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A subgroup Q of a group G is commensurated if the commensurator of Q in G is the entire
group G . Our main result is that a finitely generated group G containing an infinite, finitely
generated, commensurated subgroup H , of infinite index in G , is one-ended and semistable
at ∞ . Furthermore, if Q and G are finitely presented and either Q is one-ended or the pair
(G,Q) has one filtered end, then G is simply connected at∞ . A normal subgroup of a group is
commensurated, so this result is a generalization of M. Mihalik’s result [17] and of B. Jackson’s
result [11]. As a corollary, we give an alternate proof of V. M. Lew’s theorem that a finitely
generated group G containing an infinite, finitely generated, subnormal subgroup of infinite
index is semistable at ∞ . So, several previously known semistability and simple connectivity
at ∞ results for group extensions follow from the results in this paper. If φ : H → H is
a monomorphism of a finitely generated group and φ(H) has finite index in H , then H is
commensurated in the corresponding ascending HNN extension, which in turn is semistable at
∞ .

20F69; 20F65, 57M07, 57M60

1 Introduction

Given a group G and a subgroup H of G, the element g of G is in the commensurator of H in G
(denoted Comm(H,G)) if gHg−1 ∩ H has finite index in both H and gHg−1 . In the mid-1960’s,
A. Borel [1], proved a series of results that highlight the critical nature of commensurators in the
structure of semisimple Lie groups. These results were extended by G. A. Margulis [16], in 1975.
If G is the commensurator of Q in G, then Q is commensurated in G. In particular, if H is normal
in G, then H is commensurated in G. The authors [3], develop the basic theory of commensurated
subgroups and showed this theory closely parallels the theory of normal subgroups of a group, but
with subtle differences.

A locally-finite, connected CW-complex X is semistable at ∞ if any two proper maps r, s :
[0,∞) → X which converge to the same end are properly homotopic. The early ideas of R.
Lee and F. Raymond [14], and F.E.A. Johnson [12], on the ‘fundamental group of an end’ were
instrumental in extending the idea of semistability at∞ of a space to the notion of the semistability
at∞ for a finitely presented group. R. Geoghegan [7], introduced the idea of using shape theory as
the correct setting to study the homology of ends of groups. The best reference for the fundamentals
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of the subject of semistability at∞ is R. Geoghegan’s book [8]. Many classes of finitely generated
groups are known to be semistable at ∞ (see [17], [19], [20], [21] and [22], for instance). It is
unknown if all finitely presented groups are semistable at ∞. If a finitely presented group G is
semistable at ∞, then one can define invariants for G, such as the fundamental group at an end
of G, independent of choice of basepoint ray in some associated space. The idea of semistability
at ∞ is also of interest in the study of cohomology of groups. R. Geoghegan and M. Mihalik [9],
have shown that if the group G is finitely presented and semistable at ∞, then H2(G;ZG) is free
abelian. It should be noted that a basic unsolved problem in the study of group cohomology is
whether or not H2(G;ZG) is free abelian for all finitely presented groups G.

The study of ends of groups was started by H. Freudenthal [6] and H. Hopf [10]. A finitely
generated group G has either 0, 1, 2, or an infinite number of ends. It is elementary to see
that finitely presented groups with either 0 or 2 ends are semistable at ∞. By Mihalik [20],
and Dunwoody’s accessibility theorem [5], the semistability question for finitely presented groups
reduces to the question of whether or not all one-ended finitely presented groups are semistable at
∞.

The strongest result to date in this subject is the following combination result of M. Mihalik and
S. Tschantz [23].

Theorem 1.1 (M. Mihalik, S. Tschantz) If G = A∗H B is an amalgamated product where A and
B are finitely presented and semistable at ∞, and H is finitely generated, then G is semistable at
∞. If G = A∗H is an HNN-extension where A is finitely presented and semistable at ∞ and H
is finitely generated, then G is semistable at ∞.

This result generalizes to the obvious statement about graphs of groups and was used by Mihalik
and Tschantz [24], to prove that all one relator groups are semistable at∞. It should be noted that
this result is non-trivial when A and B are free groups.

