path αβ is not geodesic,
since |αβ| > |γ|, and so a letter of β deletes with a letter of α by the deletion
condition. This defines a path from v to w〈A〉 shorter than α, which is
impossible. A proof of the second assertion of the lemma is analogous.

Now suppose y is an element of w〈A〉 such that for any geodesic γ from v
to y the path (γ, a) is geodesic for each a in A. Then y is the nearest element
x of w〈A〉 to v otherwise there would be a geodesic αβ from v to y with α a
geodesic from v to x and β a nontrivial geodesic, with labels in A, from x to
y, but β ends in some element a of A, and so the path (αβ, a) would not be
geodesic. �

Lemma 4.2 (Bourbaki [1], Ch. IV, §1, Ex. 3) If A,B ⊂ S and w is an
element of W , then there is a unique shortest representative x of the double
coset 〈A〉w〈B〉.

Lemma 4.3 Let A,B ⊂ S and let w in W be such that w〈A〉w−1 ⊂ 〈B〉. If
u is the shortest element of 〈B〉w〈A〉, then uAu−1 ⊂ B.

Proof: Certainly we have u〈A〉u−1 ⊂ 〈B〉. Let u = u1 · · ·un be reduced.
For any a in A, the word ua = u1 · · ·una is reduced by Lemma 4.1. Now
uau−1 is in 〈B〉. Write uau−1 = b1 · · · bk with b1 · · · bk reduced in 〈B〉. Now u
is a shortest element of 〈B〉u, and so u−1 is the shortest element of u−1〈B〉.
Hence un · · ·u1bk · · · b1 is reduced by Lemma 4.1, and so b1 · · · bku1 · · ·un is
reduced. As u1 · · ·una = b1 · · · bku1 · · ·un, we have k = 1 and uau−1 = b1. �

Lemma 4.4 (Bourbaki [1], Ch. IV, §1, Ex. 22) Let w0 be an element of W .
Then the following are equivalent.
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1. l(w0s) < l(w0) for all s in S.

2. l(w0w) = l(w0)− l(w) for all w in W .

Such an element w0 is unique and exists if and only if W is finite. If W
is finite, then w0 is the unique element of maximal length in W . Moreover
w2

0 = 1 and w0Sw0 = S.

Let (W,S) be a Coxeter system. The quasi-center of (W,S) is the sub-
group

QZ(W,S) = {w ∈ W : wSw−1 = S}.

Lemma 4.5 (Bourbaki [1], Ch. V, §4, Ex. 3) Let (W,S) be an irreducible
Coxeter system with a nontrivial quasi-center. Then W is a finite group and
QZ(W ) = {1, w0} with w0 the longest element of (W,S).

Let V be a real vector space having a basis {es : s ∈ S} in one-to-one
correspondence with S. Let B be the symmetric bilinear form on V defined
by

B(es, et) =

{
− cos(π/m(s, t)) if m(s, t) <∞,
−1 if m(s, t) =∞.

There is an action of W on V defined by

s(x) = x− 2B(x, es)es for all s ∈ S and x ∈ V.

The root system of (W,S) is the set of vectors

Φ = {w(es) : w ∈ W and s ∈ S}.

The elements of Φ are called roots. By Prop. 2.1 of Deodhar [5], every root φ
can be written uniquely in the form φ =

∑
s∈S ases with as ∈ R where either

as ≥ 0 for all s or as ≤ 0 for all s. In the former case, we say φ is positive
and write φ > 0. Let Φ+ be the set of positive roots.

The set of reflections of (W,S) is the set

T = {wsw−1 : w ∈ W and s ∈ S}.

Proposition 4.6 (Deodhar [5], Prop. 3.1) The function ρ : Φ+ → T defined
by ρ(w(es)) = wsw−1 is well defined and a bijection.
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Proposition 4.7 (Deodhar [5], Prop. 2.2) Let w ∈ W and s ∈ S. Then
l(ws) > l(w) if and only if w(es) > 0.

If A ⊂ S, set EA = {es : s ∈ A}. The next lemma follows from Lemma
4.1 and Propositions 4.6 and 4.7.

Lemma 4.8 Let A,B ⊂ S and let w ∈ W . Then the following are equiva-
lent:

1. w(EA) = EB.

2. wAw−1 = B and l(wa) > l(w) for all a ∈ A.

3. wAw−1 = B and w is the shortest element of w〈A〉.

The next lemma follows from Lemma 4.3 and Lemma 4.8.

Lemma 4.9 Let A,B ⊂ S and let w in W be such that w〈A〉w−1 = 〈B〉. If
u is the shortest element of 〈B〉w〈A〉, then u(EA) = EB.

Suppose A ⊂ S. If 〈A〉 is finite, we denote the longest element of 〈A〉
by wA. Suppose s ∈ S − A. Let K ⊂ S be the irreducible component of
A ∪ {s} containing s. We say that s is A-admissible if 〈K〉 is finite. If s is
A-admissible, define

ν(s, A) = wKwK−{s}.

Then ν(s, A) is the shortest element of wK〈A〉 by Lemma 4.4; moreover, if
t = wKswK and B = (A∪{s})−{t}, then ν(s, A)(EA) = EB by Lemma 4.8.

Proposition 4.10 (Deodhar [5], Prop. 5.5) Let A,B ⊂ S, and let w ∈ W .
If w(EA) = EB and w 6= 1, then there exists a sequence A1, A2, . . . , An+1 of
subsets of A, and a sequence s1, s2, . . . , sn of elements of S such that

1. A1 = A and An+1 = B,

2. si ∈ S − Ai and si is Ai-admissible for i = 1, . . . , n,

3. ν(si, Ai)(EAi
) = EAi+1

for i = 1, . . . , n,

4. w = ν(sn, An) · · · ν(s2, A2)ν(s1, A1),

5. l(w) = l(ν(s1, A1)) + l(ν(s2, A2)) + · · ·+ l(ν(sn, An)).
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The next lemma follows from Proposition 4.10.

Lemma 4.11 Let A ⊂ S. Then there exists B ⊂ S such that A 6= B and
〈A〉 is conjugate to 〈B〉 in W if and only if there exists s ∈ S −A such that

1. m(s, a) > 2 for some a ∈ A,

2. the element s is A-admissible,

3. if K is the component of A ∪ {s} containing s, then wKswK 6= s.

Lemma 4.12 Let A,B ⊂ S. If 〈A〉 is a maximal finite visual subgroup of
(W,S) and 〈A〉 and 〈B〉 are conjugate, then A = B.

Proof: If s ∈ S−A, then the irreducible component of 〈A∪{s}〉 containing
s is infinite, since 〈A〉 is a maximal finite visual subgroup of (W,S). Hence
no s ∈ S − A is A-admissible, and so A = B by Lemma 4.11. �

Proposition 4.13 (Bourbaki [1], Ch. V, §4. Ex. 2) If H is a finite subgroup
of W , then there is a subset A of S such that 〈A〉 is finite and H is conjugate
to a subgroup of 〈A〉.

Lemma 4.14 Every maximal finite visual subgroup of (W,S) is a maximal
finite subgroup of W .

Proof: Let M ⊂ S be such that 〈M〉 is a maximal finite visual subgroup
of (W,S). Suppose H is a finite subgroup of W containing 〈M〉. Then
wHw−1 ⊂ 〈A〉 for some w ∈ W and some A ⊂ S such that 〈A〉 is finite
by Prop. 4.13. Then w〈M〉w−1 ⊂ 〈A〉. Let u be the shortest element of
〈A〉w〈M〉. Then uMu−1 ⊂ A by Lemma 4.3. As no element of S −M is
M -admissible, uMu−1 = M by Prop. 4.10. Therefore M = A, since M is a
maximal finite visual subgroup. Hence w〈M〉w−1 = 〈A〉, and so 〈M〉 = H.
Thus 〈M〉 is a maximal finite subgroup of W . �

A simplex C of (W,S) is a subset C of S such that (〈C〉, C) is a complete
Coxeter system. A simplex C of (W,S) is said to be spherical if 〈C〉 is finite.
The next proposition follows from Proposition 4.13 and Lemmas 4.12 and
4.14.
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Proposition 4.15 Let W be a finitely generated Coxeter group with two sets
of Coxeter generators S and S ′, and let M be a maximal spherical simplex
of (W,S). Then there is a unique maximal spherical simplex M ′ of (W,S ′)
such that 〈M〉 and 〈M ′〉 are conjugate in W .

The next lemma follows from Lemma 4.11.

Lemma 4.16 Let A,B ⊂ S. If 〈A〉 is a maximal finite irreducible subgroup
of (W,S) and 〈A〉 and 〈B〉 are conjugate, then A = B.

Lemma 4.17 Let x, y ∈ S be distinct, let B ⊂ S, and let w ∈ W such that
wxyw−1 ∈ 〈B〉. If u is the shortest element of the double coset 〈B〉w〈x, y〉,
then u{x, y}u−1 ⊂ B.

Proof: Let b = uxyu−1. Then b is in 〈B〉. Write b = b1 · · · bk with
b1 · · · bk reduced in 〈B〉 and let u = u1 · · ·un be reduced. Observe that
the left and right sides of b1 · · · bkun · · ·u1 = u1 · · ·unxy are reduced, and so
k = 2. Consider the bigon in K with geodesic sides (u1, . . . , un, x, y) and
(b1, b2, u1, . . . , un). The path (b1, u1, . . . , un, x, y) is not geodesic. If b1 deletes
with x, then uxu−1 = b1; otherwise, b1 deletes with y and uxu−1 = b2. Now
(u1, . . . , un, y, x) is geodesic, but (b2, u1, . . . , un, y, x) is not. If b2 deletes with
y, then uyu−1 = b2; otherwise, b2 deletes with x and uyu−1 = b1. �

Lemma 4.18 Let A,B ⊂ S with no a ∈ A central in 〈A〉. Suppose

w[〈A〉, 〈A〉]w−1 ⊂ 〈B〉 for some w ∈ W.

Let u be the shortest element of 〈B〉w〈A〉. Then uAu−1 ⊂ B.

Proof: Let x ∈ A. Then there exists y ∈ A such that m(x, y) > 2. Assume
m(x, y) is odd. Then xy ∈ [〈A〉, 〈A〉]. Hence uxu−1 ∈ B by Lemma 4.17.

Assume now that m(x, y) is even. Then xyxy ∈ [〈A〉, 〈A〉]. Let b =
uxyxyu−1. Then b is in 〈B〉. Write b = b1 · · · bk with b1 · · · bk reduced in 〈B〉
and let u = u1 · · ·un be reduced. Observe that the left and right sides of
u1 · · ·unxyxy = b1 · · · bku1 · · ·un are reduced, and so k = 4.

Assume that m(x, y) > 4. Consider the bigon in K with geodesic sides
(u1, . . . , un, x, y, x, y) and (b1, . . . , b4, u1, . . . , un). See Figure 1. The word
yxyxun · · ·u1b1 is not reduced and b1 must delete with one of the first four
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letters. Also xyxyxun · · ·u1 is reduced, so xyxyxun · · ·u1b1 has length n+ 4.
But then, in this last word, b1 cannot delete with the second, third, or fourth
letter. Hence in the word, yxyxun · · ·u1b1, the letter b1 must delete with the
fourth letter. This shows that xu−1b1 = u−1, and so uxu−1 = b1, as desired.
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Assume now that m(x, y) = 4. The word yxyxun · · ·u1b1 is not reduced
and represents an element of length n + 3. See Figure 1. In particular, b1
does not delete with the second or third letter of this word. Consequently,
b1 deletes with the first or fourth letter of the word. If b1 deletes with the
fourth letter, then uxu−1 = b1 and we are done. Suppose b1 deletes with the
first letter. Then (uxyx)y(xyxu−1) = b1, and so uyu−1 = b1. Now

b1b2b3b4 = uxyxyu−1 = uyxyxu−1 = uyu−1uxyxu−1 = b1uxyxu
−1.

Hence uxyxu−1 = b2b3b4. Combining this last fact with the fact that the
word u1 · · ·unxyxy is reduced allows us to use the technique of the previous
case to show that uxu−1 = b2. See Figure 2. �
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Let (W,S) be a Coxeter system. A basic subgroup of (W,S) is a noncyclic,
maximal, finite, irreducible, visual subgroup of (W,S). A base of (W,S) is a
subset B of S such that 〈B〉 is a basic subgroup of (W,S).

