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Abstract. A finitely presented 1-ended group G has semistable funda-
mental group at infinity if G acts geometrically on a simply connected
and locally compact ANR Y having the property that any two proper
rays in Y are properly homotopic. This property of Y captures a notion
of connectivity at infinity stronger than “1-ended”, and is in fact a fea-
ture of G, being independent of choices. It is a fundamental property in
the homotopical study of finitely presented groups. While many impor-
tant classes of groups have been shown to have semistable fundamental
group at infinity, the question of whether every G has this property has
been a recognized open question for nearly forty years. In this paper
we attack the problem by considering a proper but non-cocompact ac-
tion of a group J on such an Y . This J would typically be a subgroup
of infinite index in the geometrically acting over-group G; for example
J might be infinite cyclic or some other subgroup whose semistability
properties are known. We divide the semistability property of G into a
J-part and a “perpendicular to J” part, and we analyze how these two
parts fit together. Among other things, this analysis leads to a proof (in
a companion paper [Mih]) that a class of groups previously considered
to be likely counter examples do in fact have the semistability property.

1. Introduction

In this paper we consider a new approach to the semistability prob-
lem for finitely presented groups. This is a problem at the intersection
of group theory and topology. It has been solved for many classes of finitely
presented groups, for example [BM91],[Bow04], [GG12], [GM96], [LR75],
[Mih83], [Mih86], [Mih87], [MT92b], [MT92a], [Mih16] - but not in general.
We begin by stating

The Problem. Consider a finitely presented infinite group G acting co-
compactly by cell-permuting covering transformations on a 1-ended, simply
connected, locally finite CW complex Y . Pick an expanding sequence {Cn}
of compact subsets with intCn ⊆ Cn+1 and ∪Cn = Y , then choose a proper
“base ray” ω : [0,∞)→ Y with the property that ω([n, n+1]) lies in Y −Cn.
Consider the inverse sequence

(1) π1(Y − C0, ω(0))
λ1←− π1(Y − C1, ω(1))

λ2←− π1(Y − C2, ω(3))
λ2←− · · ·
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where the λi are defined using subsegments of ω. The Problem is: EI-
THER to prove that this inverse sequence is always semistable, i.e. is pro-
isomorphic to a sequence with epimorphic bonding maps, OR to find a group
G for which that statement is false. This problem is known to be indepen-
dent of the choice of Y , {Cn}, and ω, and it is equivalent to some more
geometrical versions of semistability which we now recall.

A 1-ended, locally finite CW complex Y , with proper base ray ω, has
semistable fundamental group at ∞ if any of the following equivalent condi-
tions holds:

(1) Sequence (1) is pro-isomorphic to an inverse sequence of surjections.
(2) Given n there exists m such that, for any q, any loop in Y − Cm

based at a point ω(t) can be homotoped in Y −Cn, with base point
traveling along ω, to a loop in Y − Cq.

(3) Any two proper rays in Y are properly homotopic.

Just as a basepoint is needed to define the fundamental group of a space,
a base ray is needed to define the fundamental pro-group at ∞. And just
as a path between two basepoints defines an isomorphism between the two
fundamental groups, a proper homotopy between two base rays defines a
pro-isomorphism between the two fundamental pro-groups at ∞. In the
absence of such a proper homotopy it can happen that the two pro-groups
are not pro-isomorphic (see [Geo08], Example 16.2.4.) Thus, in the case of
G acting cocompactly by covering transformations as above, semistability is
necessary and sufficient for the “fundamental pro-group at infinity of G” to
be well-defined up to pro-isomorphism.

The approach presented here. In its simplest form our approach is to
restrict attention to the sub-action on Y of an infinite finitely generated
subgroup J having infinite index in G. We separate the topology of Y at
infinity into “the J-directions” and “the directions in Y orthogonal to J”,
with the main result being that, having appropriate analogs of semistability
in the two directions, implies that Y has semistable fundamental group at
∞.

For the purposes of an introduction, we first describe a special case of
the Main Theorem and give a few examples. A more far-reaching, but more
technical, version of the Main Theorem is given in Section 3.

Suppose J is a finitely generated group acting by cell-permuting cover-
ing transformations on a 1-ended locally finite and simply connected CW
complex Y . Let Γ

(
J, J0

)
be the Cayley graph of J with respect to a finite

generating set J0 and let m : Γ→ Y be a J-equivariant map. Then

a) J is semistable at infinity in Y if for any compact set C ⊆ Y there
is a compact set D ⊆ Y such that if r and s are two proper rays
(based at the same point) in Γ

(
J, J0

)
−m−1 (D) then mr and ms

are properly homotopic in Y − C relative to mr (0) = ms (0).
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Standard methods show that the above property does not depend
on the choice of finite generating set J0.

b) J is co-semistable at infinity in Y if for any compact set C ⊆ Y there
is a compact set D ⊆ Y such that for any proper ray r in Y − J ·D
and any loop α based at r(0) whose image lies in Y −D, α can be
pushed to infinity in Y − C by a proper homotopy with the base
point tracking r.

Theorem 1.1 (Main Theorem—a special case). If J is both semistable
at infinity in Y and co-semistable at infinity in Y , then Y has semistable
fundamental group at infinity.

Remark 1.

(1) To our knowledge, the theorems proved here are the first non-obvious
results that imply semistable fundamental group at∞ for a space Y
which might not admit a cocompact action by covering transforma-
tions.

(2) In the special case where J is an infinite cyclic group, condition
(a) above is always satisfied since Γ

(
J, J0

)
can be chosen to be

homeomorphic to R; any two proper rays in R which begin at the
same point and lie outside a nonempty compact subset of R are
properly homotopic in their own images. Moreover, since condition
(b) is implied by the main hypothesis of [GG12] (via [Wri92, Lemma
3.1] or [Geo08, Th.16.3.4]), Theorem 1.1 implies the main theorem
of [GG12] .

(3) The converse of Theorem 1.1 is trivial. If Y is semistable at infinity
and J is any finitely generated group acting as covering transfor-
mations on Y , it follows directly from the definitions that J is both
semistable at infinity in Y and co-semistable at infinity in Y . So, our
theorem effectively reduces checking the semistability of the funda-
mental group at infinity of a space to separately checking two strictly
weaker conditions.

(4) In our more general version of Theorem 1.1 (not yet stated), the
group J will be permitted to vary for different choices of compact set
C. No over-group containing these various groups is needed unless
we want to extend our results to locally compact ANRs. That issue
is discussed in Corollary 9.1.

Some examples. We now give four illuminating examples. Admittedly,
the conclusion of Theorem 1.1 is known by previous methods in the first
three of these, but they are included because they nicely illustrate how the
semistability and co-semistability hypotheses lead to the semistability con-
clusion of the Theorem. Moreover an understanding of these examples helps
to motivate later proofs. In the case of the fourth example the conclusion
was not previously known.



4 GEOGHEGAN, GUILBAULT, AND MIHALIK

Example 1. LetG be the Baumslag-Solitar groupB (1, 2) =
〈
a, t | t−1at = a2

〉
acting by covering transformations on Y = T ×R, where T is the Bass-Serre
tree corresponding to the standard graph of groups representation of G, and
let J = 〈a〉 ∼= Z. Then J is semistable at infinity in Y for the reasons de-
scribed in Remark 1(2) above. To see that J is co-semistable at infinity in Y ,
choose D ⊆ Y to be of the form T0 × [−n, n], where n ≥ 1 and T0 is a finite
subtree containing the “origin” 0 of T . Then each component of Y −J ·D is
simply connected (it is a subtree crossed with R). So pushing α to infinity
along r can be accomplished by first contracting α to its basepoint, then
sliding that basepoint along r to infinity.

Figure 1

Example 2. Let J = 〈a, b |〉 be the fundamental group of a punctured
torus of constant curvature −1 and consider the corresponding action of J
on Y = H2. Figure 1 shows H2 with an embedded tree representing the
image of a well-chosen m : Γ (J, {a, b})→ H2. The shaded region represents
a typical J ·D for a carefully chosen compact D ⊆ H2, which is represented
by the darker shading. The components of H2 − J ·D are open horoballs.
Notice that two proper rays in Γ (J, {a, b}) −m−1 (D), which begin at the
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same point, are not necessarily properly homotopic in Γ (J, {a, b})−m−1 (D),
but their images are properly homotopic in H2 − D; so J is semistable at
infinity in H2. Moreover, since each component of H2 − J · D is simply
connected, J is co-semistable at infinity in H2 for the same reason as in
Example 1.

Example 3. Let K ⊆ S3 be a figure-eight knot; endow S3 − K with a
hyperbolic metric; and consider the corresponding proper action of the knot

group J on S̃3 −K = H3. Much like the previous example, there exists
a nice geometric embedding of a Cayley graph of J into H3 and choices of
compact D ⊆ H3 so that H3−J ·D is an infinite collection of (3-dimensional)
open horoballs. Since J itself is known to be 1-ended with semistable funda-
mental group at infinity (a useful case to keep in mind), the first condition
of Theorem 1.1 is immediate. And again, co-semistability at infinity follows
from the simple connectivity of the horoballs.

Example 4. For many years an outstanding class of finitely presented
groups not known to be semistable at ∞ has been the class of finitely pre-
sented ascending HNN extensions whose base groups are finitely generated
but not finitely presented1. While Theorem 3.1 does not establish semista-
bility for this whole class, it does so for a significant subclass — those of
“finite depth”. This new result is established in [Mih], a paper which makes
use of the more technical Main Theorem 3.1 proved here. In particular, al-
lowing the group J to vary (see Remark 1(4)) is important in this example.

Outline of the paper. The paper is organized as follows. We consider
1-ended simply connected locally finite CW complexes Y , and groups J that
act on Y as covering transformations. In §2 we review a number of equivalent
definitions for a space and group to have semistable fundamental group at∞.
In §3 we state our Main Theorem 3.1 in full generality and formally introduce
the two somewhat orthogonal notions in the hypotheses of Theorem 3.1. The
first is that of a finitely generated group J being semistable at ∞ in Y with
respect to a compact set C, and the second defines what it means for J to
be co-semistable at ∞ in Y with respect to C. In §4 we give a geometrical
outline and overview of the proof of the main theorem. In §5 we prove a
number of foundational results. Suppose C is a compact subset of Y and
J is a finitely generated group acting as covering transformations on Y .
Define J · C to be ∪j∈Jj(C). We consider components U of Y − J · C such
that the image of U in J\Y is not contained in a compact set. We call
such U , J-unbounded. We show there are only finitely many J-unbounded
components of Y − J · C, up to translation in J and the J-stabilizer of a
J-unbounded component is an infinite group. In §6 we use van Kampen’s

1The case of finitely presented base group was settled long ago in [Mih85].
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Theorem to show that for a finite subcomplex C of Y , the J-stabilizer of
a J-unbounded component of Y − J · C is a finitely generated group. A
bijection between the ends of the stabilizer of a J-unbounded component of
Y − J ·C and “J-bounded ends” of that component is produced in §7. The
constants that arise in our bijection are shown to be J-equivariant. In §8 we
prove our main theorem. A generalization of our main theorem from CW
complexes to absolute neighborhood retracts is proved in §9.