All word hyperbolic groups are semistable at ∞ (see G. Swarup [28]). R. Geoghegan [7], has
shown that a one-ended CAT(0) group G is semistable at ∞ if and only if some (equivalently
any) visual boundary for G has the shape of a locally connected continuum. It is elementary
to construct a semistable at ∞, one-ended CAT(0) group with non-locally connected boundary.
For instance, the direct product of the integers with the free group of rank 2 has visual boundary
homeomorphic to the suspension of a Cantor set. While the suspension of a Cantor set is non-
locally connected, it has the same shape as the Hawaiian earring, which is a locally connected
space. Mihalik [21], defined a notion of semistability at ∞ for a finitely generated group that
generalizes the original definition (i.e., a finitely presented group is semistable at∞ with respect to
the alternative definition if and only if it is semistable at∞ with respect to the original definition).
With this more general definition, the finitely generated analogs to the main results obtained in [17]
and [19] are quite apparent. In fact, this more general definition is used to show certain finitely
presented groups are semistable at ∞ (see [21]). In his Ph.D dissertation, Lew [15], proved that
if G is a finitely generated group containing an infinite, finitely generated, subnormal subgroup
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H of infinite index in G, then G is one-ended and semistable at ∞. Lew’s proof of this theorem
generalized arguments used in the proofs in [17] and [19]. Our main theorem is used in §5 to
produce an alternative proof of Lew’s theorem.

Theorem 1.2 (Main Theorem) If a finitely generated group G has an infinite, finitely generated,
commensurated subgroup Q, and Q has infinite index in G, then G is one-ended and semistable
at ∞. Furthermore, if G and Q are finitely presented and either Q is one-ended or the pair (G,Q)
has one filtered end, then G is simply connected at ∞.

As an example, the cyclic subgroup 〈x〉 of the Baumslag-Solitar group

B(m, n) ≡ 〈x, t : t−1xmt = xn〉 (for non-zero integers m, n)

is commensurated in B(m, n).

A connected CW-complex X is simply connected at ∞ if for each compact set C in X there
is a compact set D in X such that loops in X − D are homotopically trivial in X − C . Simple
connectivity at ∞ implies semistability at ∞. As with semistability at ∞, the idea of simple
connectivity at ∞ can be extended from spaces to finitely presented groups and if G is finitely
presented and simply connected at ∞, then H2(G;ZG) is trivial. L. Siebenmann [27], developed
the idea of simple connectivity at ∞ to give an obstruction to finding a boundary for an open
manifold. R. Lee and F. Raymond [14], used the idea of the simple connectivity at ∞ of a group
in order to analyze manifolds covered by Euclidean space. B. Jackson [11], proves:

Theorem 1.3 (B. Jackson) Suppose 1→ H → G→ K → 1 is a short exact sequence of infinite,
finitely presented groups and either H or K is one-ended, then G is simply connected at ∞.

In his thesis, J. Profio [25], improved Jackson’s result:

Theorem 1.4 (J. Profio) Suppose H�N�G where G and H are finitely presented, H is 1-ended,
and H has infinite index in G. Then G is simply connected at ∞.

M. Davis [4], constructs examples of aspherical closed n-manifolds for n ≥ 4, that are not covered
by Rn . In fact, Davis argues that the fundamental groups of his manifolds are semistable at ∞,
but not simply connected at∞ (and hence not covered by Rn ). All of Davis’ group are subgroups
of finite index in finitely generated Coxeter groups. Mihalik [22], showed all Artin and Coxeter
groups are semistable at ∞.

The remainder of the paper is organized as follows. In Section 2 we give the basics of commensu-
rated subgroups of groups. This includes a geometric characterization of commensurated groups
and a result connecting the filtered ends of a Cayley graph of a group to the ends of a Schreier
coset graph. In Section 3, we say what it means for a finitely generated group to be semistable at
∞ and list a number of equivalent formulations of this concept. The proof of the main theorem
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takes up most of Section 4. Section 5 is devoted to an alternative proof of a theorem of V. M. Lew.
Section 6 contains a generalization of a result of B. Jackson about simply connected at ∞ group
extensions. The techniques of proof in sections 4, 5 and 6 are geometric. The working definition
of commensurated subgroup is used to construct proper homotopies between proper edge path rays
in certain Cayley 2-complexes and to homotopically kill certain loops by homotopies that avoid
prescribed compact sets.

2 Commensurable Preliminaries

If S is a finite generating set for a group G, Γ(G, S) the Cayley graph of G with respect to S , and H
a subgroup of G, then for any g1, g2 ∈ G, the Hausdorff distance between g1H and g2H , denoted
DS(g1H, g2H), is the smallest integer K such that for each element h of H the edge path distance
from g1h to g2H in Γ is ≤ K and the edge path distance from g2h to g1H in Γ is ≤ K . If no
such K exists, then DS(g1H, g2H) =∞. Conner and Mihalik [3], prove the following geometric
characterization of commensurated subgroups of finitely generated groups. This characterization
is the working definition of commensurated subgroup in this paper.