Theorem 4.19 (Basic Matching Theorem) Let W be a finitely generated
Coxeter group with two sets of Coxeter generators S and S ′. Let B be a
base of (W,S). Then there is a unique irreducible subset B′ of S ′ such that
[〈B〉, 〈B〉] is conjugate to [〈B′〉, 〈B′〉] in W . Moreover,

1. The set B′ is a base of (W,S ′),

2. If |〈B〉| = |〈B′〉|, then B and B′ have the same type and there is an
isomorphism φ : 〈B〉 → 〈B′〉 that restricts to conjugation on [〈B〉, 〈B〉]
by an element of W .

3. If |〈B〉| < |〈B′〉|, then either B has type B2q+1 and B′ has type C2q+1

for some q ≥ 1 or B has type D2(2q + 1) and B′ has type D2(4q + 2)
for some q ≥ 1. Moreover, there is a monomorphism φ : 〈B〉 → 〈B′〉
that restricts to conjugation on [〈B〉, 〈B〉] by an element of W .

Proof: Let M ⊂ S be a maximal spherical simplex containing B. Then
there is a unique maximal spherical simplex M ′ of (W,S ′) and an element
u of W such that 〈M ′〉 = u〈M〉u−1 by Proposition 4.15. By the Matching
Theorem for systems of a finite Coxeter group applied to (〈M ′〉, uMu−1) and
(〈M ′〉,M ′), there is a base B′ of (〈M ′〉,M ′) such that

[〈B′〉, 〈B′〉] = [〈uBu−1〉, 〈uBu−1〉] = u[〈B〉, 〈B〉]u−1.

Moreover, B′ satisfies conditions 2 and 3, and so |B| = |B′|.
Let C ′ be a base of (W,S ′) that contains B′. Then by the above argument,

there is a C ⊂ S and a v ∈ W such that 〈C〉 is a finite irreducible subgroup
of (W,S), and |C| = |C ′|, and [〈C〉, 〈C〉] = v[〈C ′〉, 〈C ′〉]v−1. Then we have
vu[〈B〉, 〈B〉]u−1v−1 ⊂ [〈C〉, 〈C〉]. By Lemma 4.18, there is a w ∈ W such
that wBw−1 ⊂ C. As B is a base of (W,S), we have that wBw−1 = C = B
by Lemma 4.16. Therefore B′ = C ′ and B′ is a base of (W,S ′).

Suppose D′ ⊂ S ′ is irreducible and x ∈ W such that [〈D′〉, 〈D′〉] =
x[〈B〉, 〈B〉]x−1. Then xu−1[〈B′〉, 〈B′〉]ux−1 = [〈D′〉, 〈D′〉]. By Lemma 4.18,
there is a y ∈ W such that yB′y−1 ⊂ D′. As B′ is a base of (W,S ′) and D′

is irreducible, yB′y−1 = D′ = B′ by Lemma 4.16. Thus B′ is unique. �
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5 Nonisomorphic Basic Matching

Let W be a finitely generated Coxeter group with two sets of Coxeter gen-
erators S and S ′. A base B of (W,S) is said to match a base B′ of (W,S ′)
if [〈B〉, 〈B〉] is conjugate to [〈B′〉, 〈B′〉] in W . In this section, we determine
some necessary and some sufficient conditions for a base B ⊂ S to match a
base B′ ⊂ S ′ of a different type.

Proposition 5.1 (Solomon [12], Lemma 2) If A,B ⊂ S and u is the shortest
element of 〈A〉u〈B〉, then

〈A〉 ∩ u〈B〉u−1 = 〈C〉 where C = A ∩ uBu−1.

The next proposition follows from Proposition 5.1.

Proposition 5.2 Let A,B ⊂ S and w ∈ W . Write w = xuy with x ∈ 〈A〉,
y ∈ 〈B〉, and u the shortest element of 〈A〉w〈B〉. Then

〈A〉 ∩ w〈B〉w−1 = x〈C〉x−1 where C = A ∩ uBu−1.

Lemma 5.3 Suppose B is a base of (W,S) of type C2q+1 that matches a
base B′ of (W,S ′) of type B2q+1 for some q ≥ 1. Let a, b, c be the elements
of B such that m(a, b) = 4 and m(b, c) = 3, and let A ⊂ S such that a ∈ A.
If 〈A〉 is conjugate to 〈A′〉 for some A′ ⊂ S ′, then B ⊂ A.

Proof: Let M ⊂ S be a maximal spherical simplex containing B. Then
there is a unique maximal spherical simplex M ′ ⊂ S ′ such that 〈M〉 is con-
jugate to 〈M ′〉 by Proposition 4.15. By conjugating S ′, we may assume that
〈M〉 = 〈M ′〉. Then M ′ contains B′ by the Basic Matching Theorem. Let w
be an element of W such that 〈A〉 = w〈A′〉w−1. By Proposition 5.2, there is
an element x of 〈M ′〉 and a subset C of M ′ such that

〈M ∩ A〉 = 〈M〉 ∩ 〈A〉 = 〈M ′〉 ∩ w〈A′〉w−1 = x〈C〉x−1.

Hence, we may assume that W is finite by restricting to 〈M〉. Furthermore,
by conjugating S ′, we may assume that 〈A〉 = 〈A′〉.

Let C be a base of (W,S) other than B. Then each element of C com-
mutes with each element of B, and so 〈B〉 injects into the quotient of W by
the commutator subgroup of 〈C〉. Hence, by Theorem 3.9, we may assume
that W is the direct product of 〈B〉 and copies of A1. The center Z of W
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is generated by S − B and the longest element z of 〈B〉. The center Z is
also generated by S ′ − B′. Let K be the kernel of the homomorphism of
Z to {±1} that maps S − B to 1 and z to −1. Then W/K is a Coxeter
group. P-diagrams for W/K are obtained from the P-diagram of (W,S) by
removing the vertices S−B and from the P-diagram of (W,S ′) by removing
the vertices in (S ′−B′)∩K and identifying the remaining vertices of S ′−B′
to a single vertex. By passing to the quotient W/K, we may assume that
S = B and S ′ = B′ ∪ {z′} and z′ commutes with each element of B′. Then
z = z′, since 〈z〉 = Z(W ) = 〈z′〉.

Now as a ∈ A and 〈A〉 = 〈A′〉, we have that a ∈ 〈A′〉. The element a is
represented by the matrix diag(1, . . . , 1,−1) in C2q+1. Observe that

diag(1, . . . , 1,−1) = diag(−1, . . . ,−1,−1)diag(−1, . . . ,−1, 1).

The matrix −I represents z. The matrix diag(−1, . . . ,−1, 1) is the longest
element of B2q+1 which is in [C2q+1,C2q+1]. Hence diag(−1, . . . ,−1, 1) rep-
resents an element ` of [〈B〉, 〈B〉], with a = `z. As [〈B〉, 〈B〉] = [〈B′〉, 〈B′〉],
we have ` ∈ 〈B′〉. Hence every reduced word in the generators S ′ = B′ ∪{z}
representing a = `z involves z by Prop. 7 on p. 19 of Bourbaki[1]. Therefore
z ∈ A′, since A′ ⊂ B′ ∪ {z} and a ∈ 〈A′〉. Hence z ∈ 〈A〉. As z involves all
the elements of B, we deduce that B ⊂ A. �

Theorem 5.4 Suppose B is a base of (W,S) of type C2q+1 that matches a
base B′ of (W,S ′) of type B2q+1 for some q ≥ 1. Let a, b, c be the elements
of B such that m(a, b) = 4 and m(b, c) = 3. If s ∈ S − B and m(s, a) <∞,
then m(s, t) = 2 for all t in B.

Proof: Let A ⊂ S be a maximal spherical simplex containing {a, s}. Then
there is a maximal spherical simplex A′ ⊂ S ′ such that 〈A〉 is conjugate to
〈A′〉. Hence B ⊂ A by Lemma 5.3. As B is a base of (〈A〉, A), we deduce
that s commutes with each element of B. �

Lemma 5.5 Let w = s1 · · · sn be a reduced word in (W,S) and let s ∈ S
such that s 6= si for each i = 1, . . . , n. If sw has finite order in W , then
m(s, si) <∞ for each i = 1, . . . , n.
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Proof: On the contrary, suppose m(s, si) =∞ for some i. We may assume
S = {s, s1, . . . , sn}. Then

W = 〈s, s1, . . . , ŝi, . . . , sn〉 ∗〈s1, . . . , ŝi, . . . , sn〉 〈s1, . . . , sn〉

is a free product with amalgamation decomposition. Observe that (sw)k =
swsw · · · sw is a normal form for (sw)k for each k ≥ 1 with respect to the
amalgamated product, and so (sw)k 6= 1 for each k ≥ 1. �

Theorem 5.6 Let B be a base of (W,S) of type C2q+1 for some q ≥ 1, and
let a, b, c be the elements of B such that m(a, b) = 4 and m(b, c) = 3. Suppose
that m(s, t) = 2 for all (s, t) ∈ (S − B) × B such that m(s, a) < ∞. Let
d = aba, and let z be the longest element of 〈B〉. Let S ′ = (S −{a})∪ {d, z}
and B′ = (B − {a}) ∪ {d}. Then S ′ is a set of Coxeter generators for W
such that

1. The set B′ is a base of (W,S ′) of type B2q+1 that matches B,

2. m(z, t) = 2 for all t ∈ B′,

3. If (s, t) ∈ (S−B)×{d, z}, then m(s, t) <∞ if and only if m(s, a) <∞,
moreover if m(s, t) <∞, then m(s, t) = 2.

Proof: Consider the Coxeter presentation

W = 〈S | (st)m(s,t) : s, t ∈ S and m(s, t) <∞〉

Now (〈B′〉, B′) is a finite Coxeter system of type B2q+1. Let ` be the longest
element of (〈B′〉, B′). Regard ` as a reduced word in the elements of B′.
Add generators d and z and relations d = aba and z = a` to the above
presentation for W . Now add the relators (st)m(s,t) for (s, t) in {d, z}×S ′ or
in S ′ × {d, z} where m(s, t) is the order of st in W and m(s, t) < ∞. This
includes all the relators of (〈B′〉, B′). As 〈z〉 is the center of 〈B〉, we have
that m(z, t) = 2 for all t in B′.

Next delete the generator a and the relation z = a` and replace a by z`
in the remaining relations. As z commutes with each element of B′, we can
replace the relation d = z`bz` by the relation d = `b`.

The relators (z`b)4 and (bz`)4 can be replaced by (`b)4 and (b`)4 which
in turn can be replaced by (db)2 and (bd)2 using the relation d = `b`. The
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relators (db)2 and (bd)2 are redundant and so we delete them. The relation
d = `b` is derivable from the relators of (〈B′〉, B′) and so we delete it. The
relators (z`s)2 and (sz`)2 for s ∈ B − {a, b} can be replaced by (`s)2 and
(s`)2. The relators (`s)2 and (s`)2 are derivable from the relators of (〈B′〉, B′)
and so we delete them.

Suppose s ∈ S − B and m(s, a) < ∞. Then m(s, t) = 2 for all t ∈ B
by hypothesis. Hence m(s, t) = 2 for all t ∈ B′ ∪ {z}. Now the relators
(z`s)2 and (sz`)2 can be replaced by (`s)2 and (s`)2. The relators (`s)2 and
(s`)2 are derivable from the relators (st)2 for t ∈ B′ and the relation `2 = 1.
Hence we may delete the relators (`s)2 and (s`)2. This leaves the Coxeter
presentation

W = 〈S ′ | (st)m(s,t) : s, t ∈ S ′ and m(s, t) <∞〉

Thus S ′ is a set of Coxeter generators for W .
Statement 3 follows from Theorem 5.4, Lemma 5.5, and the hypothesis

that m(s, t) = 2 for all (s, t) ∈ (S − B) × B such that m(s, a) < ∞. The
set B′ is a base of (W,S ′), since B is a base of (W,S) and if s ∈ S ′ − B′

and m(s, d) <∞, then m(s, d) = 2. The base B matches the base B′, since
[〈B〉, 〈B〉] = [〈B′〉, 〈B′〉]. �

The next theorem follows from Theorems 5.4 and 5.6.

Theorem 5.7 Let (W,S) be a Coxeter system of finite rank. Let B be a
base of (W,S) of type C2q+1 for some q ≥ 1, and let a, b, c be the elements
of B such that m(a, b) = 4 and m(b, c) = 3. Then W has a set of Coxeter
generators S ′ such that B matches a base B′ of (W,S ′) of type B2q+1 if and
only if m(s, t) = 2 for all (s, t) ∈ (S −B)×B such that m(s, a) <∞.

We next consider the analogue of Theorem 5.7 in the dihedral case.