2. Equivalent definitions of semistability

Some equivalent forms of semistability have been stated in the Introduc-
tion. It will be convenient to have the following:

Theorem 2.1. (see Theorem 3.2[CM14]) With Y as before, the following
are equivalent:

(1) Y has semistable fundamental group at ∞.
(2) Let r : [0,∞) → Y be a proper base ray. Then for any compact set

C there is a compact set D such that for any third compact set E
and loop α based at r(0) whose image lies in Y −D, α is homotopic
to a loop in Y − E, by a homotopy with image in Y − C, where α
tracks r.

(3) For any compact set C there is a compact set D such that if r and
s are proper rays based at v and with image in Y − D, then r and
s are properly homotopic rel{v} by a proper homotopy supported in
Y − C.

(4) If C is compact in Y there is a compact set D in Y such that for
any third compact set E and proper rays r and s based at a vertex
v and with image in Y −D, there is a path α in Y − E connecting
points of r and s such that the loop determined by α and the initial
segments of r and s is homotopically trivial in Y − C.

Proof. That the first three conditions are equivalent is shown in Theorem 3.2
of [CM14]. Condition 4 is clearly equivalent to the more standard Condition
3. �

3. The Main Theorm and its definitions

We are now ready to state our main theorem in its general form. After
doing so, we will provide a detailed discussion of the definitions that go into
that theorem. Both the theorem and the definitions generalize those found
in the introduction.

Theorem 3.1 (Main Theorem). Let Y be a 1-ended simply connected locally
finite CW complex. Assume that for each compact subset C0 of Y there is
a finitely generated group J acting as cell preservering covering transforma-
tions on Y , so that (a) J is semistable at ∞ in Y with respect to C0, and
(b) J is co-semistable at ∞ in Y with respect to C0. Then Y has semistable
fundamental group at ∞.
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Remark 2. If there is a group G (not necessarily finitely generated) acting
as covering transformations on Y such that each of the groups J of Theo-
rem 3.1 is isomorphic to a subgroup of G, then the condition that Y is a
locally finite CW complex can be relaxed to: Y is a locally compact absolute
neighborhood retract (ANR) (see Corollary 9.1).

The distance between vertices of a CW complex will always be the number
of edges in a shortest edge path connecting them. The space Y is a 1-ended
simply connected locally finite CW complex, and for each compact subset
C0 of Y , J(C0) is an infinite finitely generated group acting as covering
transformations on Y and preserving some locally finite cell structure on Y .
Fix ∗ a base vertex in Y . Let J0 be a finite generating set for J and Λ(J, J0)
be the Cayley graph of J with respect to J0. Let z(J,J0) : (Λ(J, J0), 1) →
(Y, ∗) be a J-equivariant map so that each edge of Λ is mapped to an edge
path of length ≤ K(J0). If r is an edge path in Λ, then z(r) is called a
Λ-path in Y . The vertices J∗ are called J-vertices.

If C0 is a compact subset of Y then the group J is semistable at ∞ in Y
with respect to C0 if there exists a compact set C in Y and some (equivalently
any) finite generating set J0 for J such that for any third compact set D
and proper edge path rays r and s in Λ(J, J0) which are based at the same
vertex v and are such that z(r) and z(s) have image in Y −C then there is a
path δ in Y −D connecting z(r) and z(s) such that the loop determined by
δ and the initial segments of z(r) and z(s) is homotopically trivial in Y −C0

(compare to Theorem 2.1(4)).
Note that this definition requires less than one requiring z(r) and z(s) be

properly homotopic rel{z(v)} in Y − C0 (compare to Theorem 2.1(3)). It
may be that the path δ is not homotopic to a path in the image of z by a
homotopy in Y −C0. This definition is independent of generating set J0 and
base point ∗ by a standard argument, although C may change as J0, ∗ and
z do. When J is semistable at infinity in Y with respect to C0, we may say
J is semistable at ∞ in Y with respect to J0, C0, C and z. Observe that if
Ĉ is compact containing C then J is also semistable at∞ in Y with respect
to J0, C0, Ĉ and z.

If J is 1-ended and semistable at∞ or 2-ended, then J is always semistable
at∞ in Y with respect to any compact subset C0 of Y . The semistability of
the fundamental group at∞ of a locally finite CW complex only depends on
the 2-skeleton of the complex (see for example, Lemma 3 [LR75]). Similarly,
the semistability at ∞ of a group in a CW complex only depends on the
2-skeleton of the complex.

The notion of J being co-semistable at infinity in a space Y is a bit
technical, but has its roots in a simple idea that is fundamental to the
main theorems of [GG12] and [Wri92]. in both of these papers J is an
infinite cyclic group acting as covering transformations on a 1-ended simply
connected space Y with pro-monomorphic fundamental group at∞. Wright
[Wri92] showed that under these conditions the following could be proved:
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(∗) Given any compact set C0 ⊂ Y there is a compact set C ⊂ Y such
that any loop in Y − J · C is homotopically trivial in Y − C0.

Condition (∗) is all that is needed in [GG12] and [Wri92] in order to prove
the main theorems. In [GGM] condition (∗) is used to show Y is proper
2-equivalent to T × R (where T is a tree). Interestingly, there are many
examples of finitely presented groups G (and spaces) with infinite cyclic
subgroups satisfying (∗) but the fundamental group at ∞ of G is not pro-
monomorphic (see [GGM]). In fact, if G has pro-monomorphic fundamental
group at ∞, then either G is simply connected at ∞ or (by a result of B.
Bowditch [Bow04]) G is virtually a closed surface group and π∞1 (G) = Z.

Our co-semistability definition generalizes the conditions of (∗) in two fun-
damental ways and our main theorem still concludes that Y has semistable
fundamental group at ∞ (just as in the main theorem of [GG12]).

1) First we expand J from an infinite cyclic group to an arbitrary finitely
generated group and we allow J to change as compact subsets of Y become
larger.

2) We weaken the requirement that loops in Y −J ·C be trivial in Y −C0

to only requiring that loops in Y −J ·C can be “pushed” arbitrarily far out
in Y − C0.

We are now ready to set up our co-semistability definition. A subset S
of Y is bounded in Y if S is contained in a compact subset of Y . Otherwise
S is unbounded in Y . Fix an infinite finitely generated group J acting as
covering transformations on Y and a finite generating set J0 of J . Assume J
respects a cell structure on Y . Let p : Y → J\Y be the quotient map. If K
is a subset of Y , and there is a compact subset D of Y such that K ⊂ J ·D
(equivalently p(K) has image in a compact set), then K is a J-bounded
subset of Y . Otherwise K is a J-unbounded subset of Y . If r : [0,∞) → Y
is proper and pr has image in a compact subset of J\Y then r is said to
be J-bounded. Equivalently, r is a J-bounded proper edge path in Y if and
only if r has image in J ·D for some compact set D ⊂ Y . In this case, there
is an integer M (depending only on D) such that each vertex of r is within
(edge path distance) M of a vertex of J∗. Hence r ‘determines’ a unique
end of the Cayley graph Λ(J, J0).

For a non-empty compact set C0 ⊂ Y and finite subcomplex C containing
C0 in Y , let U be a J-unbounded component of Y − J · C and let r be a
J-bounded proper ray with image in U . We say J is co-semistable at ∞ in
U with respect to r and C0 if for any compact set D and loop α : [0, 1]→ U
with α(0) = α(1) = r(0) there is a homotopy H : [0, 1] × [0, n] → Y − C0

such that H(t, 0) = α(t) for all t ∈ [0, 1] and H(0, s) = H(1, s) = r(s) for
all s ∈ [0, n] and H(t, n) ⊂ Y −D for all t ∈ [0, 1]. This means that α can
be pushed along r by a homotopy in Y − C0 to a loop in Y −D. We say J
is co-semistable at ∞ in Y with respect to C0 (and C) if J is co-semistable
at ∞ in U with respect to r and C0 for each J-unbounded component U of
Y − J · C, and any proper J-bounded ray r in U . Note that if Ĉ is a finite
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complex containing C, then J is also co-semistable at ∞ in Y with respect
to C0 and Ĉ.

It is important to notice that our definition only requires that loops in U
can be pushed arbitrarily far out in Y −C0 along proper J-bounded rays in
U (as opposed to all proper rays in U).

4. An outline of the proof of the main theorem

A number of technical results are necessary to prove the main theorem.
The outline in this section is intended to give the geometric intuition be-
hind these results and describe how they connect to prove the main theorem.
Figure 6 will be referenced throughout this section. Here C0 is an arbitrary
compact subset of Y , J0 is a finite generating set for the group J which
respects a locally finite cell structure on Y and acts as covering transforma-
tions on Y . The finite subcomplex C of Y is such that J is co-semistable
at ∞ in Y with respect to C0 and C, and J is semistable at ∞ in Y with
respect to J0, C0 and C. The proper base ray is r0, E is a finite union of
specially selected compact sets and α is a loop based on r0 with image in
Y − E. The path α is broken into subpaths α = (α1, e1, β1, ẽ1, α2, . . . , αn)
where the αi lie in J · C, the βi lie in Y − J · C and the edges ei and ẽi
serve as “transition edges”. We let F be an arbitrary large compact set and
we must show that α can be pushed along r0 to a loop outside of F by a
homotopy avoiding C0 (see Theorem 2.1 (2)).

In §5 and §6 we show Y −J ·C has only finitely many J-unbounded com-
ponents (up to translation in J) and that the stabilizer of any one of these
components is infinite and finitely generated. We pick a finite collection of
J-unbounded components of Y − J ·C such that no two are J-translates of
one another, and any J-unbounded component of Y − J · C is a translate
of one of these finitely many. Each giUf(i) in Figure 6 is such that gi ∈ J
and Uf(i) is one of these finitely many components. The edges ei have initial
vertex in J ·C and terminal vertex in giUf(i). Similarly for ẽi. The fact that
the stabilizer of a J-unbounded component of Y −J ·C is finitely generated
and infinite allows us to construct the proper edge path rays ri, r̃i, si and s̃i
in Figure 6. Let Si be the (finitely generated infinite) J-stabilizer of giUf(i).
Lemma 7.4 allows us to construct proper edge path rays ri in J ·C (far from
C0) that are “Si-edge paths”, and proper rays si in giUf(i) so that si and ri
are (uniformly over all i) “close” to one another. Hence ri is properly homo-
topic rel{ri(0)} to (γi, ei, si) by a homotopy in Y −C0. This mean ei can be
“pushed” between si and (γ−1

i , ri) into Y − F by a homotopy avoiding C0

and we have the first step in moving α into Y − F by a homotopy avoiding
C0. Similarly for r̃i, s̃i and ẽi.