Proposition 2.1 (G. Conner, M. Mihalik) Suppose S is a finite generating set for a group G
and H is a subgroup of G, then g ∈ G is in Comm(H,G) if and only if the Hausdorff distance
DS(H, gH) <∞ if and only if DS(H, gHg−1) <∞.

In particular, a subgroup Q of a finitely generated group G is commensurated in G if and only if
the Hausdorff distance DS(Q, gQ) is finite for all g ∈ G if and only if DS(Q, gQg−1) is finite for
all g ∈ G.

Suppose G is a group with finite generating set S and H is a subgroup of G. Let Λ(S,H,G) be
the graph with vertices the left cosets gH of G and a directed edge (labeled s) from gH to fH if
for some s ∈ S and h1, h2 ∈ H , we have gh1sh2 = f . (Equivalently, in the Cayley graph Γ(S,G),
there is an edge labeled s with initial point in gH and end point in fH .) Basically, Λ is a (left)
Schreier coset graph. Note that Λ may have several edges labeled s at a vertex.

The following result appears in [3] and is used in the proof of our main theorem.

Proposition 2.2 (G. Conner, M. Mihalik) Suppose G is a group with finite generating set S and
Q is commensurated in G. Then the graph Λ(S,Q,G) is locally finite and G acts (on the left)
transitively on the vertices of Λ and by isometries (using the edge path metric) on Λ. For Γ(S,G)
the Cayley graph of G, the projection map p : Γ(S,G) → Λ(S,Q,G) respects the action of G
and induces a bijection from the filtered ends of Γ(S,G) to the ends of Λ(S,Q,G). The graph
Λ(S,Q,G) has 0, 1, 2 or infinitely many ends.



Commensurated Subgroups, Semistability and Simple Connectivity at Infinity 5

3 Semistability Preliminaries

Much of the groundwork for studying the notion of semistability for a finitely presented group has
appeared in [11], [12], [13], [14], and [17] and is well organized in [7]. We will recall some of the
ideas presented in these papers to set the notation for future use.

A continuous function f : X → Y is proper if for each compact subset C of Y , f−1(C) is compact
in X . A proper map r : [0,∞) → X is called a ray in X . If K is a locally finite, connected
CW-complex, then one can define an equivalence relation ∼ on the set A of all rays in K by
setting r ∼ s if and only if for each compact set C ⊂ K , there exists an integer N(C) such that
r([N(C),∞)) and s([N(C),∞)) are contained in the same unbounded path component of K − C
(a path component of K − C is unbounded if it is not contained in any compact subset of K ). An
equivalence class of A/ ∼ is called an end of K , the set of equivalence classes of A/ ∼ is called
the set of ends of K and two rays in K , in the same equivalence class, are said to converge to the
same end. The cardinality of A/ ∼, denoted by e(K), is the number of ends of K .

If G is a finitely generated group with generating set S , then denote the Cayley graph of G
with respect to S by Γ(G, S). We define the number of ends of G, denoted by e(G), to be the
number of ends of the Cayley graph of G with respect to a finite generating set. (In particular,
e(G) = e(Γ(G, S)). This definition is independent of the choice of finite generating set for G. If
G is finitely generated, then e(G) is either 0, 1, 2, or is infinite (in which case it has the cardinality
of the real numbers). We let ∗ denote the basepoint of Γ(G, S), which corresponds to the identity
of G.

If f and g are rays in K , then one says that f and g are properly homotopic if there is a proper map
H : [0, 1]× [0,∞)→ K such that H|{0}×[0,∞) = f and H|{1}×[0,∞) = g. If f (0) = g(0) = v, one
says f and g are properly homotopic relative to v (or rel{v}) if additionally H|[0,1]×{0} = v.

Definition 3.1 A locally finite, connected CW-complex K is semistable at ∞ if any two rays in
K converging to the same end are properly homotopic.

Theorem 2.1 of Mihalik [17], and Lemma 9 of Mihalik [19], provide several equivalent notions
of semistability. The space considered in [17] is simply connected, but simple connectivity is not
important in that argument. A slight modification of proofs give the following result.

Theorem 3.2 Suppose K is a locally finite, connected and one-ended CW-complex. Then the
following are equivalent:

(1) K is semistable at ∞.