Theorem 5.8 Let (W,S) be a Coxeter system of finite rank, and let B =
{a, b} be a base of (W,S) of type D2(4q + 2) for some q ≥ 1. Then W has
a set of Coxeter generators S ′ such that B matches a base B′ of (W,S ′) of
type D2(2q + 1) if and only if either v = a or v = b has the property that if
s ∈ S −B and m(s, v) <∞, then m(s, a) = m(s, b) = 2.

Proof: Suppose that W has a set of Coxeter generators S ′ such that B
matches a base B′ of (W,S ′) of type D2(2q + 1). Let v = a or b with the
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choice specified below. Suppose s ∈ S − B and m(s, v) < ∞. Let A ⊂ S
be a maximal spherical simplex containing {s, v}. Then there is a maximal
spherical simplex A′ ⊂ S ′ such that 〈A〉 is conjugate to 〈A′〉. We claim that
B ⊂ A. As in the proof of Lemma 5.3, we may assume that 〈A〉 = 〈A′〉 and
reduce W so that S = B and S ′ = B′ ∪ {z} where 〈z〉 is the center of 〈B〉.

Now a and b are not both in 〈B′〉. Choose v so that v is not in 〈B′〉.
Then every reduced S ′-word representing v involves z. Now as v ∈ A, we
have that v ∈ 〈A′〉. Therefore z ∈ A′. Hence z ∈ 〈A〉. Therefore B ⊂ A as
claimed. Now return to the original state of W . As B is a base of 〈A〉, we
have m(s, a) = m(s, b) = 2. The converse follows from the next theorem. �

Theorem 5.9 Let B = {a, b} be a base of (W,S) of type D2(4q + 2) for
some q ≥ 1. Suppose that if s ∈ S − B and m(s, a) < ∞, then m(s, a) =
m(s, b) = 2. Let c = aba and let z be the longest element of 〈B〉. Let
S ′ = (S−{a})∪{c, z} and B′ = {b, c}. Then S ′ is a set of Coxeter generators
of W such that

1. The set B′ is a base of (W,S ′) of type D2(2q + 1) that matches B,

2. m(z, b) = m(z, c) = 2,

3. if (s, t) ∈ (S−B)×{c, z}, then m(s, t) <∞ if and only if m(s, a) <∞,
moreover if m(s, t) <∞, then m(s, t) = 2.

Proof: Consider the Coxeter presentation

W = 〈S | (st)m(s,t) : s, t ∈ S and m(s, t) <∞〉

Now (〈B′〉, B′) is a finite Coxeter system of type D2(2q + 1). Let ` be the
longest element of (〈B′〉, B′). Regard ` as the reduced word (bc)qb in the
elements of B′. Add generators c and z and relations c = aba and z = a`
to the above presentation for W . Now add the relators (st)m(s,t) for (s, t)
in {c, z} × S ′ or in S ′ × {c, z} where m(s, t) is the order of st in W and
m(s, t) <∞. This includes all the relators of (〈B′〉, B′). As 〈z〉 is the center
of 〈B〉, we have that m(z, b) = m(z, c) = 2.

Next delete the generator a and the relation z = a` and replace a by z`
in the remaining relations. As z commutes with each element of B′, we can
replace the relation c = z`bz` by the relation c = `b`.
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The relators (z`b)2(2q+1) and (bz`)2(2q+1) can be replaced by (`b)2(2q+1) and
(b`)2(2q+1) which in turn can be replaced by (cb)2q+1 and (bc)2q+1 using the
relation c = `b`. The relators (cb)2q+1 and (bc)2q+1 are redundant and so we
delete them. The relation c = `b` is derivable from the relators of (〈B′〉, B′)
and so we delete it.

Suppose s ∈ S − B and m(s, a) < ∞. Then m(s, a) = m(s, b) = 2 by
hypothesis. Hence m(s, t) = 2 for t ∈ {b, c, z}. Now the relators (z`s)2 and
(sz`)2 can be replaced by (`s)2 and (s`)2. The relators (`s)2 and (s`)2 are
derivable from the relators (st)2 for t ∈ B′ and the relation `2 = 1. Hence we
may delete the relators (`s)2 and (s`)2. This leaves the Coxeter presentation

W = 〈S ′ | (st)m(s,t) : s, t ∈ S ′ and m(s, t) <∞〉

Thus S ′ is a set of Coxeter generators for W .
Statement 3 follows from Lemma 5.5 and the hypothesis that m(s, t) =

m(s, b) = 2 for all s ∈ S −B such that m(s, a) <∞. The set B′ is a base of
(W,S ′), since B is a base of (W,S) and if s ∈ S ′−B′ and m(s, c) <∞, then
m(s, c) = 2. The base B matches the base B′, since [〈B〉, 〈B〉] = [〈B′〉, 〈B′〉].
�

A group G has property FA if for every tree on which G acts without
inversions, the set of fixed points of G in the tree is nonempty. Let (W,S)
be a Coxeter system, and let A ⊂ S. We say that 〈A〉 is a complete visual
subgroup of (W,S) if (〈A〉, A) is a complete Coxeter system.

Proposition 5.10 (Mihalik and Tschantz [9]) Let (W,S) be a Coxeter sys-
tem of finite rank. The maximal FA subgroups of W are the conjugates of
the maximal complete visual subgroups of (W,S).

Lemma 5.11 Let A,B ⊂ S. If 〈A〉 is a maximal complete visual subgroup
of (W,S) and 〈A〉 and 〈B〉 are conjugate, then A = B.

Proof: If s ∈ S−A, then the irreducible component of 〈A∪{s}〉 containing
s is incomplete and therefore infinite, since 〈A〉 is a maximal complete visual
subgroup of (W,S). Hence no s ∈ S − A is A-admissible, and so A = B by
Lemma 4.11. �

The next proposition follows form Proposition 5.10 and Lemma 5.11.
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Proposition 5.12 Let W be a finitely generated Coxeter group with two sets
of Coxeter generators S and S ′, and let M be a maximal simplex of (W,S).
Then there is a unique maximal simplex M ′ of (W,S ′) such that 〈M〉 and
〈M ′〉 are conjugate in W .

Let W be a finitely generated Coxeter group with two Coxeter systems S
and S ′, and let A be a subset of S. Let A be the intersection of all subsets B
of S such that B contains A and 〈B〉 is conjugate to 〈B′〉 for some B′ ⊂ S ′.
Then A is the smallest subset B of S such that B contains A and 〈B〉 is
conjugate to 〈B′〉 for some B′ ⊂ S ′ by Prop. 5.2. If A is a spherical simplex,
then A is a spherical simplex, since for any maximal spherical simplex M of
(W,S) that contains A, there exists M ′ ⊂ S ′ such that 〈M〉 is conjugate to
〈M ′〉 by Prop. 4.15.

Theorem 5.13 Suppose B = {x, y} is a base of (W,S) of type D2(2q + 1)
that matches a base B′ of (W,S ′) of type D2(4q + 2) for some q ≥ 1. Then
there exists r ∈ B − B such that {r} = B. Moreover, if s ∈ S − B and
m(s, x),m(s, y) <∞, then m(s, x) = m(s, y) = 2.

Proof: Let C = B. Then C is a spherical simplex of (W,S) and 〈C〉 is
conjugate to 〈C ′〉 for some C ′ ⊂ S ′. By conjugating S ′, we may assume that
〈C〉 = 〈C ′〉. Then C ′ contains B′ by the Basic Matching Theorem. Hence B
is a proper subset of C, since otherwise 〈B′〉 ⊂ 〈C ′〉 = 〈C〉 = 〈B〉 which is
not the case, since |〈B〉| < |〈B′〉|.

Let r be an element of C − B which will be specified below. As r ∈ B,
we have that {r} ⊂ B. Let A = {r}. We claim that B ⊂ A. Now 〈A〉
is conjugate in 〈C ′〉 to 〈A′〉 for some A′ ⊂ C ′ by Prop. 5.2. Hence we
may assume that S = C. Then W is a finite group. By quotienting out
the commutator subgroups of all the bases of (W,C) other than B, we may
assume that W is the direct product of 〈B〉 and copies of A1.

The center Z of W is generated by C−B. The center Z is also generated
by C ′−B′ and z′. Let K be the kernel of the homomorphism φ : Z → {±1}
that maps C ′ −B′ to 1 and z′ to −1. Choose r ∈ C −B so that φ(r) = −1.

By quotienting out K, we may assume that C = B ∪ {r} and C ′ = B′.
Then r = z′, and so z′ ∈ 〈A〉. Hence z′ ∈ 〈A′〉. Therefore A′ = B′, and so
B ⊂ A as claimed. Now return to the original state of W . As B ⊂ A, we
have B ⊂ {r}. Thus {r} = B.

Suppose s ∈ S −B with m(s, x),m(s, y) <∞. Let M ⊂ S be a maximal
simplex containing {s, x, y}. Then there is a maximal simplex M ′ ⊂ S ′ such
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that 〈M〉 is conjugate to 〈M ′〉 by Prop. 5.12. By conjugating S ′, we may
assume that 〈M〉 = 〈M ′〉. Then M ′ contains B′ and [B,B] is conjugate to
[B′, B′] in 〈M ′〉 by the Basic Matching Theorem.

Let B′ = {a, b}. Then m(s′, a) = m(s′, b) = 2 for all s′ ∈ M ′ − B′ by
Theorem 5.8. Hence B′ is an irreducible component of M ′. Therefore [B′, B′]
is a normal subgroup of 〈M ′〉. Hence [B,B] is a normal subgroup of 〈M〉.
As 〈xy〉 = [B,B], we have that 〈xy〉 is a normal subgroup of 〈M〉. Therefore
s{x, y}s = {x, y} by Lemma 4.17, and sxs = x and sys = y by the deletion
condition. �

Lemma 5.14 Let φ : Bn → Cn be a monomorphism with n odd and n ≥ 3.
Then φ maps bn−1bn to a conjugate of (cn−1cn)2 in Cn.

Proof: Now φ(Bn) does not contain the center of Cn, since Z(Bn) = {1}.
Therefore either φ(Bn) = Bn or φ(Bn) = θ(Bn) where θ is the automorphism
of Cn defined by θ(ci) = −ci, for i = 1, . . . , n − 1 and θ(cn) = cn. Now θ
restricts to the identity on [Cn,Cn], and so by composing φ with θ in the
latter case, we may assume that φ(Bn) = Bn. Now every automorphism
of Bn is inner according to Franzsen [7]. Hence φ restricts to conjugation
on [Bn,Bn] by an element of Bn. As bn−1bn is in [Bn,Bn] and bn−1bn =
(cn−1cn)2, we conclude that φ(bn−1bn) is conjugate to (cn−1cn)2 in Cn. �

Theorem 5.15 Suppose B is a base of (W,S) of type B2q+1 that matches a
base B′ of (W,S ′) of type C2q+1 for some q ≥ 1. Let x, y be the split ends of

the C-diagram of (〈B〉, B). Then there exists r ∈ B −B such that {r} = B.
Moreover if s ∈ S − B and m(s, x),m(s, y) < ∞, then m(s, t) = 2 for all
t ∈ B.

Proof: The proof that there exists r ∈ B−B such that {r} = B is the same
as for Theorem 5.13. Suppose s ∈ S − B with m(s, x),m(s, y) < ∞. Let
M ⊂ S be a maximal simplex containing {s, x, y}. Then there is a unique
maximal simplex M ′ ⊂ S ′ such that 〈M〉 is conjugate to 〈M ′〉 by Prop. 5.12.
By conjugating S ′, we may assume that 〈M〉 = 〈M ′〉.

Let a, b, c be the elements of B′ such that m(a, b) = 4 and m(b, c) =
3. Now xy is in [〈B〉, 〈B〉], and so xy is conjugate to (ab)2 by the Basic
Matching Theorem and Lemma 5.14. Hence there is a w ∈ W such that
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w(ab)2w−1 ∈ 〈M ′〉. Now 〈(ab)2〉 = [〈a, b〉, 〈a, b〉]. Let u be the shortest
element of 〈M ′〉w〈a, b〉. Then u{a, b}u−1 ⊂M ′ by Lemma 4.18. As m(a, b) =
4, we deduce that {a, b} ⊂ M ′ by Lemma 4.11. Hence B′ ⊂ M ′ by Lemma
5.3. Moreover m(s′, t′) = 2 for all (s′, t′) ∈ (M ′ − B′) × B′ by Theorem
5.4. Hence B′ is an irreducible component of M ′. Therefore [〈B′〉, 〈B′〉] is a
normal subgroup of 〈M ′〉.