Since all of the paths/rays αi, γi, ri, γ̃i, and r̃i have image in J · C,
they are uniformly (only depending on the size of the compact set C) close
to J-paths/rays. But the semistability at ∞ of J in Y with respect to
C0 then implies there is a path δi connecting (γ̃−1

i−1, r̃i−1) and (αi, γ
−1
i , ri)
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in Y − F such that the loop determined by δi and the initial segments of
(γ̃−1
i−1, r̃i−1) and (αi, γ

−1
i , ri) is homotopically trivial by a homotopy avoiding

C0. Geometrically that means αi can be pushed outside of F by a homotopy
between (γ̃−1

i−1, r̃i−1) and (γ−1
i , ri), and with image in Y − C0.

All that remains is to push the βi into Y − F by a homotopy between
si and s̃i. A serious technical issue occurs here. If we knew that si and s̃i
converged to the same end of giUf(i) then we could find a path in giUf(i)−F
connecting si and s̃i and Lemma 8.5 explains how to use the assumtion that
J is co-semistable at ∞ in Y with respect to C0, to slide βi between si and
s̃i to a path in Y − F , finishing the proof of the main theorem. But at
this point there is no reason to believe si and s̃i determine the same end
of giUf(i). This is where two of the main lemmas (and two of the most
important ideas) of the paper, Lemmas 8.3 and 8.4 come in. All but finitely
many of the components gUi of Y − J · C avoid a certain compact subset
of E. If giUf(i) is one of these components then Lemma 8.3 explains how
to select the proper ray r̃i and a path ψ in Y − F connecting ri and r̃i so
that the loop determined by ψ, initial segments of ri and r̃i and the path
(γi, ei, βi, ẽi, γ̃

−1
i ) is homotopically trivial in Y − C0 (so that the section of

α defined by (ei, βi, ẽi) can be pushed into Y − F by a homotopy between
(γ−1
i , ri) and (γ̃−1

i , r̃i)). Lemma 8.4 tells us how to select the compact set
E so that if giUf(i) is one of the finitely many remaining components of
Y − J · U , then the proper rays si and s̃i can be selected, so that si and s̃i
converge to the same end of giUf(i). In either case, α is homotopic rel{r0}
to a loop in Y − F by a homotopy in Y − C0.

5. Stabilizers of J-unbounded components

Throughout this section, J is a finitely generated group acting as cell
preserving covering transformations on a simply connected locally finite 1-
ended CW complex Y and p : Y → J\Y is the quotient map. Suppose C, is
a large (see Theorem 6.1) finite subcomplex of Y and U is a J-unbounded
component of Y − J ·C. Lemma 5.7 and Theorem 6.1 show the J-stabilizer
of U is finitely generated and infinite. Lemma 7.3 shows that there is a finite
subcomplex D(C) ⊂ Y such that for any compact E containing D and any
J-unbounded component U of Y −J ·C there is a special bijectionM between
the set of ends of the J-stabilizer of U and the ends of U ∩ (J · E). For C
compact in Y , Lemma 5.4 shows there are only finitely many J-unbounded
components of Y − J · C up to translation in J .

Suppose that J is semistable at ∞ in Y with respect to C0 and C, U is a
J-unbounded component of Y −J ·C and J is co-semistable at∞ in U with
respect to the proper J-bounded ray r and C0. Once again co-semistability
at ∞ only depends on the 2-skeleton of Y and from this point on we may
assume that Y is 2-dimensional. The next two lemmas reduce complexity
again by showing that in certain instances we need only consider locally finite
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2-complexes with edge path loop attaching maps on 2-cells. Such complexes
are in fact simplicial and this is important for our arguments in §6.

Lemma 5.1. Suppose Y is a locally finite 2-complex and the finitely gen-
erated group J acts as cell preserving covering transformations on Y , then
there is a J-equivariant subdivision of the 1-skeleton of Y and a locally finite
2-complex X also admitting a cell preserving J-action such that:

(1) The image of a 2-cell attaching map for Y is a finite subcomplex of
Y .

(2) The space X has the same 1-skeleton as Y and there is a J-equivariant
bijection between the cells of Y and X that is the identity on vertices
and edges and if a is a 2-cell attaching map for Y and a′ is the cor-
responding 2-cell attaching map for X then a and a′ are homotopic
in the image of a, and a′ is an edge path loop with the same image
as a.

(3) The action of J on X is the obvious action induced by the action of
J on Y .

(4) If K1 is a finite subcomplex of Y and K2 is the corresponding finite
subcomplex of X, then there is a bijective correspondence between the
J-unbounded components of Y −J ·K1 and X−J ·K2, so that if U1 is
a J-unbounded component of Y −J ·K1 and U2 is the corresponding
component of X − J ·K2 then U1 and U2 are both a union of open
cells, and the bijection of cells between Y and X induces a bijection
between the open cells of U1 and U2. In particular, the J-stabilizer
of U1 is equal to that of U2.

Proof. Suppose D is a 2-cell of Y and the attaching map on S1 for D is aD.
Then the image of aD is a compact connected subset of the 1-skeleton of Y .
If e is an edge of Y then im(aD) ∩ e is either ∅, a single closed interval or a
pair of closed intervals (we consider a single point to be an interval). In any
case add vertices when necessary to make the end points of these intervals
vertices. This process is automatically J-equivariant and locally finite. The
map aD is homotopic (in the image of aD) to an edge path loop bD with
image the same as that of aD. Let Z be the 1-skeleton of Y . Attach a 2-cell
D′ to Z with attaching map bD. For j ∈ J the attaching map for jD is jaD
and we automatically have an attach map for X (corresponding to the cell
jD) defined by jbD. This construction is J-equivariant. Call the resulting
locally finite 2-complex X and define the action of J on X in the obvious
way.

It remains to prove part 4. Suppose K1 and K2 are corresponding finite
subcomplexes of Y and X respectively. Recall that vertices are open (and
closed) cells of a CW complex and every point of a CW complex belongs to
a unique open cell. If A is an open cell of Y then either A is a cell of J ·K1

or A is a subset of Y − J ·K1.

Claim 5.1.1 Suppose U is a component of Y −J ·K1. If p and q are distinct
points of U then there is a sequence of open cells A0, . . . , An of U such that
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p ∈ A0, q ∈ An and either Ai ∩ Āi+1 6= ∅ or Āi ∩ Ai+1 6= ∅. (Here Ā is the
closure of A in Y , equivalently the closed cell corresponding to A.)

Proof. Let α be a path in U from p to q. By local finiteness, there are
only finitely many closed cells B0, . . . , Bn that intersect the compact set
im(α). Note that Bi 6⊂ K so that the open cell Ai for Bi is a subset of
U . In particular, im(α) ⊂ A0 ∪ · · · ∪ An. Let 0 = x0 and assume that
α(x0) = p ∈ A0. Let x1 be the last point of α−1(B0) in [0, 1] (it may be
that x1 = x0). If α(x1) 6∈ A0 then α(x1) ∈ A1 ∪ · · · ∪ An and assume that
α(x1) ∈ A1. In this case α(x1) ∈ Ā0 ∩A1(= B0 ∩A1).

If α(x1) ∈ A0, then take a sequence of points {ti} in (x1, 1] converging to
x1. Infinitely many α(ti) belong to some Aj for j ≥ 1 (say j = 1). Then
α(x1) ∈ A0 ∩ Ā1.

Let x2 be the last point of α−1(B1) in [0, 1]. Continue inductively. �

Claim 5.1.2 If A1 6= A2 are open cells of Y such that A1 ∩ Ā2 6= ∅ and Ai
corresponds to the open cell Qi of X for i ∈ {1, 2}, then Qi ∩ Q̄i+1 6= ∅.

Proof. We only need check this whenA1 orA2 is a 2-cell (otherwiseQi = Ai).
Note that A1 is not a 2-cell, since otherwise A1 ∩ Ā2 = ∅. If A2 is a 2-cell,
and A1 ∩ Ā2 6= ∅ then by construction A1 ⊂ Ā2, and Q1 ⊂ Q̄2. �

Write U as a union ∪i∈IAi of the open cells in U . Let Qi be the open cell
of X corresponding to Ai. By Claims 5.1.1 and 5.1.2, ∪i∈IQi is a connected
subset of X − J ·K2. The roles of X and Y can be reversed in Claims 5.1.1
and 5.1.2. Then writing a component of X − J ·K2 as a union of its open
cells ∪l∈LQl (and letting Al be the open cell of Y corresponding to Ql) we
have ∪l∈LAl is a connected subset of Y − J ·K1. �

Remark 3. There are maps g : X → Y and f : Y → X that are the
identity on 1-skeletons and such that fg and gf are properly homotopic
to the identity maps relative to the 1-skeleton. In particular, X and Y
are proper homotopy equivalent. This basically follows from the proof of
Theorem 4.1.8 of [Geo08]. These facts are not used in this paper.

The remainder of this section is a collection of elementary (but useful)
lemmas. The boundary of a subset S of Y (denoted ∂S) is the closure of S
(denoted S̄) delete the interior of S. If K is a subcomplex of a 2-complex Y
then ∂K is a union of vertices and edges.

Lemma 5.2. If A ⊂ Y , then p(A) = p(J · A) and p−1(p(A)) = J · A. If C
is compact in Y and B is compact in J\Y such that p(C) ⊂ B, then there
is a compact set A ⊂ Y such that C ⊂ A and p(A) = B.

Proof. The first part of the lemma follows directly from the definition of
J ·A. Cover B ⊂ J\Y by finitely many evenly covered open sets Ui for i ∈
{1, . . . , n} such that Ūi is compact and evenly covered. Pick a finite number
of sheets over the Ūi that cover C and so that there is at least one sheet
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over each Ūi. Call these sheets K1, . . . ,Km. Let A = (∪mi=1Ki) ∩ p−1(B).
Then C ⊂ A, and A is compact since (∪mi=1Ki) is compact and p−1(B) is
closed. We claim that p(A) = B. Clearly p(A) ⊂ B. If b ∈ B, then there is
j ∈ {1, . . . , n} such that b ∈ Ūj . Then there is kb ∈ Kj′ such that p(kb) = b,
and so kb ∈ p−1(B) ∩ (∪mi=1Ki) and p maps A onto B. �

Remark 4. If C is a compact subset of Y , j is an element of J and U is a
component of Y − J ·C then j(U) is a component of Y − J ·C, and p(U) is
a component of J\Y − p(C).

Lemma 5.3. Suppose C is a non-empty compact subset of Y and U is an
unbounded component of Y − J · C. Then ∂U is an unbounded subset of
J · C.

Proof. Otherwise ∂U is closed and bounded in Y and therefore compact. But
∂U separates U from J · C, contradicting the fact that Y is 1-ended. �

The next remark establishes a minimal set of topological conditions on a
topological space X in order to define the number of ends of X.