(2) For any ray r : [0,∞)→ K and compact set C , there is a compact set D such that for any
third compact set E and loop α based on r and with image in K−D, α is homotopic rel{r}
to a loop in K − E , by a homotopy with image in K − C .
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(3) For any compact set C there is a compact set D such that if r and s are rays based at v and
with image in K − D, then r and s are properly homotopic rel{v}, by a proper homotopy
in K − C .

If K is simply connected, then a fourth equivalent condition can be added to this list:

4. If r and s are rays based at v, then r and s are properly homotopic

rel{v}.

Example 1. Note that the one-ended CW-complex obtained by attaching a loop at 0 to the interval
[0,∞) is semistable at ∞. Consider a ray r which maps [0,∞) homeomorphically to [0,∞)
and a ray s which maps [0, 1] once around the loop and then maps [1,∞) homeomorphically to
[0,∞). Clearly r and s are properly homotopic, but not by a proper homotopy rel{0}.

The following fact is proved by F. E. A. Johnson [12] and [13].

Theorem 3.3 Suppose X and Y are finite, connected CW-complexes with π1(X) isomorphic to
π1(Y). Then the universal cover of X is semistable at ∞ if and only if the universal cover of Y is
semistable at ∞.

Definition 3.4 If G is a one-ended, finitely presented group and, X is some (equivalently any)
finite, two-dimensional CW-complex with fundamental group G, then we say G is semistable at
∞ if the universal cover of X is semistable at ∞.

We now define the notion of semistabilty for a finitely generated group following Mihalik [21].
We give the definition for one-ended groups since this is the case that concerns us. Suppose G is
a one-ended finitely generated group with generating set S ≡ {g1, g2, . . . , gn} and let Γ(G, S) be
the Cayley graph of G with respect to this generating set. Suppose {α1, α2, . . . , αm} is a finite
set of relations in G written in the letters {g±1 , g

±
2 , . . . , g

±
n }. For any vertex v ∈ Γ(G, S), there

is an edge path cycle labeled αi at v. The two dimensional CW-complex Γ(G,S)(α1, . . . , αm) is
obtained by attaching to each vertex of Γ(G, S), 2-cells corresponding to the relations α1, . . . , αn .

Mihalik [21], shows that if S and T are finite generating sets for the group G and there are finitely
many S-relations P such that Γ(G,S)(P) is semistable at∞, then there are finitely many T -relations
Q such that Γ(G,T)(Q) is semistable at ∞. Hence the following definition:

Definition 3.5 We say G is semistable at ∞ if for some finite generating set S for G and finite
set of S-relations P the complex Γ(G,S)(P) is semistable at ∞.

Note that if G has finite presentation 〈S : P〉, then G is semistable at∞ with respect to Definition
3.4 if and only if G is semistable at ∞ with respect to Definition 3.5 if and only if Γ(G,S)(P) is
semistable at ∞.

Lemma 2 [21], is as follows:
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Lemma 3.6 Suppose the finitely generated group G is one-ended and semistable at ∞. If S is a
finite generating set for G and P is a finite set of S-relations in G such that Γ(G,S)(P) is semistable
at∞, then there is a finite set Q of S-relations such that: if r and s are rays in Γ(G,S)(P∪Q), with
r(0) = s(0), then r is properly homotopic to s rel{r(0)}.

Remark 1. Using the third equivalent notion of semistability in Theorem 3.2, it can be shown
that in fact the set of relations Q in the previous lemma are unnecessary in order to draw the same
conclusion. If Γ(G,S)(P) is semistable at ∞, and r and s are rays in Γ(G,S)(P) with r(0) = s(0),
then r is properly homotopic to s rel{r(0)}.

By an edge path ray in a locally finite, connected CW complex K , we mean a proper map
r : [0,∞) → K such that for each positive integer n, r|[n−1,n] is a homeomorphism to an edge of
K . If G is finitely generated with finite generating set S , then any edge path ray, r : ([0,∞), {0})→
(Γ(G, S), ∗), can be represented as (e1, e2, . . .) at ∗ with ei ∈ S± , and ei the label of the ith edge
of r . Any edge path (e1, e2, . . . , ek) of Γ(G, S) corresponds to some group element e′1e′2 . . . e

′
k

where e′i ∈ S± . But determining an edge path in Γ(G, S) from some word e′1e′2 . . . e
′
k requires a

specified basepoint, since the path (e′1, e
′
2, . . . , e

′
k) at a vertex v determines a different edge path

than (e′1, e
′
2, . . . , e

′
k) based at another vertex w. The action of the group element wv−1 on Γ(G, S)

maps the edge path at v to the edge path at w with the same labeling. If A is a subcomplex of
a locally finite, connected CW-complex K , let St(A) denote the subcomplex of K consisting of
the union of all 1-cells of K that intersect A along with any n-cell all of whose vertices lie in
St(A). Note then that A ⊆ St(A) and if A is a finite subcomplex, then St(A) is a finite subcomplex
by the local finiteness of K . We recursively define the Nth Star of A for N = 1, 2, 3, . . . by
StN(A) = St(StN−1(A)) where St0(A) = A. When it is not clear what the over-complex might be
we use the notation St(A,K) to denote the Star of A in K .