Now M contains B and [B,B] is conjugate to [B′, B′] in 〈M〉 by the Basic
Matching Theorem. Therefore [〈B〉, 〈B〉] = [〈B′〉, 〈B′〉], since [〈B′〉, 〈B′〉] is
a normal subgroup of 〈M ′〉. Hence [〈B〉, 〈B〉] is a normal subgroup of 〈M〉.
Then sBs = B by Lemma 4.18, and sts = t for all t ∈ B by the deletion
condition. �

6 Matching of Finite Irreducible Subgroups

As a reference for the automorphism groups of finite irreducible Coxeter
groups, see Chapter 2 of Franzsen [6] or §6 of Franzsen and Howlett [8]. An
automorphism of a Coxeter system (W,S) is called a graph automorphism.
The graph automorphisms of (W,S) correspond to the automorphisms of the
P-diagram of (W,S).

Lemma 6.1 Let α : Bn → Bn be an automorphism. Then there is an
inner automorphism ι of Bn and a graph automorphism γ of Bn such that
α|[Bn,Bn] = ιγ|[Bn,Bn] with γ the identity map if n is odd.

Proof: If n is odd, then every automorphism of Bn is inner. Assume that
n is even. Let ψ be the automorphism of Bn defined by ψ(w) = (−1)l(w)w.
All the elements of [Bn,Bn] have even length. Therefore ψ restricts to the
identity on [Bn,Bn]. Now there is an inner automorphism ι of Bn and a
graph automorphism γ of Bn such that α = ιγ or α = ιγψ. Hence α|[Bn,Bn] =
ιγ|[Bn,Bn]. �

Lemma 6.2 Let α : Cn → Cn be an automorphism. Then there is an inner
automorphism ι of Cn such that α|[Cn,Cn] = ι|[Cn,Cn].

Proof: This is clear if α is inner, so suppose α is outer. Let θ be the
automorphism of Cn defined by θ(ci) = −ci, for i = 1, . . . , n−1, and θ(cn) =
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cn. Then θ restricts to the identity on [Cn,Cn]. If n is odd, then there is an
inner automorphism ι of Cn such that α = ιθ. Hence α|[Cn,Cn] = ι|[Cn,Cn].

Suppose now that n is even. Let ψ be the automorphism of Cn defined by
ψ(w) = (−1)l(w)w. All the elements of [Cn,Cn] have even length. Therefore
ψ restricts to the identity on [Cn,Cn]. Now there is an inner automorphism
ι of Cn such that either α = ιθ, ιψ, or ιθψ. Hence α|[Cn,Cn] = ι|[Cn,Cn]. �

Lemma 6.3 Let α : F4 → F4 be an automorphism. Then there is an inner
automorphism ι of F4 and a graph automorphism γ of F4 such that α|[F4,F4] =
ιγ|[F4,F4].

Proof: Let f1, f2, f3, f4 be the Coxeter generators of F4 with m(f1, f2) = 3,
m(f2, f3) = 4, and m(f3, f4) = 3. Let ψ` be the automorphism of F4 defined
by ψ`(fi) = −fi for i = 1, 2 and ψ`(fi) = fi for i = 3, 4. Then ψ` restricts
to the identity on [F4,F4]. Now there is an inner automorphism ι of F4

and a graph automorphism γ of F4 such that α = ιγ or α = ιγψ`. Hence
α|[F4,F4] = ιγ|[F4,F4]. �

Lemma 6.4 Let α : G4 → G4 be an automorphism. Then there is a reflec-
tion preserving automorphism β of G4 such that α|[G4,G4] = β|[G4,G4].

Proof: Let g1, g2, g3, g4 be the Coxeter generators of G4 with m(g1, g2) = 3,
m(g2, g3) = 3, andm(g3, g4) = 5. According to Franzsen [6], the group G4 has
an outer automorphism ξ such that ξ(gi) = gi for i = 1, 2, 3 and ξ(g4) is con-
jugate to g4. Let ψ be the automorphism of G4 defined by ψ(w) = (−1)l(w)w.
All the elements of [G4,G4] have even length. Therefore ψ restricts to the
identity on [G4,G4]. Now there is an inner automorphism ι of G4 such that
α = β or βψ where β = ι or ιξ. Hence α|[G4,G4] = β|[G4,G4]. �

Proposition 6.5 (Franzsen and Howlett [8], Prop. 32) Let (W,S) be a
finite Coxeter system, and let α be an automorphism of W that preserves
reflections. Then α maps each visual subgroup of (W,S) to a conjugate of a
visual subgroup.

Every automorphism of An is inner, except when n = 5. The group
Out(A5) has order two. The outer automorphisms of A5 behave badly with
respect to visual subgroups because of the next proposition.
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Proposition 6.6 (Franzsen and Howlett [8], Prop. 35) Let (W,S) be a finite
Coxeter system of type A5, and let α be an automorphism of W . If there are
proper subsets A,B of S and w ∈ W such that α(〈A〉) = w〈B〉w−1, then α
is inner.

Lemma 6.7 Let (W,S) be a finite irreducible Coxeter system which is not
of type A5. Let α be an automorphism of W , and let A ⊂ S. Then there is a
B ⊂ S such that (〈A〉, A) ∼= (〈B〉, B) and the group α([〈A〉, 〈A〉]) is conjugate
to [〈B〉, 〈B〉] in W .

Proof: If (W,S) is of type An, then α maps 〈A〉 to a conjugate of itself,
since every automorphism of An is inner for all n 6= 5.

Suppose (W,S) is of type Bn. By Lemma 6.1 there is an inner automor-
phism ι of W and a graph automorphism γ of (W,S) such that α|[W,W ] =
ιγ|[W,W ]. Let B = γ(A). Then α([〈A〉, 〈A〉]) is conjugate to [〈B〉, 〈B〉].

If (W,S) is of type Cn, then α maps [〈A〉, 〈A〉] to a conjugate of itself
by Lemma 6.2. If (W,S) is of type D2(k), then α maps 〈A〉 to a conjugate
of itself, since α preserves reflections. If (W,S) is of type E6 or E7, then α
maps 〈A〉 to a conjugate of itself, since every automorphism of E6 or E7 is
inner.

Suppose (W,S) is of type E8. Let ψ be the automorphism of W defined
by ψ(w) = (w0)

l(w)w where w0 is the longest element of (W,S). All the
elements of [W,W ] have even length. Therefore ψ restricts to the identity on
[W,W ]. Now there is an inner automorphism ι of W such that α = ι or ιψ.
Hence α|[W,W ] = ι|[W,W ]. Therefore α maps [〈A〉, 〈A〉] to a conjugate of itself.

Suppose (W,S) is of type F4. By Lemma 6.3 there is an inner automor-
phism ι of W and a graph automorphism γ of (W,S) such that α|[W,W ] =
ιγ|[W,W ]. Let B = γ(A). Then α([〈A〉, 〈A〉]) is conjugate to [〈B〉, 〈B〉].

Suppose (W,S) is of type G3. Then every automorphism of W preserves
reflections. Hence α maps 〈A〉 to a conjugate of itself by Prop. 6.5.

Suppose (W,S) is of type G4. By Lemma 6.4 there is a reflection preserv-
ing automorphism β of W such that α|[W,W ] = β|[W,W ]. Therefore α maps
[〈A〉, 〈A〉] to a conjugate of itself by Prop. 6.5. �

The next proposition follows easily from Lemma 6.7.

Proposition 6.8 Let (W,S) and (W ′, S ′) be finite irreducible Coxeter sys-
tems which are not of type A5. Let α : W → W ′ be an isomorphism, and

28



let A ⊂ S. Then there is an A′ ⊂ S ′ such that (〈A〉, A) ∼= (〈A′〉, A′) and the
group α([〈A〉, 〈A〉]) is conjugate to [〈A′〉, 〈A〉] in W ′.

Lemma 6.9 Let n be odd with n ≥ 3, and let k be such that 3 ≤ k ≤ n.
Identify Bk with 〈bn−k+1, . . . , bn〉 in Bn and Ck with 〈cn−k+1, . . . , cn〉 in Cn.
Let φ : Bn → Cn be a monomorphism. Then φ maps [Bk,Bk] to a conjugate
of [Ck,Ck] for each k = 3, . . . , n.

Proof: This follows from the proof of Lemma 5.14, since [Bk,Bk] = [Ck,Ck]
for each k = 3, . . . , n. �

A subbase of a Coxeter system (W,S) is a subset A of S such that 〈A〉 is
a noncyclic, nonmaximal, finite, irreducible subgroup of (W,S).

Theorem 6.10 (Subbase Matching Theorem) Let W be a finitely generated
Coxeter group with two sets of Coxeter generators S and S ′. Let A be a
subbase of (W,S). Let B be a base of (W,S) containing A, and let B′ be
the base of (W,S ′) that matches B. Suppose that B is not of type A5 and if
|〈B〉| > |〈B′〉|, suppose that A is not of type C2. Then B′ contains a subbase
A′ of (W,S ′) such that [〈A〉, 〈A〉] is conjugate to [〈A′〉, 〈A′〉] in W . Moreover

1. If |〈A〉| = |〈A′〉|, then A and A′ have the same type.

2. If |〈A〉| < |〈A′〉|, then |〈B〉| < |〈B′〉| and A is of type Bk and A′ is of
type Ck for some k ≥ 3.

3. If |〈A〉| > |〈A′〉|, then |〈B〉| > |〈B′〉| and A is of type Ck and A′ is of
type Bk for some k ≥ 3.

Furthermore, if |〈B〉| > |〈B′〉| and A is of type C2, then B′ is of type B2q+1

for some q ≥ 1 and [〈A〉, 〈A〉] is conjugate to 〈xy〉 in W where {x, y} is the
set of split ends of the C-diagram of (〈B′〉, B′).

Proof: Suppose |〈B〉| = |〈B′〉|. By the Basic Matching Theorem, B and B′

have the same type and there is an isomorphism φ : 〈B〉 → 〈B′〉 that restricts
to conjugation on [〈B〉, 〈B〉] by an element u of W . By Prop. 6.8, there is
a A′ ⊂ B′ such that (〈A〉, A) ∼= (〈A′〉, A′) and φ([〈A〉, 〈A〉]) is conjugate to
[〈A′〉, 〈A′〉] by an element v of 〈B′〉. Then A′ is a subbase of (W,S ′) of the
same type as A and vu[〈A〉, 〈A〉]u−1v−1 = [〈A′〉, 〈A′〉].
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Now suppose |〈B〉| < |〈B′〉|. By the Basic Matching Theorem, B is of type
B2q+1 and B′ is of type C2q+1 for some q ≥ 1 and there is an monomorphism
φ : 〈B〉 → 〈B′〉 that restricts to conjugation on [〈B〉, 〈B〉] by an element u of
W . Let α : (〈B〉, B) → B2q+1 and β : (〈B′〉, B′) → C2q+1 be isomorphisms
of Coxeter systems. If A is of type Ak, we may assume, if necessary, by
conjugating 〈A〉 by the longest element of (〈B〉, B), that α(A) ⊂ 〈b1, . . . , b2q〉.
Now bi = ci for i = 1, . . . , 2q. If A is of type Ak, let A′ = β−1α(A). Then
(〈A〉, A) ∼= (〈A′〉, A′). If A is of type Bk, let 〈A′〉 = β−1(Ck) where Ck is as
in Lemma 6.9 and A′ ⊂ S ′. Then A′ is of type Ck.

By the proof of Lemma 5.14, we deduce that βφα−1 : B2q+1 → C2q+1

maps [〈α(A)〉, 〈α(A)〉] to g[〈β(A′)〉, 〈β(A′)〉]g−1 for some g in C2q+1. Let
v = β−1(g−1). Then φ([〈A〉, 〈A〉]) = v−1[〈A′〉, 〈A′〉]v, and so

vu[〈A〉, 〈A〉]u−1v−1 = [〈A′〉, 〈A′〉].

The proof of the case |〈B〉| > |〈B′〉| is the same as for the case |〈B〉| < |〈B′〉|
with the roles of B and B′ reversed.

Suppose |〈B〉| > |〈B′〉| and A is of type C2. By the Basic Matching
Theorem, B is of type C2q+1 and B′ is of type B2q+1 for some q ≥ 1 and
there is a monomorphism φ : 〈B′〉 → 〈B〉 that restricts to conjugation on
[〈B′〉, 〈B′〉] by an element of W . Let {x, y} be the set of split ends of the
C-diagram of (〈B′〉, B′). Then [〈A〉, 〈A〉] is conjugate to 〈xy〉 by Lemma 5.14.
�

Lemma 6.11 Let (W,S) be a Coxeter system with A,B ⊂ S such that 〈A〉
is finite and irreducible. If 〈A〉 is conjugate to 〈B〉 in W and A is neither of
type An, for some n, nor of type B5, then A = B.