Remark 5. If X is a connected, locally compact, locally connected Haus-
dorff space and C is compact in X, then C union all bounded components
of X −C is compact, any neighborhood of C contains all but finitely many
components of X − C, and X − C has only finitely many unbounded com-
ponents.

Lemma 5.4. Suppose C is a compact subset of Y and U is a component
of Y − J · C. Then U is J-unbounded if and only if p(U) is an unbounded
component of J\Y − p(C). Hence up to translation by J there are only
finitely many J-unbounded components of Y − J · C.

Proof. First observe that p(C) ∩ p(U) = ∅. Suppose p(U) is unbounded.
Choose a ray r : [0,∞)→ p(U) such that r is proper in J\Y . Select u ∈ U
such that p(u) = r(0). Lift r to r̃ at u. Then r̃ has image in U , and there is
no compact set D ⊂ Y such that im(r̃) ⊂ J ·D. Hence U is J-unbounded.
If U is J-unbounded then by definition, p(U) is not a subset of a compact
subset of Y . �

Lemma 5.5. Suppose C is a compact subset of Y . Then there is a compact
subset D ⊂ Y such that C ⊂ D, every J-bounded component of Y − J ·C is
a subset of J ·D and each component of Y − J ·D is J-unbounded.

Proof. Let U be a J-bounded component of Y − J · C. Then p(U) is a
bounded component of J\Y − p(C). Let B be the union of p(C) and all
bounded components of J\Y − p(C). Then B is compact (Remark 5). By
Lemma 5.2, there is a compact set D containing C such that p(D) = B. �

Lemma 5.6. Suppose C and D are finite subcomplexes of Y . Then only
finitely many J-unbounded components of Y − J · C intersect D.
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Proof. Note that J ·C is a subcomplex of Y . If the lemma is false, then for
each i ∈ Z+ there are distinct unbounded components Ui of Y − J · C such
that Ui ∩D 6= ∅. Choose ui ∈ Ui ∩D. Let Ei be an (open) cell containing
ui. Then Ei ⊂ Ui and the Ei are distinct. Then infinitely many cells of Y
intersect D, contrary to the local finiteness of Y . �

Lemma 5.7. Suppose C is a finite subcomplex of Y and U is a J-unbounded
component of Y − J · C. Then there are infinitely many j ∈ J such that
j(U) = U . In particular the J-stabilizer of U is an infinite subgroup of J .

Proof. If x ∈ ∂U ⊂ ∂(J · C) then any neighborhood of x intersects U . Let
x1, x2, . . . be sequence in U converging to x. By local finiteness infinitely
many xi belong to some open cell D of U and so x ∈ D̄. By Lemma
5.3, there are infinitely many open cells D of U and distinct jD ∈ J such
that jD(C) ∩ D̄ 6= ∅. For all such D, j−1

D (D̄) ∩ C 6= ∅ and by the local

finiteness of Y , there are infinitely many such D with j−1
D (D) all the same.

If j−1
D1

(D1) = j−1
D2

(D2) then jD2j
−1
D1

(D1) = D2 so jD2j
−1
D1

stabilizes U . �

Lemma 5.8. Suppose C is a finite subcomplex of Y , U is a J-unbounded
component of Y − J · C and S < J is the subgroup of J that stabilizes U .
Then for any g ∈ J , the stabilizer of gU is gSg−1.

Proof. Simply observe that hgU = gU if and only if g−1hgU = U if and
only if g−1hg ∈ S if and only if h ∈ gSg−1. �

Lemma 5.9. Suppose C ⊂ Y is compact and R1 is a J-unbounded com-
ponent of Y − J · C. If D ⊂ Y is compact, and C ⊂ D then there is a
J-unbounded component R2 of Y − J ·D such that R2 ⊂ R1.

Proof. Choose an unbounded component V2 of J\Y − p(D) such that V2 ⊂
p(R1). By Lemma 5.4, there is a component R′2 of Y − J · D such that
p(R′2) = V2 and so R′2 is J-unbounded. Choose points x ∈ R1 and y ∈ R′2
such that p(x) = p(y) ∈ V2. Then the covering transformation taking y to
x takes R′2 to a J-unbounded component R2 of Y − J ·D. As x ∈ R2 ∩R1,
we have R2 ⊂ R1. �

6. Finite generation of stabilizers

The following principal result of this section allows us to construct proper
rays in J-unbounded components of Y − J · D that track corresponding
proper rays in a copy of a Cayley graph of the corresponding stabilizer of
that component. These geometric constructions are critical to the proof of
our main theorem.

Theorem 6.1. Suppose J is a finitely generated group acting as cell preserv-
ing covering transformations on the simply connected, 1-ended, 2-dimensional,
locally finite CW complex Y . Let p : Y → J\Y be the quotient map. Suppose
D is a connected finite subcomplex of Y such that the image of π1(p(D)) in
π1(J\Y ) (under the map induced by inclusion of p(D) into J\Y ) generates
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π1(J\Y ). Then for any J-unbounded component V of Y −J ·D, the stabilizer
of V under the action of J is finitely generated.

By Lemma 5.1 and Remark 3 we may assume that Y is simplicial. The-
orem 6.2.11[Geo08] is a cellular version of van Kampen’s theorem. The
following is an application of that theorem.

Theorem 6.2. Suppose X1 and X2 are path connected subcomplexes of a
path connected CW complex X, such that X1 ∪X2=X, and X1 ∩X2 = X0

is non-empty and path connected. Let x0 ∈ X0. For i = 0, 1, 2 let Ai be
the image of π1(Xi, x0) in π1(X,x0) under the map induced by inclusion
of Xi into X. Then π1(X,x0) is isomorphic to the amalgamated product
A1 ∗A0 A2.

Theorem 6.3. Suppose that X is a connected locally finite 2-dimensional
simplicial complex. If K is a finite subcomplex of X such that the inclusion
map i : K ↪→ X induces an epimorphism on fundamental group and U is an
unbounded component of X −K then the image of π1(U) in π1(X), under
the map induced by the inclusion of U into X is a finitely generated group.

Proof. If V is a bounded component of X −K then V ∪K is a finite sub-
complex of X. So without loss, assume that each component of X −K is
unbounded. If e is edge in X −K and both vertices of e belong to K, then
by baracentric subdivision, we may assume that each open edge in X −K
has at least one vertex in X −K. Equivalently, if both vertices of an edge
belong to K, then the edge belongs to K. If T is a triangle of X and each
vertex of T belongs to K, then each edge belongs to K, and T belongs to
K (otherwise the open triangle of T is a bounded component of X −K).

The largest subcomplex Z of X contained in a component U of X −K
contains all vertices of X that are in U , all edges each of whose vertices are
in U , and all triangles each of whose vertices are in U .

Lemma 6.4. Suppose that U is a component of X −K and Z is the largest
subcomplex of X contained in U . Then Z is a strong deformation retract of
U . In particular, Z is connected.

Proof. If e (resp. T ) is an open edge (resp. triangle) of X that is a subset
of U , but not of Z, then some vertex of e (respectively T ) belongs to K
and some vertex of e (resp. T ) belongs to Z. Say e has vertices v and
w and v ∈ Z and w ∈ K then clearly [v, w) linearly strong deformation
retracts to v. If T is a triangle of X with vertices v, w ∈ Z and u ∈ K then
for each point p ∈ [v, w] the linear strong deformation retraction from of
(u, p] to p agrees with those defined for (u, v] and (u,w] and defines a strong
deformation for the triangle [v, w, u] − {u} to the edge [v, w]. Similarly if
v ∈ Z and u,w ∈ K. Combining these deformation retractions gives a
strong deformation retraction of U to Z. �

Suppose that U is a component of X−K and Z is the largest subcomplex
of X contained in U . Let Q1 be the (finite) subcomplex of X consisting of
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all edges and triangles that intersect both U and K (and hence intersect
both Z and K). By Lemma 6.4 we may add finitely many edges in Z to Q1

so that the resulting complex Q2, and Q2 ∩ Z are connected. The complex
Q3 = Q2 ∪ (X − U) is a connected subcomplex of X.

The subcomplexes Q3 and Z are connected and cover X, and Q3 ∩ Z =
Q2 ∩ Z is a non-empty connected finite subcomplex of X. Let A0, A1 and
A2 be the image of π1(Q3 ∩ Z), π1(Q3) and π1(Z) respectively in π1(X)
under the homomorphism induced by inclusion. By Theorem 6.2, π1(X)
is isomorphic to the amalgamated product A1 ∗A0 A2. Now as K ⊂ Q3,
A1 = π1(X). But then normal forms in amalgamated products imply that
A2 = A0. AsQ3∩Z is a finite complex, A0 and hence A2 is finitely generated.
This completes the proof of Theorem 6.3. �

Suppose J is a finitely generated group acting on a simply connected
2-dimensional simplicial complex Y and let K be a finite subcomplex of
J\Y such that the image of π1(K) under the homomorphism induced by
the inclusion map of K into J\Y , generates π1(J\Y ). Let D be a finite
subcomplex of Y that projects onto K so that p−1(K) = J · D. Let X1

be an unbounded component of J\Y − K. The number of J-unbounded
components of Y − J · D that project to X1 is the index of the image of
π1(X1) in π1(J\Y ) = J under the homomorphism induced by inclusion; and
the stabilizer of such a J-unbounded component is isomorphic to the image
of π1(X1) in π1(J\Y ) = J under the homomorphism induced by inclusion.
Hence Theorem 6.1 is a direct corollary of Theorem 6.3.

7. A bijection between J-bounded ends and stabilizers

As usual J0 is a finite generating set for an infinite group J which acts
as covering transformations on a 1-ended simply connected locally finite 2-
dimensional CW complex Y . Assume that C is a finite subcomplex of Y
and U is a J-unbounded component of Y − J · C. The main result of this
section connects the ends of the J-stabilizer of U to the J-bounded ends
of U (and allows us to construct the r and s rays in Figure 6). Recall
z : (Λ(J, J0), 1)→ (Y, ∗) and K is an integer such that for each edge e of Λ,
z(e) is an edge path of length ≤ K.

Lemma 7.1. Suppose C and D are finite subcomplexes of Y , U is a J-
unbounded component of Y − J · C and some vertex of J ·D belongs to U .
Let S be the J-stabilizer of U . Then there is an integer N7.1(U,C,D) such
that for each vertex v ∈ U ∩ (J ·D) there is an edge path of length ≤ N from
v to S∗ and for each element s ∈ S there is an edge path of length ≤ N from
s∗ to a vertex of U ∩ (J ·D).