Proof: Suppose s ∈ S−A, with m(s, a) > 2 for some a ∈ A, and suppose s
is A-admissible. Then K = A∪{s} is irreducible. By Lemma 4.11, it suffices
to show that wKswK = s. This is clear if 〈wK〉 is the center of 〈K〉. Suppose
that Z(〈K〉) = 1. Now K is not of type An+1 nor of type E6, since A is not
of type An nor of type B5. Hence K must be of type B2q+1 for some q ≥ 2.
Then A is of type B2q and wKswK = s. �

Theorem 6.12 Let W be a finitely generated Coxeter group with two sets of
Coxeter generators S and S ′. Let A be a subbase of (W,S), and let A′ ⊂ S ′.
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If A′ is irreducible and [〈A〉, 〈A〉] is conjugate to [〈A′〉, 〈A′〉] in W , then A′

is unique up to conjugation in W ; moreover, if A′ is neither of type An, for
some n, nor of type B5, then A′ is unique. If A is of type C2 and A′ = {x, y}
and [〈A〉, 〈A〉] is conjugate to 〈xy〉 in W , then A′ is unique.

Proof: Suppose A′, A′1 are irreducible subsets of S ′ and [〈A〉, 〈A〉] is con-
jugate to [〈A′〉, 〈A′〉] and to [〈A′1〉, 〈A′1〉]. Then [〈A′〉, 〈A′〉] is conjugate to
[〈A′1〉, 〈A′1〉]. Hence A′ is conjugate to A′1 by Lemma 4.18. If A′ is neither of
type An, for some n, nor of type B5, then A′ is unique by Lemma 6.11.

Suppose A is of type C2 and A′ = {x, y} ⊂ S ′ and [〈A〉, 〈A〉] is conjugate
to 〈xy〉 in W . Then m(x, y) = 2, since [〈A〉, 〈A〉] has order 2. Let B be a
base of (W,S) containing A and let B′ be the base of (W,S ′) that matches
B. Suppose |〈B〉| = |〈B′〉|. Then B′ contains a subbase A′1 of type C2 such
that [〈A〉, 〈A〉] is conjugate to [〈A′1〉, 〈A′1〉] in W by Theorem 6.10. Then xy
is conjugate to an element of 〈A′1〉. Hence A′ is conjugate to A′1 by Lemma
4.17, which is a contradiction, since A′ and A′1 have different types. Therefore
|〈B〉| > |〈B′〉| by Theorem 6.10.

Now by the Basic Matching Theorem, B is of type C2q+1 and B′ is of
type B2q+1 for some q ≥ 1. Let E ′ = {u, v} be the set of split ends of the
C-diagram of (〈B′〉, B′). Then [〈A〉, 〈A〉] is conjugate to 〈uv〉 by Lemma 5.14.
Hence uv is conjugate to xy. Therefore E ′ is conjugate to A′ by Lemma 4.17.

Suppose s ∈ S ′ − E ′ is E ′-admissible. Then either m(s, u) = m(s, v) = 2
or m(s, u) = m(s, v) = 3 by Theorem 5.15. Let K be the component of
E ′∪{s} containing s. Then wKswK = s. Therefore E ′ = A′ by Lemma 4.11.
Thus A′ is unique. �

Theorem 6.13 (Edge Matching Theorem) Let W be a finitely generated
Coxeter group with two sets of Coxeter generators S and S ′. Let E = {a, b}
be an edge of the P-diagram of (W,S) with m(a, b) ≥ 4. Then there is a
unique edge E ′ = {x, y} of the P-diagram of (W,S ′) such that [〈E〉, 〈E〉] is
conjugate in W to either [〈E ′〉, 〈E ′〉] or 〈xy〉.

Proof: Assume first that E is a base of (W,S). Let E ′ be the base of (W,S ′)
that matches E. Then E ′ = {x, y} is an edge of the P-diagram Γ′ of (W,S ′)
such that m(x, y) ≥ 3 by Theorem 4.19. To see that E ′ is unique, suppose
E ′1 = {x1, y1} is an edge of Γ′ such that [〈E〉, 〈E〉] is conjugate to either
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[〈E ′1〉, 〈E ′1〉] or 〈x1y1〉. Then [〈E ′〉, 〈E ′〉] is conjugate to either [〈E ′1〉, 〈E ′1〉]
or 〈x1y1〉. Hence E ′ is conjugate to E ′1 by Lemma 4.17 or Lemma 4.18.
Therefore E ′ = E ′1 by Lemma 4.16.

Assume now that E is a subbase of (W,S). Let B be a base of (W,S)
containing E and let B′ be the base of (W,S ′) that matches B. Assume first
that if |〈B〉| > |〈B′〉|, then m(a, b) > 4. By Theorem 6.10, B′ contains a
subbase E ′ of (W,S ′) of the same type as E such that [〈E〉, 〈E〉] is conjugate
to [〈E ′〉, 〈E ′〉]. Suppose E ′1 = {x1, y1} is an edge of Γ′ such that [〈E〉, 〈E〉]
is conjugate to either [〈E ′1〉, 〈E ′1〉] or 〈x1y1〉. As in the previous case, E ′ is
conjugate to E ′1. Therefore E ′ = E ′1 by Lemma 6.11.

Now assume that |〈B〉| > |〈B′〉| and m(a, b) = 4. By Theorem 6.10, the
base B′ is of type B2q+1 for some q ≥ 1 and [〈E〉, 〈E〉] is conjugate to 〈xy〉
where E ′ = {x, y} is the set of split ends of the C-diagram of (〈B′〉, B′).
Suppose E ′1 = {x1, y1} is an edge of Γ′ such that [〈E〉, 〈E〉] is conjugate to
either [〈E ′1〉, 〈E ′1〉] or 〈x1y1〉. Then 〈xy〉 is conjugate to either [〈E ′1〉, 〈E ′1〉] or
〈x1y1〉. Hence E ′ is conjugate to E ′1 by Lemma 4.17. Therefore m(x1, y1) = 2
and [〈E〉, 〈E〉] is conjugate to 〈x1y1〉. Hence E ′ = E ′1 by Theorem 6.12. �

7 Visual Graph of Groups Decompositions

Let (W,S) be a Coxeter system of finite rank. Suppose that S1, S2 ⊂ S, with
S = S1∪S2, and S0 = S1∩S2 are such that there is no defining relator of W
(no edge of the P-diagram) between an element of S1−S0 and S2−S0. Then
we can write W as a visual amalgamated product W = 〈S1〉 ∗〈S0〉 〈S2〉. We
say that S0 separates S if S1 − S0 6= ∅ and S2 − S0 6= ∅. The amalgamated
product decomposition of W will be nontrivial if and only if S0 separates S.
If S0 separates S, we call the triple (S1, S0, S2) a separation of S. Note that
S0 separates S if and only if S0 separates Γ(W,S), that is, there are s1, s2 in
S − S0 such that every path in Γ(W,S) from s1 to s2 must pass through S0.

Let ` ∈ 〈S0〉 such that `S0`
−1 = S0. By Lemma 4.5, we have S0 =

S•∪(S0−S•) where S• generates a finite group, each element of S• commutes
with each element of S0−S•, and ` is the longest element of 〈S•〉. The triple
(S1, `, S2) determines an elementary twist of (W,S) (or of its P-diagram)
giving a new Coxeter generating set S∗ = S1 ∪ `S2`

−1 of W .
In application, it is simpler to consider a more general kind of twisting.

Suppose S0 and S̄0 ⊂ S2 generate conjugate subgroups of 〈S2〉. Suppose
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d ∈ 〈S2〉 is such that dS̄0d
−1 = S0. Then S1 ∩ dS2d

−1 = S0, since

S0 ⊂ S1 ∩ dS2d
−1 ⊂ S1 ∩ 〈S2〉 = S0.

A generalized twist (or simply twist) of (W,S) in this situation gives a new
Coxeter generating set S∗ = S1∪dS2d

−1 of W and a new visual amalgamated
product decomposition W = 〈S1〉 ∗〈S0〉 〈dS2d

−1〉
Elementary and generalized twists can be easily understood in terms of

their effects on P-diagrams. The P-diagram of (W,S) is the union of the
P-diagrams for 〈S1〉 and 〈S2〉 overlapping in the P-diagram for 〈S0〉. The P-
diagram for (W,S∗) is obtained from the P-diagram of (W,S) by twisting the
P-diagram of 〈S2〉, that is, removing the P-diagram for 〈S2〉, replacing it by
the isomorphic P-diagram of 〈dS2d

−1〉, and attaching it to the P-diagram for
〈S1〉 along S0 = dS̄0d

−1. If S0 = ∅, we call the twist degenerate. A degenerate
twist does not change the isomorphism type of the P-diagram. This includes
the case where S1 = S0 = ∅, S2 = S, giving S∗ = dSd−1 the conjugation of
S by an arbitrary d ∈ W . Any nondegenerate generalized twist of a Coxeter
system (W,S) can be realized by a finite sequence of elementary twists.

Let Λ be a visual graph of groups decomposition of (W,S). Then the
graph of Λ is a tree, since the abelianization of W is finite. The graph of
groups decomposition Λ can be understood as a visual amalgamated product
in many ways, e.g., by taking some of the vertex and edge groups to be
generated by S1, others to be generated by S2, with the overlap being a
single edge group of Λ. Hence we will also speak of twisting a visual graph
of groups decomposition with respect to some such partitioning of the graph
of groups and some conjugating element.

A graph of groups decomposition is said to be reduced if no edge group
is equal to an incident vertex group. Suppose Λ is a reduced visual graph
of groups decomposition of a Coxeter system (W,S) of finite rank. Suppose
(for simplicity in this application) that no edge group of Λ is a proper sub-
group of another edge group of Λ. Construct another visual graph of groups
decomposition (though not reduced) Λ̃ as follows. The vertices of Λ̃ are of
two distinct types, v-vertices and e-vertices. The v-vertices correspond to
the vertices of Λ, and the e-vertices correspond to the distinct edge groups
of Λ. An edge of Λ̃ will connect vertices p and q if p is a v-vertex and q is an
e-vertex, and p corresponds to an endpoint of an edge of Λ with edge group
corresponding to q. The vertex group of a v-vertex p of Λ̃ will be the vertex
group for p in Λ. The vertex group of an e-vertex q of Λ̃ is the edge group of
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Λ corresponding to q. Each edge of Λ̃, say from p to q, will have edge group
equal to the edge group of Λ corresponding to the e-vertex q of that edge.
The maps of edge groups into vertex groups in Λ̃ will be inclusion maps (as in
visual decompositions generally, determined by which of the generators lie in
each vertex and edge groups). Then by a series of reductions and expansions
(inverse reductions) we can get from Λ̃ to Λ and we see that they are both
visual graph of group decompositions of W (or by comparing the relations
defining the fundamental groups of Λ and Λ̃). On the other hand, different
reduced visual graphs of groups Λ and Λ2 will correspond to the same Λ̃ = Λ̃2

provided they have the same vertex groups and edge groups, since the inclu-
sion of edge groups into vertex groups determine the edges of Λ̃ when no edge
group is a proper subgroup of another edge group. The point here is that Λ̃
provides a way of keeping track of which edge groups of Λ are equal and in
which vertex groups without specifying what the subtree of edges of Λ with
the same given edge group must look like, (in essence, without specifying the
order of the vertex groups containing this edge group). We think of Λ̃ as a
flattened form of Λ making uniform the relationship between vertex groups
and different edge groups of Λ.

A particularly simple case is when the edge groups of Λ are all equal.
Then Λ̃ has one v-vertex for each vertex p of Λ and one e-vertex q for the
common edge group E with edges from q to p for each v-vertex p and with
edge groups equal to E and inclusion maps into the vertex groups. The
fundamental group of Λ is an amalgamated product of all the vertex groups
of Λ identifying the copies of the edge group in each vertex group.

8 The Decomposition Matching Theorem

If U is a subgroup of W , write U∗ = {wUw−1 : w ∈ W} for the set of
all subgroups conjugate to U in W . Write U∗ � V ∗ if for some w ∈ W ,
U ⊆ wV w−1 (independent of the representatives for the conjugacy classes).
Clearly � is transitive and reflexive. Consider the conjugacy classes of a
visual subgroup U and any subgroup V of a Coxeter system (W,S). If U∗ �
V ∗ and V ∗ � U∗ then U∗ = V ∗, since if U ⊆ wV w−1 ⊆ wzUz−1w−1 then,
since U is a visual subgroup, wzUz−1w−1 = U and U and V are conjugate by
Lemma 4.3. Hence for the conjugacy classes of visual subgroups, � is a partial
order. We say that J ⊆ S is a c-minimal separating subset of generators if
〈J〉∗ is a �-minimal element of the set of conjugacy classes of subgroups
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generated by separating subsets of S. Assuming there are separating subsets
of S, there are finitely many since S is finite, and so there are c-minimal
separating subsets of S.

Theorem 8.1 Suppose (W,S) and (W,S ′) are two Coxeter systems for the
same finitely generated Coxeter group. If (W,S) is complete, then (W,S ′) is
complete; otherwise, for any given nontrivial splitting A ∗C B of W , there
exist S0 ⊆ S, S ′0 ⊆ S ′, a visual graph of groups decomposition Λ for (W,S),
and a visual graph of groups decomposition Λ′ for (W,S ′) such that:

1. S0 is a c-minimal separating subset of S, S ′0 is a c-minimal separating
subset of S ′, with 〈S0〉∗ = 〈S ′0〉∗ � C∗;

2. the edge groups of Λ are conjugate to 〈S0〉, the edge groups of Λ′ are
conjugate to 〈S ′0〉 (and hence are conjugate and conjugate to a subgroup
of C); and

3. there is a 1-1 correspondence between the vertices of Λ and the vertices
of Λ′ such that each vertex group of Λ is conjugate to the corresponding
vertex group of Λ′.

Proof: If (W,S) is complete, then (W,S ′) is complete by Prop. 5.10.
Suppose (W,S) is incomplete. Given a nontrivial splitting W = A∗CB, there
is some visual splitting W = A1∗C1B1, with respect to S, with C1 a subgroup
of a conjugate of C by the visual decomposition theorem and Remark 1 in
[9]. Consider the finite collection of conjugacy classes 〈J〉∗, partially ordered
by �, for subsets J ⊆ S such that 〈J〉∗ � C∗ and there is a visual splitting
W = A2 ∗〈J〉B2. Then there exists such a J with 〈J〉∗ minimal in this partial
order.

Now starting with a splitting W = A2 ∗〈J〉 B2 and working with respect
to S ′, as above, there is a J ′ ⊆ S ′ with 〈J ′〉∗ � 〈J〉∗ and a visual splitting
W = A3 ∗〈J ′〉B3, with 〈J ′〉∗ �-minimal for such splitting S ′-visual subgroups.

Working back again, from W = A3 ∗〈J ′〉 B3 and splitting visually with
respect to S, there is a J ′′ ⊆ S with 〈J ′′〉∗ � 〈J ′〉∗ and an S-visual splitting
over 〈J ′′〉 with 〈J ′′〉∗ �-minimal. Now 〈J ′′〉∗ � 〈J ′〉∗ � 〈J〉∗ � C∗ but J
was taken so 〈J〉∗ was �-minimal below C∗ having an S-visual splitting over
〈J〉, hence 〈J ′′〉∗ = 〈J〉∗ (but not necessarily 〈J ′′〉 = 〈J〉), and so in fact
〈J〉∗ = 〈J ′〉∗ and (1) holds with S0 = J and S ′0 = J ′.

Since S is finite and each vertex group of a reduced visual graph of groups
decomposition of W is generated by a different subset of the generators,
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there is an obvious limit to the number of vertices in a reduced visual graph
of groups decomposition of W , and in some sense, the more vertices, the
finer the graph of groups decomposition. Take a reduced S-visual graph
of groups decomposition Λ of W such that every edge group is conjugate
to 〈J〉 and, among such, having a maximum number of vertices. By the
visual decomposition theorem, take Λ′ a reduced S ′-visual graph of groups
decomposition refining Λ, i.e., such that each vertex (edge) group of Λ′ is a
subgroup of a conjugate of a vertex (edge) group of Λ. Similarly, take Λ′′

a reduced S-visual graph of groups decomposition of W refining Λ′. The
edge groups of Λ′′ are equal to conjugates of the edge groups of Λ by the
c-minimality of S0, and so are conjugate to the edge groups of Λ′, and so (2)
holds. We postpone the proof of (3) until after the proof of Lemma 8.3.

The following lemma characterizes the visual decomposition Λ.

Lemma 8.2 Suppose (W,S) is a Coxeter system of finite rank and J is a
c-minimal separating subset of S. Let E be the set of separating subsets of S
that are conjugate to J in W . Let V be the set of all maximal subsets of S
that are not separated by a set in E. Suppose Λ is a reduced visual graph of
groups decomposition of (W,S) having edge groups generated by conjugates
of J (and hence elements of E) and among such has a maximum number
of vertices. Then all of the subgroups generated by sets in V are the vertex
groups of Λ, and all of the subgroups generated by sets in E are the edge
groups of Λ.

Proof: All the visual conjugates of 〈J〉 are visual direct products F ×G
with conjugate finite factors F and the same factor G in common with all
the visual conjugates of 〈J〉. If we split W by a separating visual conjugate
of J , each of the other visual conjugates of J lies entirely in one of the factors
of the free product with amalgamation, since the corresponding finite group
F lies in one factor and the group G lies in each factor.

Assume Λ is a reduced visual graph of groups with edge groups conjugate
to 〈J〉 and among such having a maximal number of vertices. Note that each
edge group, and hence each vertex group, contains the common subgroup G.
The graph of Λ is a tree, since the abelianization of W is finite.

Suppose L is the set of generators of a vertex group V of Λ. We claim
that L is not separated by a set in E . On the contrary, suppose L is separated
by a set K in E , say x and y are in different components of the P-diagram
of 〈L−K〉. We claim that K ⊆ L. On the contrary, suppose K 6⊆ L. Then
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L ∩K does not separate S, by c-minimality of J , and so there is a path in
the P-diagram of (W,S) from x to y that avoids L ∩K. Take a path from
x to y which is in a union of as few vertex groups of Λ as possible. Let V ′

be a vertex group of Λ containing a generator in this path not in V . Then
the path passes through some edge group E of V at some first point before
V ′ and must pass back through E at some last point, since the graph of Λ
is a tree. Neither of these points is a generator of G since these all lie in
L∩K. Hence these points are generators in the finite factor F of E. But the
P-diagram of F is complete, and so there is a short circuit of the path going
from the first to the last point in F avoiding V ′. We conclude instead that the
path hitting the fewest vertex groups of Λ is a path in L−K, contradicting
the assumption that K separates L. Hence K ⊆ L and there is a separation
(L1, K, L2) of L. Each edge group of Λ incident to the vertex group V = 〈L〉
is contained in either the subgroup generated by L1 or by L2, and so we can
split V into two vertices generated by L1 and L2, respectively, and joined by
an edge group generated by K, with each component of the rest of Λ attached
to one or the other of the new vertex groups by an edge group of Λ. Neither
of the new vertex groups equals an incident edge group E, since the finite
Coxeter groups E/G and 〈K〉/G have the same rank. This gives a reduced
visual graph of groups decomposition over separating conjugates of J with
more vertex groups, contradicting the maximality of the number of vertices
in Λ. Hence L cannot be separated by a set in E as claimed. Clearly, every
subset of S that contains L properly is separated by the set of generators of
some edge group of Λ that is incident to V . Therefore L is a maximal subset
of S that is not separated by a set in E , and so L ∈ V .

Now suppose L ∈ V . We claim that 〈L〉 is a vertex group of Λ. Every
element of L is a generator of some vertex group of Λ. Suppose L′ ⊆ L is
a maximal subset of L contained in some vertex group of Λ. If L − L′ 6= ∅,
say x ∈ L − L′, then L′ and x are not both contained in a vertex group
of Λ. Take vertex groups V and V ′ of Λ, with x ∈ V and L′ ⊆ V ′, which
are closest together in the graph of Λ. Let E be an edge group of the path
between V and V ′. Then E is generated by a visual conjugate K of J which
separates the generators in V − E from those in V ′ − E, and so K ∈ E .
Now x /∈ E otherwise x would also be in a vertex group closer to V ′ on the
path between V and V ′. Likewise, L′ 6⊆ E or else L′ would be contained
in a vertex group closer to V on a path between V and V ′. But then the
P-diagram of 〈L−K〉 would have at least two components, one containing x
and one containing some element of L′−K. This contradicts the assumption
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that L ∈ V . Instead all of L must be contained in a vertex group V of Λ. As
the set of generators in V is in V , we have that 〈L〉 = V .

Finally, suppose K ∈ E . Then there is a separation (S1, K, S2) of S.
Each L ∈ V generates a vertex group of Λ but is not separated by K by
our previous argument, and so each L ∈ V is contained in either S1 or S2.
Pick vertex groups V1 and V2 as close together in Λ as possible such that V1

is generated by a subset of S1 and V2 is generated by a subset of S2. Then
V1, and V2 are adjacent since every vertex group in a path between these is
generated by a subset of either S1 or S2. Now V1 ∩ V2 is an edge group E of
Λ which is generated by a subset of K but not by a proper subset of K by
the c-minimality of J , and so E = 〈K〉. �

The next lemma explains the relationship between the visual decomposi-
tions Λ and Λ′′ of (W,S).

Lemma 8.3 Suppose Λ and Λ′′ are reduced visual graph of groups decompo-
sitions of a Coxeter system (W,S) of finite rank. Suppose the edge groups of
Λ are generated by conjugates of a c-minimal separating subset J of S, and,
among visual decompositions with this same conjugacy class of edge groups,
Λ has a maximum number of vertex groups. Suppose each vertex and edge
group of Λ′′ is a subgroup of a conjugate of a vertex or edge group of Λ, re-
spectively. Then the vertex and edge groups of Λ are equal to the vertex and
edge groups of Λ′′, respectively, that is, Λ̃ = Λ̃′′.

Proof: By the last lemma, the vertex groups of Λ are determined from
the set of all separating sets of generators that are conjugate to J . Each edge
group of Λ′′ is generated by a separating subset of S and is contained in a
conjugate of a 〈J〉, and so, by the c-minimality of J , must be a conjugate of
〈J〉 and an edge group also of Λ.

Let T be the Bass-Serre tree with standard transversal T∗, corresponding
to the graph of groups Λ, i.e., the vertices of T are the cosets of each vertex
group of Λ and T∗ consists of the cosets of each vertex group that contain
the identity. A vertex group G of Λ′′ stabilizes a vertex V of T , since G is
a subgroup of a conjugate of a vertex group of Λ. But each generator of G
also stabilizes a vertex of T∗ and the geodesic path from that vertex of T∗ to
V . Hence G also stabilizes the vertex of T∗ nearest to V . Thus each vertex
group of Λ′′ is actually a subgroup of a vertex group of Λ.

As the vertex groups of Λ are proper subgroups, Λ′′ has at least two
vertices, and each vertex group of Λ′′ contains an edge group of Λ′′, which
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is a conjugate of 〈J〉, as a proper subgroup. Hence no vertex group of Λ′′ is
contained in an edge group of Λ, since all the visual conjugates of 〈J〉 have the
same rank. Consequently, each vertex group of Λ′′ can be contained in only
one vertex group of Λ, otherwise a vertex group of Λ′′ would be contained in
the intersection of vertex groups for two different vertices of Λ and so would
be contained in each edge group for edges of Λ in the geodesic path between
these vertices, which is not the case.

Summarizing, for each vertex U of Λ′′, there exists a unique vertex f(U)
of Λ such that the vertex group Λ′′(U) of Λ′′ at U is a subgroup of the vertex
group Λ(f(U)) of Λ at f(U). We claim that for each vertex V of Λ, the vertex
group Λ(V ) is generated by the vertex groups of Λ′′ for vertices in f−1(V ). In
particular, there will be at least one vertex of Λ′′ in f−1(V ), and so at least
as many vertices in Λ′′ as in Λ. But Λ has a maximal number of vertices for
visual reduced graph of groups decompositions of (W,S) with edge groups
that are conjugates of 〈J〉, so Λ′′, which also satisfies these conditions, has
no more vertices than Λ. Hence Λ and Λ′′ have the same number of vertices;
moreover, for each vertex V of Λ, we conclude that f−1(V ) is a unique vertex
of Λ′′, and the vertex groups of these vertices in Λ and Λ′′ must be equal.
Hence the vertex and edge groups of Λ are the same as the vertex and edge
groups of Λ′′, respectively, and so Λ̃ = Λ̃′′.

To establish the claim that each vertex group Λ(V ) of Λ is generated by
the vertex groups of Λ′′ that it contains, we will show that each edge group
of Λ for edges incident to V is contained in a vertex group of Λ′′ which is
contained in Λ(V ). A generator of Λ(V ) which is not contained in any edge
group incident to V is an element of only that vertex group of Λ, but is also
an element of some vertex group of Λ′′ and that vertex group of Λ′′ can only
be contained in Λ(V ). Thus we will get that each generator of Λ(V ) is in a
vertex group of Λ′′ which is contained in Λ(V ).