Proof. Without loss, assume that ∗ ∈ D and D is connected. Let A be an
integer such that any two vertices in D can be connected by an edge path of
length ≤ A. For each vertex v of U ∩ (J ·D) let αv be a path of length ≤ A
from v to a vertex wv∗ of J∗. The covering transformation w−1

v takes αv to
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an edge path ending at ∗ and of length ≤ A. The vertices of U ∩ (J ·D) are
partitioned into a finite collection of equivalence classes, where v and u are
related if w−1

v (αv) and w−1
u (αu) have the same initial point. Equivalently,

wvw
−1
u u = v. In particular, u ∼ v implies wvw

−1
u ∈ S. Let dΛ denote edge

path distance in the Cayley graph Λ(J, J0) and |g|Λ = dΛ(1, g). Note that,
as vertices of Λ:

dΛ(wvw
−1
u , wv) = |wu|Λ

For each (of the finitely many) equivalence class of vertices in U ∩ (J ·D),
distinguish u in that class. Let N1 be the largest of the numbers |wu|Λ
(over the distinguished u). If u is distinguished and v ∼ u then let β be
an edge path in Λ of length ≤ N1 from wv to wvw

−1
u . Then zβ (from

wv∗ to wvw
−1
u ∗ ∈ S∗) has length ≤ KN1. The path (αv, zβ) (from v to

wvw
−1
u ∗ ∈ S∗) has length ≤ N1K +A.

Let α be an edge path from ∗ to a vertex of U ∩ (J ·D). Then for each
s ∈ S, s(α) is an edge path from s∗ to a vertex of U ∩ (J ·D). Let N2 = |α|
then let N be the largest of the integers N1K +A and N2. �

Remark 6. Assume we are in the setup of Lemma 7.1. Suppose g ∈ J .
Then each vertex of (gU) ∩ (J · D) is within N of a vertex of gS∗ and
within N + |g|K of gSg−1∗ (as dΛ(gs, gsg−1) = |g−1|), where by Lemma
5.8, gSg−1 stabilizes gU . Also, each vertex of gS∗ is within N of a vertex
of (gU) ∩ (J ·D) and each vertex of gSg−1∗ is within N + |g|K of a vertex
of (gU)∩ (J ·D). By Lemma 5.4 there are only finitely many J-unbounded
components of Y −J ·C up to translation in J . Hence finitely many integers
N cover all cases.

If C ⊂ E are compact subsets of Y and U a J-unbounded component of
Y − J ·C, let E(U,E) be the set of equivalence classes of J-bounded proper
edge path rays of U ∩ (J · E), where two such rays r and s are equivalent
if for any compact set F in Y there is an edge path from a vertex of r
to a vertex of s with image in (U ∩ (J · E)) − F . If X is a connected
locally finite CW complex, let E(X) be the set of ends of X. In the next
lemma it is not necessary to factor the map m through z : Λ(J, J0) → Y
in order to be true, but for our purposes, it is more applicable this way.
For a 2-dimensional CW complex X and subcomplex A of X, let A1 be the
subcomplex comprised of A, union all vertices connected by an edge to a
vertex of A, union all edges with at least one vertex in A. Let St(A) be A1

union all 2-cells whose attaching maps have image in A1. Inductively define
Stn(A) = St(Stn−1(A)) for all n > 1. The next lemma is a standard result
that we will employ a number of times.

Lemma 7.2. Suppose L is a positive integer, then there is an integer M(L)
such that if α is an edge path loop in Y of length ≤ L and α contains a
vertex of J∗, then α is homotopically trivial in StM(L)(v) for any vertex v
of α.
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Proof. Since Y is simply connected each of the (finitely many) edge path
loops at ∗ which have length ≤ L is homotopically trivial in StM1(∗) for
some integer M1. If α is a loop at ∗ of length L and v is a vertex of α then
StM1(∗) ⊂ StM1+L(v) and so α is homotopically trivial in StM (v) where
M = M1 + L. The lemma follows by translation in J . �

Lemma 7.3. Suppose C is a finite subcomplex of Y and U is a J-unbounded
component of Y − J · C. Let S0 be a finite generating set for S (the J-
stabilizer of U), and let Λ(S, S0) be the Cayley graph of S with respect to
S0. Let m1 : Λ(S, S0)→ Λ(J, J0) be an S-equivariant map where m1(v) = v
for each vertex v of Λ(S, S0), and each edge of Λ(S, S0) is mapped to an edge
path in Λ(J, J0). Let m = zm1 : Λ(S, S0)→ Y . Then there is a compact set
D7.3(C,U, S0) ⊂ Y such that for any compact subset E of Y containing D,
there is a bijection

MU : E(Λ(S, S0)) �� E(U,E) = E(U,D)

and an integer I7.3(U,C,D) such that if q is a proper edge path ray in
Λ(S, S0) and M([q]) = [t] then there is a t′ ∈ [t] such that for each ver-
tex v of m(q) there is an edge path of length ≤ I from v to a vertex of t′

and if w is a vertex of t′ then there is an edge path of length ≤ I from w to
a vertex of m(q).

Proof. Throughout this proof Λ = Λ(S, S0). We call the points m(S)(=
S∗) ⊂ Y , the S-vertices of Y . There is an integer B(S0) such that if e is
an edge of Λ then the edge path m(e) has length ≤ B. Fix α0 an edge
path in Y from ∗ to a vertex of u ∈ U . If [v, w] is an edge of Λ then
(vα−1

0 ,m(e), wα0) is an edge path of length ≤ B+ 2|α0| in Y connecting vu
and wu (the terminal points of v(α0) and w(α0)). Hence there is an integer
A (depending only on the integer B + 2|α0|) and an edge path of length
≤ A in U from the terminal point of v(α0) to the terminal point of w(α0).
Let I = |α0|+ max{A,B}. Let D1 be a finite subcomplex of Y containing
StA+B(∗)∪St(C). By Lemma 7.1 there is an integer N such that each vertex
of (J ·D1)∩U is connected by an edge path of length ≤ N to a vertex of S∗.
There is an integer Z such that if a and b are vertices of U which belong to
an edge path in Y of length ≤ N + |α0|, and this path contains a point of
J∗, then there is an edge path of length ≤ Z in U connecting a and b. Let
D contain D1 ∪ StZ+N (∗).

Let q be a proper edge path ray in Λ with q(0) = 1. Let the consecutive
S-vertices of m(q) be v0 = ∗, v1, v2, . . .. (So the edge path distance in Y
between vi and vi+1 is ≤ B.) For simplicity assume that vi is the element
of S that maps ∗ to vi. Then vi(α0) is an edge path that ends in U . By the
definition of D1, there is an edge path βi in U ∩ (J ·D) from the end point
of vi(α0) to the end point of vi+1(α0) of length ≤ A (see the left hand side
of Figure 2). For each vertex v of the proper edge path ray βq = (β0, β1, . . .)
(in U ∩ (J ·D)) there is an edge path of length ≤ A+ |α0| ≤ I from v to a
vertex of m(q). For each vertex w of m(q) there is an edge path of length
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≤ B + |α0| ≤ I from w to a vertex of βq. In particular, βq is a proper
J-bounded ray in U . If p ∈ [q] ∈ E(Λ(S, S0)) (with p(0) = 1) then m(p)
is of bounded distance from βp. If δi is a sequence of edge paths in Λ each
beginning at a vertex of q and ending at a vertex of p, such that any compact
subset intersects only finitely many δi, then the paths m(δi) connect m(q)
to m(p) and (since m is a proper map) any compact subset of Y intersects
only finitely many m(δi). The m(δi) determine (using translates of α0 as
above) edge paths in U ∩ (J · D) connecting βq and βp so that [βp] = [βq]
in E(U,E) for any finite subcomplex E of Y which contains D. This defines
a map M : E(Λ)→ E(U,E) which satisfies the last condition of our lemma
and it remains to show that M is bijective.

Let r be a proper edge path J-bounded ray in U . Then r has image
in J · E for some finite subcomplex E containing D. Let v1, v2, . . . be the
consecutive vertices of r. By Lemma 7.1 there is an integer NE such that
each vi is within NE of S∗. Let τi be a shortest edge path from vi to S∗,
so that |τi| ≤ NE . We may assume without loss that the image of τi is in
J · E. Let wi ∈ S∗ be the terminal point of τi. Let zi be the first vertex of
τi in J ·D1. Then the segment of τi from zi to wi has length ≤ N . For each
i there is an edge path in Y of length ≤ 2NE + 1 connecting wi to wi+1.
Hence there is a proper edge path ray q(r) in Λ such that m(q(r)) contains
each wi. The proper edge path ray βq(r) has image in U ∩ (J ·D1) and there
is an edge path of length ≤ Z in U ∩ (J · D) from zi to a vertex of βq(r).
Hence there is an edge path in U ∩ (J ·E) of length ≤ Z +NE from vi to a
vertex of βq(r) so that [r] = [βq(r)] in E(U,E). In particular, M is onto.

Finally we showM is injective. Suppose a and b are distinct proper edge
path rays in Λ with initial point 1, such that [βa] = [βb] in E(U,E) for some
E containing D. Let τi be a sequence of edge paths in U ∩(J ·E) where each
begins at a vertex of βa, ends at a vertex of βb and so that only finitely many
intersect any given compact set (a cofinal sequence). By the construction of
βa and βb we may assume the initial point of τi is the end point of viα0 for
vi a vertex of a in Λ and the terminal point of τi is the end point of wiα0

for wi a vertex of b. By Lemma 7.1 there is an integer NE(≥ |α0|) such
that each vertex of τi is within NE of S∗. For each i, this defines a finite
sequence Ai of points in S∗ beginning with vi∗ on m(a), ending with wi∗ on
m(b), each within NE of a point of τi and adjacent points of Ai are within
2NE + 1 of one another. Since the τi are cofinal, so are the Ai. Since the
distance between adjacent points of Ai is bounded, if u and v are vertices of
Λ(S, S0) such that m(u) and m(v) are adjacent in Ai then there is a bound
on the distance between u and v in Λ(S, S0). This implies a and b determine
the same end of Λ(S, S0). �

Remark 7. Consider Lemma 7.3 for components gU of Y − J · C for
g ∈ J . The stabilizer of gU is gSg−1 and there may be no bound on the
integers I(gU,C,D) or the size of D(C, gU). For gU , one can consider
instead mg : Λ(S, S0)→ Y by mg(x) = gm(x) (so mg(1) = g∗). Lemma 7.4
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is a generalization of Lemma 7.3 that applies to all J-translates of U . Since
there are only finitely many J-unbounded components of Y − J · C up to
J-translation, the dependency of I and D on U can be eliminated and in
the next lemma I7.4 and D7.4 are taken to only depend on C.