Consider then an edge group C of an edge incident to V in Λ. Delete
the edges E1, . . . En of the underlying tree of Λ that are incident to V with
the edge group C, leaving a connected component T0 containing V , and con-
nected components T1, . . . , Tn with Ti containing the vertex Vi of Ei opposite
V for each i. Then W = A∗CB where A is the group generated by the vertex
groups of the tree T0 and B is the group generated by the vertex groups of
the forest T1, . . . , Tn. Neither A nor B equals C as Λ is reduced. Each vertex
group of Λ′′ is contained in a unique vertex group of Λ and so is contained in
either A or B but not in both, since the intersection of A and B is the edge
group C. There is at least one vertex group of Λ′′ in each of A and B. Hence
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there are adjacent vertices of Λ′′ having vertex groups one in A and one in
B, whose intersection is the edge group of Λ′′ for the edge between these ver-
tices. But the intersection of these vertex groups of Λ′′ is also contained in C.
Since the edge groups of Λ and Λ′′ are visual subgroups conjugate to 〈J〉, we
have that C is the edge group of Λ′′ for the edge between these vertices of Λ′′.
Hence C is contained in a vertex group of Λ′′ contained in A. If this vertex
group of Λ′′ is contained in a vertex group in A other than V , then C would
be contained in the edge groups in a geodesic path between between V and
this other vertex in T0. But the edge groups for edges incident to V in T0 are
different conjugates of 〈J〉 than C, since we deleted all edges incident to V
having C as edge group. As C cannot be contained in a different conjugate
of 〈J〉, instead the vertex group of Λ′′ that is in A and contains C is actually
contained in the vertex group Λ(V ) of V in Λ. This completes the analysis
of the claim and so completes the proof of the lemma. �

We now finish the proof of Theorem 8.1. By Lemma 8.3, the vertex groups
of Λ′′ are in fact equal to the vertex groups of Λ. Finally we compare Λ and
Λ′′ with Λ′. Each vertex group G of Λ′′ is a subgroup of a conjugate of a
vertex group G′ of Λ′ which is in turn a subgroup of a conjugate of a vertex
group H of Λ. But G is a vertex group of Λ and cannot be contained in a
conjugate of another vertex group of Λ (since again Λ is reduced). Hence
G = H, G∗ � G′∗ � G∗ so G∗ = G′∗, and each vertex group of Λ is conjugate
to a vertex group of Λ′. On the other hand, if H ′ is a vertex group of Λ′ then
H ′ is a subgroup of a conjugate of a vertex group H of Λ. But H is also a
vertex group of Λ′′, is contained in a conjugate of a vertex group G′ of Λ′,
so G′ = H ′ is conjugate to H. Hence the vertex groups of Λ′ correspond to
conjugate vertex groups of Λ, as required for (3). This completes the proof
of Theorem 8.1. �

Lemma 8.4 Suppose Λ is a reduced visual graph of groups decomposition
for a Coxeter system (W,S) of finite rank such that the edge groups of Λ are
conjugates. Then Λ can be twisted resulting in a new generating set S∗ for
W and a reduced visual graph of groups decomposition Ψ such that the edge
groups of Ψ are all equal.

Proof: If not, take an example of a Λ for (W,S) and an edge group
E1, having a minimum number of edges labelled by groups different from E1,
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which cannot be twisted to a Ψ with equal edge groups. Then some vertex
group V contains incident edge groups E1 and E2 with E1 6= E2. Let W1

be the group generated by the vertex groups of Λ that are joined to V by a
geodesic path in the underlying tree of Λ terminating in an edge incident to
V labelled by E1 and let W2 be the group generated by the rest of the vertex
groups of Λ. Then we have a free product decomposition W = W1 ∗E1 W2

with E2 ⊂ V ⊂ W2. Let d ∈ W be of minimal length, with respect to S,
such that E1 = dE2d

−1. By considering the normal form for d with respect
to the amalgamated product W1 ∗E1 W2, we deduce that d ∈ W2.

Suppose E1 = 〈S0〉, E2 = 〈S̄0〉, W1 = 〈S1〉, and W2 = 〈S2〉 for S0, S̄0,
S1, S2 ⊂ S. By Lemma 4.3, we have dS̄0d

−1 = S0. Then twist the visual
decomposition 〈S1〉 ∗〈S0〉 〈S2〉 by conjugating the generators S2 by d, giving
S∗ = S1∪dS2d

−1, and corresponding Λ∗ where we conjugate each vertex and
edge group of Λ with generators in S2. An edge labelled E1 cannot be in
the twisted part of Λ since the generators S0 would have to be contained in
each vertex and edge group in a geodesic path between such an edge and
an edge with label E1 incident at V . Hence all the edges having label E1

originally still have label E1 in Λ∗. The edge incident to V labelled E2 in
the original Λ is conjugated by d to dE2d

−1 = E1 and so we have at least
one more edge labelled by E1, and hence at least one fewer edge labelled by
a group different from E1. Thus Λ∗ contradicts the minimality of number
of edges labelled by groups different from a particular edge group assumed
for Λ. Instead, twisting to reduce the number of edges labelled by a group
different from a chosen edge group must eventually transform a given Λ to a
graph of groups Ψ having all the same edge groups. �

Lemma 8.5 Suppose Ψ is a reduced graph of groups decomposition for a
Coxeter system (W,S) of finite rank such that all of the edge groups of Ψ are
equal. Suppose Ψ′0 is a similar decomposition for (W,S ′) such that each vertex
group is conjugate to a vertex group of Ψ and the equal edge groups of Ψ′0 are
conjugate to the edge groups of Ψ. Then by a sequence of twists applied to
Ψ′0 there results a new set of generators S ′∗ and corresponding visual graph of
groups Ψ′ such that the vertex groups of Ψ′ are equal to those of Ψ and the
edge groups of Ψ′ are all equal and equal to the edge groups of Ψ, and hence
Ψ̃ = Ψ̃′.

Proof: Let T̃ be the Bass-Serre tree for Ψ̃. Then each vertex group V ′

of Ψ′0 stabilizes a v-vertex of T̃ , but stabilizes at most one v-vertex since V ′
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cannot be a subgroup of a conjugate of an edge group of Ψ′0, and the same is
true for any Ψ′∗ resulting by twists conjugating vertex groups and preserving
the same edge groups from Ψ′0. Let T0 be the spanning tree for the v-vertices
of T̃ that are stabilized by a vertex group of such a Ψ′∗ and take Ψ′∗ so that
T0 has a minimal number of vertices. The smallest T0 can be is one v-vertex
for each vertex group of Ψ′∗ plus one e-vertex, corresponding to the common
edge group of Ψ̃, connected to each of the v-vertices of T0. In this case,
conjugating Ψ′∗ carries T0 to the standard transversal T1 of T̃ and so takes
Ψ′∗ to a Ψ′ having the same vertex and edge groups as Ψ.

Suppose instead that T0 has more than one e-vertex. Suppose further
that some v-vertex wV of T0, for V a vertex group of Ψ, stabilized by a
vertex group V ′ = wV w−1 of Ψ′∗ has more than one edge of T0 incident at
that vertex. Let E be the common edge group of Ψ so there are e-vertices
uE and vE adjacent to wV , the edge group E ′ of Ψ′∗ is uEu−1 = vEv−1,
and uv−1 ∈ V ′. Twist Ψ′∗ to Ψ′∗∗ by conjugating each vertex group of Ψ′∗
stabilizing a v-vertex of T0 on the vE side of wV by the element uv−1. Then
uv−1E ′vu−1 = uEu−1 = E ′, and so edge groups have not changed.

If V ′2 is a vertex group of Ψ′∗ stabilizing a v-vertex w2V2 on the vE side of
wV , then uv−1V ′2vu

−1 stabilizes uv−1w2V2. If p is a geodesic path from wV to
w2V2 in T0, then translating p by uv−1 results in a path from uv−1wV = wV
to uv−1w2V2. Since the first edge in p is vE, the first edge in the translated
path is uE. We conclude that the spanning tree for the v-vertices stabilized
by Ψ′∗∗ consists of the part of T0 on the vE side of wV translated by uv−1

together with the rest of T0. Since the e-vertex vE is carried to the e-vertex
uE in the new spanning tree, there are fewer vertices in the new spanning
tree, contradicting the minimality of T0 for Ψ′∗.

Finally suppose that all the v-vertices of T0 that are stabilized by a vertex
group of Ψ′∗ are the leaves of T0 (the end points of T0), and that T0 has at
least two e-vertices. Then T0 has a v-vertex that is not stabilized by a vertex
group of Ψ′∗. Let T̃ ′ be the Bass-Serre tree of Ψ̃′∗. Let T̃ ′∗ be the result of
replacing, equivariantly with respect to the action of W , each translate of
the standard transversal T ′1 of T̃ ′ by a copy of T0 so that T0 is attached by
identifying each vertex of T0 stabilized by a vertex group V ′ of Ψ′∗ with the
vertex V ′ of T ′1 (this vertex remains labelled V ′). In particular, the e-vertices
of T̃ ′ (those that are labelled by cosets of the edge group of Ψ′∗) are replaced
by copies of the level one core of T0 (the tree T0 minus its leaves and their
adjoining edges). Then W acts on the tree T̃ ′∗ translating the vertices labelled
by cosets of vertex groups of Ψ′∗ in the same way as in Ψ̃′∗.
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Define a map τ : T̃ ′∗ → T̃ by mapping the vertex V ′ of the attached T0 to
the vertex wV of T0 when a vertex group V ′ of Ψ′∗ stabilizes the vertex wV in
T0, and by mapping the translates of T0 in T̃ ′∗ isomorphically to corresponding
translates of T0 in T̃ so as to make τ respect the action of W . Then τ is locally
injective, since the cosets uv′E ′ of the edge group E ′ in a given v-vertex uV ′

of T̃ ′, which is also a vertex of T̃ ′∗, correspond to the cosets uwvE of the
edge group E in the v-vertex τ(uV ′) = uwV of T̃ under the correspondence
v′ = wvw−1, since E ′ = wEw−1 and V ′ = wV w−1. Hence τ is injective, since
τ is a map of trees. But T0 has an interior v-vertex U = tV , corresponding
to a vertex group V of Ψ, which is not stabilized by a vertex group of Ψ′∗.
Now U = τ(U ′) where U ′ is an interior v-vertex of the attached T0 in T̃ ′∗.
Let w−1V ′ be the v-vertex of T̃ ′ stabilized by V . Then w−1V ′w = V , and so
V ′ = wV w−1. Hence the vertex group V ′ of Ψ′∗ stabilizes the vertex wV in
T0, and so τ(tw−1V ′) = tw−1wV = tV = U . As tw−1V ′ 6= U ′ in T̃ ′∗, we have
a contradiction to τ being injective. �

Applying these lemmas to the result of the last theorem we have the
following conclusion.

Theorem 8.6 (The Decomposition Matching Theorem) Suppose (W,S) and
(W,S ′) are Coxeter systems for the same finitely generated Coxeter group
and W has a nontrivial splitting as A ∗C B. Then there are sequences of
twists applied to (W,S) and (W,S ′) giving rise to Coxeter systems (W,S∗)
and (W,S ′∗), respectively, such that there exists a nontrivial reduced visual
graph of groups decomposition Ψ of (W,S∗) and a nontrivial reduced visual
graph of groups decomposition Ψ′ of (W,S ′∗) having the same graphs and the
same vertex and edge groups and all edge groups equal and a subgroup of a
conjugate of C.

Proof: Take Λ and Λ′ from Theorem 8.1, twist Λ to get a visual de-
composition Ψ of (W,S∗) with one edge group and twist Λ′ to get a visual
decomposition Ψ′0 with one edge group. Then twist Ψ′0 to a visual decompo-
sition Ψ′1 of (W,S ′∗) having the same vertex and edge groups as Ψ, so Ψ̃ = Ψ̃′.
Now Ψ and Ψ′1 only differ by expansions and contractions rearranging the
edge group attachments to vertex groups. So there is a visual decomposition
Ψ′ of (W,S ′∗) with the same graph of groups structure as Ψ. �
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9 The Simplex Matching Theorem

The next lemma is known to experts. For a proof see Paris [11].

Lemma 9.1 Let W be a finitely generated Coxeter group with two complete
Coxeter systems (W,S) and (W,S ′). Let

(W,S) = (W0, S0)× (W1, S1)× · · · × (Wk, Sk)

with (W0, S0) finite and (Wi, Si) infinite and irreducible for each i = 1, . . . , k.
Suppose

(W,S ′) = (W ′
0, S

′
0)× (W ′

1, S
′
1)× · · · × (W ′

`, S
′
`)

with (W ′
0, S

′
0) finite and (W ′

j , S
′
j) infinite and irreducible for each j = 1, . . . , `.

Then W0 = W ′
0. Let Z = Z(W0). Then k = ` and after reindexing we have

ZWi = ZW ′
i for each i = 1, . . . , k.

Lemma 9.2 Let W be a finitely generated Coxeter group with two Coxeter
systems (W,S) and (W,S ′). Let S1 ⊂ S and S ′1 ⊂ S ′ and suppose that
W1 = 〈S1〉 = 〈S ′1〉. If the basic subgroups of (W,S) isomorphically match
basic subgroups of (W,S ′), then the basic subgroups of (W1, S1) isomorphically
match basic subgroups of (W1, S

′
1).

Proof: On the contrary, suppose (〈B1〉, B1) is a basic subgroup of
(W1, S1) that matches with a nonisomorphic basic subgroup (〈B′1〉, B′1) of
(W1, S

′
1). Without loss of generality, we may assume that |〈B1〉| > |〈B′1〉|.

Then either B1 is of type C2q+1 and B′1 is of type B2q+1 for some q ≥ 1 or
B1 is of type D2(4q+ 2) and B′1 is of type D2(2q+ 1) for some q ≥ 1. Let B
be the base of (W,S) containing B1 and let B′ be the base of (W,S ′) match-
ing B. Then B is not of type A5 and B1 is not of type C2. By Theorem
6.10, there is a B′′1 ⊂ B′ such that (〈B′′1 〉, B′′1 ) is a finite irreducible sub-
group of (W,S ′) and [〈B1〉, 〈B1〉] is conjugate to [〈B′′1 〉, 〈B′′1 〉] in W ; moreover
(〈B1〉, B1) ∼= (〈B′′1 〉, B′′1 ), since (〈B〉, B) ∼= (〈B′〉, B′). Now B′1 is conjugate
to B′′1 in W by Theorem 6.12. Therefore |〈B1〉| = |〈B′′1 〉| = |〈B′1〉| which is a
contradiction. �

Theorem 9.3 (The Simplex Matching Theorem) Let (W,S) and (W,S ′)
be finite Coxeter systems with isomorphic matching basic subgroups. Then
(W,S) and (W,S ′) have the same number of visual subgroups of each complete
system isomorphism type. In particular, |S| = |S ′|.
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Proof: The proof is by induction on |S|. This is clear if |S| = 1, so
assume |S| > 1 and the theorem is true for all Coxeter systems with fewer
generators than |S|. Assume first that (W,S) is complete. Then (W,S ′) is
complete by Prop. 5.10. Let

(W,S) = (W1, S1)× · · · × (Wn, Sn)

be the factorization of (W,S) into irreducible factors and suppose (Wi, Si) is
finite if and only if i ≤ k. Let

(W,S ′) = (W ′
1, S

′
1)× · · · × (W ′

m, S
′
m)

be the factorization of (W,S ′) into irreducible factors and suppose (Wi, S
′
i)

is finite if and only if i ≤ `. By Lemma 9.1, we have

(W1, S1)× · · · × (Wk, Sk) = (W ′
1, S

′
1)× · · · × (W ′

`, S
′
`).

By the Matching Theorem for systems of a finite Coxeter group, we can
reindex so that Wi is noncyclic if and only if i ≤ p and W ′

j is noncyclic if
and only if j ≤ p and [Wi,Wi] = [W ′

i ,W
′
i ] for each i ≤ p. By hypothesis,

(Wi, Si) ∼= (W ′
i , S

′
i) for each i ≤ p. As the remaining finite factors have order

2, we have k = ` and (Wi, Si) ∼= (Wi, S
′
i) for p < i ≤ k.

By quotienting out the finite normal subgroup (W1, S1)× · · · × (Wk, Sk),
we may assume that Wi and W ′

j are infinite for each i and j. By Lemma 9.1,
we have that m = n and after reindexing Wi = W ′

i for each i. Hence we may
assume that W is infinite and (W,S) and (W,S ′) are irreducible. By Theorem
2.4, we have that (W,S) ∼= (W,S ′). Thus in general (W,S) ∼= (W,S ′) when
(W,S) is complete.

Now assume (W,S) is incomplete. Then there are a, b in S such that
m(a, b) =∞. Hence

W = 〈S − {a}〉 ∗〈S−{a,b}〉 〈S − {b}〉

is a nontrivial visual amalgamated decomposition. By the Decomposition
Matching Theorem, Theorem 8.6, there exist four nontrivial reduced visual
graph of group decomposition of W , visual with respect to different sets of
generators, a Λ with respect to S, a Λ′ with respect to S ′, a Ψ with respect to
another set of Coxeter generators R of W , and a Ψ′ with respect to another
set of Coxeter generators R′ of W such that (1) the edge groups of Λ and Λ′

are all conjugate and conjugate to a subgroup of 〈S − {a, b}〉; (2) there is a
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1-1 correspondence between the vertices of Λ and the vertices of Λ′ such that
each vertex group of Λ is conjugate to the corresponding vertex group of Λ′;
(3) Ψ is a twisted form of Λ having all edge groups equal and conjugate to the
edge groups of Λ, and having vertices in a 1-1 correspondence with those of
Λ such that each vertex group of Ψ is conjugate to the corresponding vertex
group of Λ, and Ψ′ is similarly a twisted form of Λ′; (4) Ψ′ is the same graph
of groups as Ψ and differs from Ψ only in being a visual graph of groups
decomposition of W with respect to a different set of Coxeter generators.

The Coxeter systems (W,R) and (W,S) are twist equivalent and so have
the same number of visual subgroups of each complete system isomorphism
type. Moreover (W,R) and (W,S) have isomorphic matching basic sub-
groups. Likewise the Coxeter systems (W,R′) and (W,S ′) have the same
number of visual subgroups of each complete system isomorphism type, and
(W,R′) and (W,S ′) have isomorphic matching basic subgroups.

Let {(Wi, Ri)}ki=1 be the Coxeter systems of the vertex groups of Ψ, and
let (W0, R0) be the Coxeter system of the edge group of Ψ. Then k ≥ 2,
R = ∪ki=1Ri, and ∩ki=1Ri = R0, and Ri − R0 6= ∅ for each i > 0, and
m(a, b) = ∞ for each a in Ri − R0 and b in Rj − R0 with i 6= j. Let
{(W ′

i , R
′
i)}ki=1 be the Coxeter systems of the vertex groups of Ψ′ indexed so

that W ′
i = Wi for each i, and let (W0, R

′
0) be the Coxeter system of the edge

group of Ψ′. Then W ′
0 = W0, R

′ = ∪ki=1R
′
i, and ∩ki=1R

′
i = R′0, and R′i−R0 6= ∅

for each i > 0, and m(a′, b′) = ∞ for each a′ in R′i − R′0 and b′ in R′j − R′0
with i 6= j. Moreover (Wi, Ri) and (Wi, R

′
i) have isomorphic matching basic

subgroups for each i by Lemma 9.2.
Let C be a complete system isomorphism type and let C(S) be the num-

ber of visual subgroups of (W,S) of isomorphism type C. By the induction
hypothesis, C(Ri) = C(R′i) for each i. Observe that

C(S) = C(R)

=
k∑
i=1

C(Ri)− (k − 1)C(R0)

=
k∑
i=1

C(R′i)− (k − 1)C(R′0)

= C(R′) = C(S ′),

which completes the induction. �
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10 The Maximum Rank of a Coxeter Group

In this section we describe an algorithm for constructing a Coxeter system
of maximum rank for a finitely generated Coxeter group. Let (W,S) be a
Coxeter system of finite rank. We say that (W,S) can be blown up along a
base B if (W,S) and B satisfy the hypothesis of either Theorem 5.6 or 5.9.
If (W,S) can be blown up along a base B, then we can blow up (W,S) to a
Coxeter system (W,S ′) as in the statement of Theorem 5.6 or 5.9 such that
|S ′| = |S| + 1, the base B matches a base B′ of (W,S ′) with |〈B〉| > |〈B′〉|,
and each other base C of (W,S) is also a base of (W,S ′). We say that (W,S ′)
is obtained by blowing up (W,S) along the base B.

By the process of blowing up along a base, we can effectively construct
a sequence S = S(0), S(1), . . . , S(`) of Coxeter generators of W such that
(W,S(i+1)) is obtained by blowing up (W,S(i)) along a base for each i =
0, . . . , ` − 1 and (W,S(`)) cannot be blown up along a base. The sequence
terminates since the sum of the orders of the basic subgroups decreases at
each step of the sequence. By the next theorem, the system (W,S(`)) has
maximum rank over all Coxeter systems for W .

Theorem 10.1 (The Maximum Rank Theorem) Let (W,S) be a Coxeter
system of finite rank. Then the following are equivalent:

1. We have |S| ≥ |S ′| for every set of Coxeter generators S ′ of W .

2. Each base B of (W,S) matches a base B′ of (W,S ′) with |〈B〉| ≤ |〈B′〉|
for every set of Coxeter generators S ′ of W .

3. The system (W,S) cannot be blown up along a base.

Proof: Suppose that |S| ≥ |S ′| for every set of Coxeter generators S ′ of
W and on the contrary, a base B of (W,S) matches a base B′ of (W,S ′) with
|〈B〉| > |〈B′〉|. By the Basic Matching Theorem either B is of type C2q+1

and B′ is of type B2q+1 for some q ≥ 1 or B is of type D2(4q + 2) and B′ is
of type D2(2q + 1) for some q ≥ 1. By Theorems 5.7 and 5.8, we have that
(W,S) and B satisfy the hypothesis of Theorem 5.6 or 5.9. Therefore (W,S)
can be blown up along B to obtain a system (W,S ′) with |S ′| = |S| + 1
contrary to the maximality of |S|. Therefore (1) implies (2).

Suppose that each base B of (W,S) matches a base B′ of (W,S ′) with
|〈B〉| ≤ |〈B′〉| for every set of Coxeter generators S ′ of W . If |〈B〉| = |〈B′〉|
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for every base B of (W,S), then (W,S) and (W,S ′) have isomorphic matching
basic subgroups by the Basic Matching Theorem, and so |S| = |S ′| by the
Simplex Matching Theorem 9.3.

Suppose a base B of (W,S) matches a base B′ of (W,S ′) with |〈B〉| <
|〈B′〉|. By the Basic Matching Theorem either B′ is of type C2q+1 and B is
of type B2q+1 for some q ≥ 1 or B′ is of type D2(4q + 2) and B is of type
D2(2q + 1) for some q ≥ 1. By Theorems 5.7 and 5.8, we have that (W,S ′)
and B′ satisfy the hypothesis of Theorem 5.6 or 5.9, and so (W,S ′) can be
blown up along B′ to obtain a system (W,S ′′) with |S ′′| = |S ′|+ 1 such that
B′ matches a base B′′ of (W,S ′′) with |〈B′〉| > |〈B′′〉| = |〈B〉| and for each
other base C ′ of (W,S ′) the base C ′ is a base of (W,S ′′).

If (W,S) and (W,S ′′) do not have isomorphic matching basic subgroups,
we can blow up (W,S ′′) along a base. Continuing in this way, we obtain a
sequence of Coxeter generators S ′ = S(1), . . . , S(`) of W such that (W,S(i+1))
is obtained by blowing up (W,S(i)) along a base for each i = 1, . . . , ` − 1
and (W,S) and (W,S(`)) have isomorphic matching basic subgroups. In
particular, |S(i+1)| = |S(i)| + 1 for each i = 1, . . . , ` − 1. By the Simplex
Matching Theorem, |S| = |S(`)|, and so |S| > |S ′|. Thus (2) implies (1).

Finally (2) and (3) are equivalent by the Basic Matching Theorem and
Theorems 5.7 and 5.8. �

We end our paper with the following theorem that says that any two
Coxeter systems of maximum rank for a finitely generated Coxeter group
have a lot in common.

Theorem 10.2 (The Maximum Rank Simplex Matching Theorem) Suppose
W is a finitely generated Coxeter group and S and S ′ are Coxeter generators
of W of maximum rank. Then (W,S) and (W,S ′) have the same number of
visual subgroups of each complete system isomorphism type.

Proof: By the Maximum Rank Theorem, each base B of (W,S) matches a
base B′ of (W,S ′) with |〈B〉| = |〈B′〉|. Therefore (W,S) and (W,S ′) have iso-
morphic matching basic subgroups by the Basic Matching Theorem. Hence
(W,S) and (W,S ′) have the same number of visual subgroups of each com-
plete system isomorphism type by the Simplex Matching Theorem. �
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