For C compact in Y , let U = {U1, . . . , Ul} be a set of J-unbounded
components of Y − J · C such that if U is any J-unbounded component
of Y − J · C then U = gUi for some g ∈ J and some i ∈ {1, . . . , l}. Also
assume that Ui 6= gUj for any i 6= j and any g ∈ J . Call U a component
transversal for Y − J · C. Let S0

i be a finite generating set for Si, the J-
stabilizer of Ui and Λi = Λ(Si, S

0
i ) the Cayley graph of Si with respect to

S0
i . For g ∈ J , let m(g,i) : Λi → Y be defined by m(g,i)(x) = gmi(x) (where
mi : Λi → Y is defined by Lemma 7.3). In particular, m(g,i)(Si) = gSi∗.
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Lemma 7.4. For i ∈ {1, . . . , l}, let Di = D7.3(C,Ui, S
0
i ), D7.4(C) = ∪li=1Di ⊂

Y , I7.4(C) = max{I7.3(Ui, C,Di}li=1 and Mi : E(Λi) �� E(Ui, E) (Lemma
7.3). For E compact containing D7.4(C) and g ∈ J , there is a bijection

M(g,i) : E(Λi) �� E(gUi, E) where M(g,i)([q]) = gMi([q])

such that if q is a proper edge path ray in Λi and M(g,i)([q]) = [t] then there
is t′ ∈ [t] such that for each vertex v of m(g,i)(q) there is an edge path of
length ≤ I7.4(C) from v to a vertex of t′ and if w is a vertex of t′ then there
is an edge path of length ≤ I7.4(C) from w to a vertex of m(g,i)(q) = gmi(q).
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8. Proof of the main theorem

We set notation for the proof of our main theorem. Let C0 be compact
in Y , and J0 be a finite generating set for the infinite group J which acts as
cell preserving covering transformations on Y . Let C be a finite subcomplex
of Y such that J is co-semistable at ∞ in Y with respect to C0 and C, and
J is semistable at∞ in Y with respect to J0, C0 and C. As in the setup for
Lemma 7.4 we let U = {U1, . . . , Ul} be a component transversal for Y −J ·C,
S0
i be a finite generating set for Si, the J-stabilizer of Ui and Λi = Λ(Si, S

0
i )

be the Cayley graph of Si with respect to S0
i . For g ∈ J , let m(g,i) : Λi → Y

be defined by m(g,i)(x) = gmi(x) (where mi : Λi → Y is defined by Lemma
7.3). In particular, m(g,i)(Si) = gSi∗.

The next lemma is a direct consequence of Lemma 7.1.

Lemma 8.1. Let Ni be N7.1(Ui, C, St(C)) and N8.1 = max{N1, . . . , Nl}. If
g ∈ J and [v, w] is an edge of Y with v ∈ gUi and w ∈ J · C then there are
edge paths of length ≤ N8.1 from v and w to gSi∗ and for each q ∈ Si∗, an
edge path of length ≤ N8.1 from gq to a vertex of St(J · C) ∩ gUi.

Lemma 8.2. There is an integer M8.2(C) and compact set D8.2(C) in Y
containing StM8.2(C) such that for any Ui ∈ {U1, . . . , Ul}, g ∈ J and edge
[v, w] of Y with v ∈ gUi −D8.2 and w ∈ J · C, (see Figure 3) we have the
following:

(1) There is an edge path γ of length ≤ N8.1 from a vertex x = gx′∗ ∈
gSi∗ to w, where x′ is a vertex in an unbounded component Q of
Λ(Si, S

0
i )−m−1

(g,i)(St
M8.2(C)).

(2) If γ is as in part 1, and r′0 is any proper edge path ray in Q beginning
at x′ (so r0 = m(g,i)(r

′
0) is a proper edge path ray beginning at x),

then there is a proper J-bounded ray sv beginning at v such that sv
has image in gUi and is properly homotopic rel{v} to ([v, w], γ−1, r0)
by a proper homotopy with image in StM8.2(im(r0)) ⊂ Y − C. So
(by hypothesis) J is co-semistable at ∞ in gUi with respect to sv and
C0.

Proof. Let A′ be an integer such that if s ∈ ∪li=1S
0
i then there is an edge

path of length ≤ A′ in Λ(J, J0) from 1 to s. The image of this path under
z : (Λ, 1) → (Y, ∗) is a path in Y of length ≤ KA′ = A. Let N = N8.1.
Select B an integer such that if a and b are vertices of St(J · C) ∩ gUi (for
any g ∈ J and i ∈ {1, . . . , l}) of distance ≤ 2N + A+ 1 in Y then they can
be joined by an edge path of length ≤ B in gU . By Lemma 7.2 there is an
integer M8.2 such that if β is a loop in Y of length ≤ A+ B + 2N + 1 and
containing a vertex of J∗, then β is homotopically trivial in StM (b) for any
vertex b of β.

There are only finitely many pairs (g, i) with g ∈ J and i ∈ {1, . . . , l} such
that gSi ∗ ∩StM (C) 6= ∅. If gSi ∩ StM (C) = ∅, then m−1

(g,i)(St
M (C)) = ∅.

Lemma 8.1 implies there is an edge path γ of length ≤ N8.1 from a vertex
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x = gx′∗ ∈ gSi∗ to w. Now let r′0 = (e0, e1, . . .) be any proper edge path
ray at x′ ∈ Λ(Si, S

0
i ). Let τi be the edge path m(g,i)(ei) so that τi is an edge

path in Y of length ≤ A and r0 = m(g,i)(r
′
0) = (τ1, τ2, . . .) is a proper edge

path at x (see Figure 3).

C
StM (C)

D

gUi

• •v w •γ x ∈ gSi∗
τ1β1

• •γ1v1 x1

τ2β2

• •γ2v2 x2

r0sv

Figure 3

Let x′0 = x′ and x′j be the end point of ej so that xj = gx′j∗ is the end

point of τj . Let γ0 = (γ, [w, v]) (of length ≤ N + 1). For j ≥ 1, let γj be
an edge path of length ≤ N8.1 from xj to vj ∈ gUi ∩ St(J · C) (by Lemma
8.1). By the definition of B there is an edge path βj in gUi from vj to vj+1

of length ≤ B. Let sv be the proper edge path (β1, β2, . . .), with initial
vertex v. The loop (γj−1, βj , γ

−1
j , τ−1

j ) has length ≤ A + B + 2N + 1 and

contains the J-vertex xj , and so is homotopically trivial in StM (xj) ⊂ Y −C.
Combining these homotopies shows that sv is properly homotopic rel{v} to
([v, w], γ−1, r0) by a proper homotopy with image in StM (im(r0)) ⊂ Y −C.
As long as D8.2 contains StM (C) the conclusion of our lemma is satisfied
for all such pairs (g, i).

If (g, i) is one of the finitely many pairs such that gSi ∩StM (C) 6= ∅ then
we need only find a compact D(g,i) so that the lemma is valid for the pair

(g, i) and D(g,i), since we can let D be compact containing StM (C) and the
union of these finitely many D(g,i).
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Fix (g, i) and let E be compact in Λ(Si, S
0
i ) = Λi containing the compact

set m−1
(g,i)(St

M (C)) and all bounded components of Λi − m−1
(g,i)(St

M (C)).

Let D(g,i) be compact in Y containing m(g,i)(E). Select γ exactly as in
the first case. Since x′ is a vertex of Λi in an unbounded component Q of
Λi−m−1

(g,i)(St
M (C)), there is a proper edge path ray r′0 at x′ with image in Q.

Then r0 = m(g,i)(r
′
0) is a proper edge path ray at x and the vertices of r′0 are

mapped to vertices x0 = x, x1, . . . of (gSi∗) − StM (C). Select paths τi and
βi as in the first case and the same argument shows that sv = (β1, β2, . . .)
is properly homotopic rel{v} to ([v, w], γ−1, r0) by a proper homotopy with
image in StM (im(r0)) ⊂ Y − C. �

Remark 8. The homotopy of Lemma 8.2 (pictured in Figure 3) of sv to
([v, w], γ−1, r0) is sometimes called a ladder homotopy. The rungs of the
ladder are the γi and the sides of the ladder are sv and r0. The loops
determined by two consecutive rungs and the segments of the two sides con-
necting these rungs have bounded length and contain a vertex of J∗. Lemma
7.2 implies there is an integer M such that each such loop is homotopically
trivial by a homotopy in StM (v) for v any vertex of that loop. Combining
these homotopies gives a ladder homotopy.

We briefly recall the outline of §4. We determine a compact set E(C0, C)
such that for any compact set F , loops outside of E and based on a proper
base ray r0 can be pushed outside F relative to r0 and by a homotopy
avoiding C0. A loop outside E is written in the form

α = (α1, e1, β1, ẽ1, α2, e2β2, ẽ2 . . . , αn−1, en−1, βn−1, ẽn−1, αn)

where αi is an edge path in J ·C, ei (respectively ẽi) is an edge with terminal
(respectively initial) vertex in Y − J ·C and βi is an edge path in Y − J ·C
(see Figure 6).

We can push the αj subpaths of α arbitrarily far out between (γ̃−1
j−1, r̃j−1)

and (γ−1
j , rj) using the semistability of J in Y with respect to C. Lemmas

8.3 and 8.5 consider subpaths of the form (e, β, ẽ) in α. The edges e and ẽ
are properly pushed off to infinity using ladder homotopies given by Lemma
8.2. The β paths present difficulties and two cases are considered. If β lies
in gUi and gSi∗ does not intersect StM8.2(C) then Lemma 8.3, provides a
proper homotopy to compatibly push (e, β, ẽ) arbitrarily far out. In Lemma
8.5 we consider paths (e, β, ẽ) not considered in Lemma 8.3. For g ∈ J
and i ∈ {1, . . . , l} there are only finitely many cosets gSi such that (gSi∗)∩
StM8.2(C) 6= ∅ and we are reduced to considering paths (e, β, ẽ) with β in
gUi for these gSi.

Lemma 8.3. Suppose that g ∈ J , i ∈ {1, . . . , l} and ([w, v], β, [ṽ, w̃]) is an
edge path in Y −D8.2. Suppose further that

1) w, w̃ ∈ J · C and v, ṽ ∈ gUi,
2) β is an edge path in gUi,
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3) γ (respectively γ̃) is an edge path of length ≤ N8.1 from x = gx′ ∈ gSi∗
(resp. x̃ = gx̃′ ∈ gSi) to w (resp. w̃), (such paths exist by Lemma 8.1) and

4) x′ and x̃′ belong to the same unbounded component Q of Λ(Si, S
0
i ) −

m−1
(g,i)(St

M8.2(C)) (in particular, when m−1
(g,i)(St

M8.2(C)) = ∅) then:

There are proper Λi-edge path rays r′ at x′ and r̃′ at x̃′ such that, r′ and
r̃′ have image in Q and if r = m(g,i)(r

′) and r̃ = m(g,i)(r̃
′) then for any

compact set F ⊂ Y , there is an integer d ≥ 0 and edge path ψ in Y − F
from r(d) to r̃(d) such that the loop:

(r|−1
[0,d], γ, [w, v], β, [ṽ, w̃], γ̃−1, r̃|[0,d], ψ

−1)

is homotopically trivial by a homotopy in Y − C0. (So ([w, v], β, [ṽ, w̃]) can
be pushed between (γ−1, r) and (γ̃−1, r̃) to a path in Y − F , by a homotopy
in Y − C0.)

Proof. Let r′ be any proper edge path in Q with initial point x′. Let τ ′ =
(e′, . . . , e′k) be an edge path in Q from x̃′ to x′ with consecutive vertices
(x̃′ = t′0, t

′, . . . , t′k = x′). Let r̃′ = (τ ′, r′). Let tj = m(g,i)(t
′
j) for all j ∈

{0, 1, . . . , k}, r = m(g,i)(r
′), r̃ = m(g,i)(r̃

′) and τ = m(g,i)(τ
′) (an edge path

from x̃ to x with image in Y − StM8.2(C)).

φ

• • • • • •
x γ w v β ṽ w̃ γ̃ x̃

r s

H2

s

H3 •

δ

v •
w

•
γ

r

τ

x

H1

H2

(τ, r) = r̃

Figure 4

By Lemma 8.1 and the definition of M8.2, there is an edge path δ in gUi
from ṽ to v such that the loop ([ṽ, w̃], γ̃−1, τ, γ, [w, v], δ−1) is homotopically
trivial by a ladder homotopy H1 (with rungs connecting the two sides τ and
δ and) with image in StM8.2({t0, t, . . . , tk}) ⊂ Y − C.

By Lemma 8.2, there is a proper edge path ray s at v and with image
in gUi such that r is properly homotopic rel{x} to (γ, [w, v], s) by a ladder
homotopy H2 in Y −C. Since J is co-semistable at ∞ in Y with respect to
C0 and C (and s is J-bounded), the loop (β, δ) can be pushed along s by
a homotopy H3 (with image in Y − C0) to a loop φ in Y − F , where if φ
is based at s(k), then s([k,∞)) avoids F . Combine these homotopies as in
Figure 4 to obtain ψ. �
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If U is a J-unbounded component of Y − J · C, and s and s̃ are proper
edge path rays in Y and with image in U , then we say s and s̃ converge
to the same end of U (in Y ) if for any compact set F in Y , there are edge
paths in U − F connecting s and s̃. Figure 6 can serve as a visual aid for
Lemma 8.4.

Lemma 8.4. There is a compact set D8.4(C,U1, . . . , Ul) such that:
If g ∈ J , i ∈ {1, . . . , l}, and ([w, v], β, [ṽ, w̃]) is an edge path in Y −D8.4

with w, w̃ ∈ J · C and β a path in gUi, then there are edge paths γ and γ̃
of length ≤ N8.1 from x = gx′∗ ∈ gSi∗ to w and x̃ = gx̃′∗ ∈ gSi∗ to w̃
respectively, and proper edge path rays r′ at x′ and r̃′ at x̃′ with image in
Λ(Si, S

0
i ) −m−1

(g,i)(D8.2) such that for r = m(g,i)(r
′) and r̃ = m(g,i)(r̃

′), one

of the following two statements is true:

(1) For any compact set F in Y , there is an integer d ∈ [0,∞) and edge
path ψ in Y − F from r(d) to r̃(d) such that the loop

(r|−1
[0,d], γ, [w, v], β, [ṽ, w̃], γ̃−1, r̃|[0,d], ψ

−1)

is homotopically trivial by a homotopy in Y − C0.
(2) There are proper J-bounded edge path rays s at v and s̃ at ṽ with

image in gUi such that, the ray s (respectively s̃) is properly homo-
topic rel{v} to ([v, w], γ−1, r) (respectively rel{ṽ} to ([ṽ, w̃], γ̃−1, r̃)
by a (ladder) homotopy in Y −C (just as in Lemma 8.2), and s and
s̃ converge to the same end of gUi.

Proof. We define D8.4 to be the union of a finite collection of compact
sets. The first is D = D8.2(C) (which contains StM8.2(C)). If Λ(Si, S

0
i ) −

m−1
(g,i)(St

M8.2(C)) has only one unbounded component (in particular when

m−1
g,i (St

M8.2(C)) = ∅) then conclusion 1) is satisfied (by Lemma 8.3). There

are only finitely many pairs (g, i) with g ∈ J and i ∈ {1, . . . , l} such that
Λ(Si, S

0
i )−m−1

g,i (St
M8.2(C)) has more than one unbounded component. List

these pairs as (g(1), ι(1)), . . . , (g(t), ι(t)). Now assume that gUi = g(q)Uι(q)
for some q ∈ {1, . . . , t}. There are finitely many unbounded components
of Λ(Si, S

0
i ) −m−1

(g,i)(St
M8.2(C)). List them as K1, . . . ,Ka. Consider pairs

(Kj ,Kk) with j 6= k.
If for every compact set F in Y , there are vertices y′j ∈ Kj and y′k ∈ Kk,

edge paths τj and τk of length ≤ N8.1 from m(g,i)(y
′
j) to gUi and m(g,i)(y

′
k) to

gUi respectively, and an edge path in gUi−F connecting the terminal point
of τj and the terminal point of τk, then we call the pair (Kj ,Kk) inseparable
and let F(j,k) = ∅. Otherwise, we call the pair separable and let F(j,k) be the
compact subset of Y for which this condition fails. Let E(g,i) = ∪j 6=kF(j,k).
As gUi = gqUι(q), define Eq = E(g,i).

We now define D8.4 = D8.2(C) ∪ E1 ∪ · · · ∪ Et. As noted above we need
only consider the case where β has image in g(q)Uι(q) for some q ∈ {1, . . . , t}.
Simplifying notation again let g = g(q) and Ui = Uι(q). Lemma 8.1 implies
there are edge paths γ and γ̃ of length ≤ N8.1 from x = gx′∗ ∈ gSi∗ to w and
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x̃ = gx̃′∗ ∈ gSi∗ to w̃ respectively. Again let K1, . . . ,Ka be the unbounded
components of Λ(Si, S

0
i )−m−1

(g,i)(St
M8.2(C)). Assume that x′ belongs to K1.

If x̃′ also belongs to K1, then conclusion 1) of our lemma follows directly
from Lemma 8.3.

So, we may assume x̃′ belongs to K2 6= K1. Notice that the existence of
β (in Y −D8.4) implies that the pair (K1,K2) is inseparable. This implies
that there is a sequence of pairs of vertices (y′1(j), y

′
2(j)) for j ∈ {1, 2, . . .}

with y′1(j) ∈ K1, y′2(j) ∈ K2 and edge paths τ1(j) and τ2(j) of length ≤ N8.1

from m(g,i)(y
′
1(j)) to gUi and m(g,i)(y

′
2(j)) to gUi respectively, and an edge

path βj in gUi from the terminal point of τ1(j) to the terminal point of τ2(j)

and such that only finitely may βj intersect any compact set. Pick proper
edge path rays r′ in K1 at x′ and r̃′ in K2 at x̃′ so that for infinitely many
pairs (y′1(j), y

′
2(j)), r

′ passes through y′1(j) and r̃′ passes through y′2(j). Let

r = m(g,i)(r
′) and r̃ = m(g,i)(r

′). Choose s and s̃ for r and r̃ respectively as
in Lemma 8.2 where γ and γ̃ for r and r̃ are chosen to be τ1(j) and τ2(j) when
ever possible. Lemma 8.2 implies the ray s is properly homotopic rel{v} to
([v, w], γ−1

w , r) and s̃ is properly homotopic rel{ṽ} to ([ṽ, w̃], γ̃−1, r̃) by ladder
homotopies in Y −C. The paths βj show that s and s̃ converge to the same
end of gUi, so that conclusion 2) of our lemma is satisfied. �

Lemma 8.5. Suppose U is a J-unbounded component of Y −J ·C, F is any
compact subset of Y and s1 and s2 are J-bounded proper edge path rays in
U determining the same end of U , and with s1(0) = s2(0), then there is an
integer n and a path β from the vertex s1(n) to the vertex s2(n) such that
the image of β is in Y −F and (s1|[0,n], β, s2|−1

[0,n]) is homotopically trivial in

Y − C0.

Proof. Choose an integer n such that s1([n,∞)) and s2([n,∞)) avoid F .
Since s1 and s2 determine the same end of U , there is an edge path α in
U −F from s1(n) to s2(n). Consider the loop (s1|−1

[0,n], s2|[0,n], α
−1) based at

s1|[n,∞). By co-semistability, there is a homotopy H : [0, 1]× [0, l]→ Y −C0

(see Figure 5) such that

H(0, t) = H(1, t) = s1(n+ t) for t ∈ [0, l], H(t, l) ∈ Y − F for t ∈ [0, 1] and

H|[0,1]×{0} = (s1|−1
[0,n], s2|[0,n], α

−1)

Define τ(t) = H(t, l) for t ∈ [0, 1] (so that τ(0) = τ(1) = s1(l + n)). Now
define

β = (s1|[n,n+l], τ, s1|−1
[n,n+l], α)

to finish the proof. �
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τ

H

Figure 5

Lemma 8.6. Suppose r′1 and r′2 are proper edge path rays in Λ(J, J0) such
that m(g,i)(r

′
1) = r1 and m(g,i)(r

′
2) = r2 have image in Y − C. There is a

compact set D8.6(C) in Y such that: if α is an edge path in (J ·C)∩(Y −D8.6)
from r1(0) to r2(0) and F is any compact set in Y , then there is an edge
path ψ in Y − F from r1 to r2 such that the loop determined by ψ, α and
the initial segments of r1 and r2 is homotopically trivial in Y − C0.

Proof. There is an integer N8.6(C) such that for each vertex v of C there
is an edge path in Y from v to ∗ of length ≤ N8.6. Then for each vertex v
of J · C there is an edge path of length ≤ N8.6 from v to J∗. Choose an
integer P such that if v′ and w′ are vertices of Λ(J, J0) and z(v′) = v and
z(w′) = w are connected by an edge path of length ≤ 2N8.6 + 1 in Y then
v′ and w′ are connected by an edge path of length ≤ P in Λ(J, J0). Recall
that if e is an edge of Λ(J, J0) then z(e) is an edge path of length ≤ K. By
Lemma 7.2 there is an integer M8.6 such that any loop containing a vertex
of J∗ and of length ≤ KP + 2N8.6 + 1 is homotopically trivial in StM8.6(v)
for any vertex v of this loop.

Let D8.6 = StM8.6(C). Write α as the edge path (e1, . . . , ep) with consecu-
tive vertices v0, v1, . . . , vp. Let β0 and βp be trivial and for i ∈ {1, . . . , p−1}
let βi be an edge path of length ≤ N8.6 from vi to some vertex gi∗ for
gi ∈ J . Let g0 = r′1(0) and gp = r′2(0) (so g0∗ = v0 and gp∗ = vp). For
i ∈ {0, . . . , p − 1}, there is an edge path τ ′i in Λ(J, J0) from gi−1 to gi of



28 GEOGHEGAN, GUILBAULT, AND MIHALIK

length ≤ P . Let τi = z(τ ′i) (an edge path of length ≤ PK. Then the loop

(βi, τi+2, β
−1
i+1, e

−1
i ) has length ≤ KP + 2N8.6 + 1 and so is homotopically

trivial in StM8.6(v) for any vertex v of the loop. Let τ ′ = (τ ′1, . . . , τ
′
p), then

α is homotopic rel{v0, vp} to z(τ ′) = τ by a (ladder) homotopy in Y − C.
Since J is semistable at ∞ in Y with respect to J0, C0 and C, there is an
edge path ψ in Y −F from r1 to (τ, r2) such that the loop determined by ψ,
τ and the initial segments of r1 and r2 is homotopically trivial in Y − C0.
Now combine this homotopy with the homotopy of α and τ . �

Proof. (of Theorem 3.1) Let C0 be a finite subcomplex of Y and J0 be
a finite generating set for an infinite finitely generated group J , where J
acts as cell preserving covering transformations on Y , J is semistable at ∞
in Y with respect to J0, C0 and C (a finite subcomplex of Y ) and J is co-
semistable at∞ in Y with respect to C0 and C. Also assume that Y −J ·C
is a union of J-unbounded components. Let U1, . . . , Ul be J-unbounded
components of Y − J · C forming a component transversal for Y − J · C
and let Si be the J-stabilizer of Ui for i ∈ {1, . . . , l}. Let N8.1 be defined
for C and U1, . . . , Ul as in Lemma 8.1. Let r′0 be a proper edge path ray in
Λ(J, J0) at 1 and r0 = zr′0.
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Let E be compact containing StN8.1(D8.6) ∪D8.4(C,U1, . . . , Ul) and such
that once r0 leaves E it never returns to D8.4(C). Suppose α is an edge path
loop based on r0 with image in Y −E (see Figure 6). Let F be any compact
subset of Y . Our goal is to find a proper homotopy H : [0, 1]×[0, 1]→ Y −C0

such that H(0, t) = H(1, t) is a subpath of r0, H(t, 0) = α and H(t, 1) has
image in Y − F (so that Y has semistable fundamental group at ∞ by
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Theorem 2.1 part 2).) Write α as:

α = (α1, e1, β1, ẽ1, α2, e2β2, ẽ2 . . . , αn−1, en−1, βn−1, ẽn−1, αn)

where αi is an edge path in J ·C, ei (respectively ẽi) is an edge with terminal
(respectively initial) vertex in Y − J · C and βi is an edge path in the J-
unbounded component giUf(i) of Y − J · C where f(i) ∈ {1, . . . , l}.

By Lemmas 8.1 and 8.2 and the definition of D8.4(C), there is an edge
path γi of length ≤ N8.1, from a vertex xi = gx′i∗ of giSf(i)∗ to the initial
vertex of ei, and there are proper edge path rays r′i at x′i in Λ(Sf(i), S

′
f(i))

and si at the end point of ei such that si has image in giUf(i) and ri is
properly homotopic to (γi, ei, si) (where ri = m(g,f(i))(r

′
i)), by a proper

(ladder) homotopy Hi with image in Y −C. Similarly there is an edge path
γ̃i of length ≤ N8.1 from x̃i, a vertex of giSj(i)∗, to the terminal vertex of
ẽi, and there are J-bounded proper edge path rays r̃i at γ̃j(0) and s̃i at
the initial point of ẽi, such that r̃i = m(gi,f(i))(r̃

′
i) for some proper ray r̃′i

in Λ(Sf(i), S
′
f(i)), s̃i has image in giUf(i) and s̃i is properly homotopic to

(ẽi, γ̃
−1
i , r̃i) by a proper (ladder) homotopy H̃i with image in Y − C. In

particular, the ri, and r̃i-rays have image in Y − C.
By Lemma 8.4, either ri is properly homotopic rel{ri(0)} to the ray

(γi, ei, βi, ẽi, γ̃
−1
i , r̃i) by a homotopy in Y −C0 or the rays si and s̃i converge

to the same end of giUf(i). In the former case: The path (γi, ei, βi, ẽi, γ̃
−1
i )

can be moved by a homotopy along ri and r̃i to a path outside F where the
homotopy has image in Y − C0.

In the later case, Lemma 8.5 implies there is a there is an integer ni and
edge path β̃i from si(ni) to s̃i(ni) and with image in Y −F such that βi can

be moved by a homotopy along si and s̃i to β̃i, such that this homotopy has
image in Y −C0. In any case, the (ladder) homotopy Hi (of ri to (γi, ei, si))
tells us that (γi, ei) can be moved (by a homotopy in Y − C0) along ri and

si to a path in Y − F and similarly for (γ̃i, ẽi) using H̃i. Combining these
three homotopies, we have in the latter case (as in the former):
∗) The path (γi, ei, βi, ẽi, γ̃

−1
i ) can be moved by a homotopy along ri and

r̃i to a path outside F by a homotopy with image in Y − C0.
For consistent notation, let r̃0 = rn be the tail of r0 beginning at α1(0),

and let γ̃0 and γn be the trivial paths at the initial point of α1. It remains to
show that for 0 ≤ i ≤ n, there is a path δi in Y −F from r̃i to ri+1 such that
the loop determined by δi, the path (γ̃i, αi+1, γ

−1
i+1), and the initial segments

of r̃i and ri+1 is homotopically trivial in Y −C0. These homotopies are given
by Lemma 8.6 since the paths γi and γ̃i all have length ≤ N8.1 and so by
the definition of E they have image in Y − D8.6 (as do the αi), and since
the rays ri and r̃i have image in Y − C. �

9. Generalizations to absolute neighborhood retracts

There is no need for a space X to be a CW complex in order to define
what it means for a finitely generated group J to be semistable at ∞ in X
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with respect to a compact subset C0 of X, or for J to be co-semistable at
∞ in X with respect to C0.

Corollary 9.1. Suppose X is a 1-ended simply connected locally compact ab-
solute neighborhood retract (ANR) and G is a group (not necessarily finitely
generated) acting as covering transformations on X. Assume that for each
compact subset C0 of X there is a finitely generated subgroup J of G so that
(a) J is semistable at ∞ in X with respect to C0, and (b) J is co-semistable
at ∞ in X with respect to C0. Then X has semistable fundamental group
at ∞.

Proof. By a theorem of J. West [Wes77] the locally compact ANR G\X is
proper homotopy equivalent to a locally finite polyhedron Y1. A simplicial
structure on Y1 lifts to a simplicial structure structure on Y , its universal
cover, and G acts as cell preserving covering transformations on Y . A proper
homotopy equivalence from G\X to Y1 lifts to a G-equivariant proper ho-
motopy equivalence h : X → Y . Let f : Y → X be a (G-equivariant) proper
homotopy inverse of h. Since the semistability of the fundamental group at
∞ of a space is invariant under proper homotopy equivalence it suffices to
show that Y satisfies the hypothesis of Theorem 3.1.

First we show that if C0 is compact in Y then there is a finitely generated
subgroup J of G such that J is semistable at ∞ in Y with respect to C0.
There is a finitely generated subgroup J of G, with finite generating set J0

and compact set C ⊂ X such that J is semistable at ∞ with respect to J0,
h−1(C0), C and z1, where z1 : Λ(J, J0) → X is J-equivariant. Note that
z = hz1 is J-equivariant. Let r′ and s′ be proper edge path rays in Λ such
that r′(0) = s′(0) and both r = z1(r′) and s = z1(s′) have image in X − C.
Then given any compact set D in X there is path δD in X −D from r to s
such that the loop determined by δD and the initial segments of r and s is
homotopically trivial in X − h−1(C0).

Now, let D be compact in Y . Suppose that r′ and s′ are proper edge path
rays in Λ such that r′(0) = s′(0) and both r = hz1(r′) and s = hz1(s′) have
image in X − h(C) (in particular, z1(r′) and z1(s′) have image in X − C).
Let δ be a path from z1(r′) to z1(s′) in X − h−1(D) (so that h(δ) is a path
from r to s in Y − D) such that the loop determined by δ and the initial
segments of z1(r′) and z1(s′) is homotopically trivial by a homotopy H0 with
image in X − h−1(C0). Then the loop determined by h(δ) and the initial
segments of r and s is homotopically trivial in Y −C0 by the homotopy hH0.

Finally we show that if C0 is compact in Y there is a finitely generated
subgroup J of G such that J is co-semistable at ∞ in Y with respect to C0.
Consider the compact set h−1(C0) ⊂ X. Choose C compact in X such that
J is co-semistable at ∞ in X with respect to h−1(C0) and C.

Let H : Y × [0, 1]→ Y be a proper homotopy such that H(y, 0) = y and
H(y, 1) = hf(y) for all y ∈ Y . Let D1 be compact in Y so that if s is a
proper ray in Y −D1 then the proper homotopy of s to hf(s) (induced by
H) has image in Y −C0. Let D2 = D1 ∪ f−1(C). It suffices to show that if
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r is a J-bounded proper ray in Y −J ·D2 and α is a loop in Y −J ·D2 with
initial point r(0), then for any compact set F in Y , α can be pushed along
r to a loop in Y − F , by a homotopy in Y − C0. Define τ(t) = H(r(0), t))
for t ∈ [0, 1].

Let H1 : [0,∞) × [0, 1] → Y − C0 be the proper homotopy (induced by
H) of the proper ray (α, r) to (hf(α), hf(r)) so that H1(t, 0) = (α, r)(t),
H1(t, 1) = (hf(α), hf(r))(t) for t ∈ [0,∞) and H1(0, t) = τ(t) (see Figure
7). Let H2 : [0,∞) × [0, 1] → Y − C0 be the proper homotopy (induced by
H) of r to hf(r) so that H2(t, 0) = r(t), H2(t, 1) = hf(r)(t) for t ∈ [0,∞)
and H2(0, t) = τ(t) for t ∈ [0, 1].

••
α

r

•
τ

hf (α)

hf (r)

•

H1

r

hf (r)

H2

•

•
h(φ)

hH3

Figure 7

Recall that f is J-equivariant. Since r and α have image in Y − J · D2

(and f−1(C) ⊂ D2), f(r) and f(α) have image in X − J · C. Also f(r) is
J-bounded in X. There is a homotopy H3 with image in X − h−1(C0) that
moves f(α) along f(r) to a loop φ in X − h−1(F ), where if fr(q) is the
initial point of φ then fr([q,∞)) ⊂ X − h−1(F ). The homotopy hH3 has
image in Y − C0 and moves hf(α) along hf(r) to the loop h(φ) in Y − F .
Combine the homotopies H1, H2 and H3 as in Figure 7 to see that α can be
moved along r into Y − F by a homotopy in Y − C0. �
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