Since any ray r : [0,∞) → K is properly homotopic to an edge path ray, we may concentrate on
edge path rays when dealing with the semistability of a complex.

If e is an edge in K and (e1, e2, e3, . . .) is an edge path in K based at the terminal point of e, then
one denotes by e ∗ (e1, e2, e3, . . .) the edge path given by e followed by (e1, e2, e3, . . .).

Definition 3.7 For a group G with finite generating set S and a subset T of S , we say an edge
path in Γ(G, S) is a T -path if each edge of the path is labeled by an element of T± . If the path is
infinite and proper we call it a T -ray.

4 Proof of Semistability in the Main Theorem

We prove a more general one-ended result than that stated in our main result.
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Proposition 4.1 Suppose A is a finitely generated, infinite subgroup of infinite index in a finitely
generated group G, and gAg−1 ∩ A is infinite for all g ∈ G. Then G is one-ended.

Proof Suppose S is a finite set of generators for G containing a generating set SA for A. Let Γ be
the Cayley graph of G with respect to S and let ΓA be the Cayley graph of A with respect to SA .
We consider ΓA to be a subset of Γ containing ∗, the identity vertex. Let C be a finite subcomplex
of Γ. List elements g1, . . . , gn of G such that giA 6= gjA for i 6= j and gΓA ∩ C 6= ∅ if and only
if gA = giA for some i ∈ {1, . . . , n}. Choose g0 such that g0ΓA ∩ C = ∅. Let D be a finite
subcomplex of Γ containing C and all bounded components of giΓA − C for all i ∈ {1, . . . , n}.

It suffices to show that any vertex of Γ− D can be joined by a path in Γ− C to g0 . Suppose v is
a vertex of Γ− D.

First we consider the case vΓA ∩C = ∅. Choose y (in the infinite set) (vΓAv−1)∩ (g0ΓAg−1
0 ) such

that d(y,C) > max{|v|, |g0|}. Then there are paths from y to vΓA and from y to g0ΓA avoiding
C . Hence there is a path from v to g0 avoiding C and the first case is finished.

Next suppose vΓA ∩ C 6= ∅. Then v is in an unbounded component K of vΓA − C . Let
N = max{|g0|, . . . , |gn|}. Choose k a vertex of K such that d(k,C) > N . Then there are paths
from v to k and from k to kgi for each i ∈ {0, . . . , n}, all avoiding C . At least one of kgiA does
not intersect C , so by the first case we can connect v to g0 avoiding C .

For the remainder of the proof of the main theorem, Q = {q1, q2, . . . , qn} is a finite generating
set for Q and S = {q1, q2, . . . , qn, k1, k2, . . . , kt} is a generating set for G where ki 6∈ Q. Let
K = {k1, . . . , kt}. Our hypothesis states that for each g ∈ G, the Hausdorff distance between Q
and gQ is finite in Γ(G, S).

Consider the left (Scherier) coset graph Λ(S,Q,G) with vertex set, the set of all cosets gQ in
G. A directed edge labeled s will have initial vertex g1Q and terminal vertex g2Q if there is an
edge labeled s in Γ(G, S) beginning in g1Q and ending in g2Q. By proposition 2.2, Λ(S,Q,G) is
locally finite. There is a quotient map ρ : Γ(G, S)→ Λ(S,Q,G) respecting the left action of G on
these graphs, such that each edge labeled by an element of Q is mapped to a point.

Lemma 4.2 Suppose S is a finite generating set for the group G and Q is a finitely generated
commensurated subgroup of G (with generating set a subset of S). There is an integer F such that
if gQ and hQ are distinct cosets (vertices) of Λ(S,Q,G) connected by an edge labeled s ∈ S±1 ,
then for each v ∈ gQ ⊂ Γ(S,G) there is a Q-path α at v in Γ(S,G) of length < F such that the
path (α, s) ends in hQ.

In particular: Suppose α ≡ (e1, e2, . . .) is an edge path (possibly infinite) at v ∈ Λ(S,Q,G) (with
ith edge labeled ei ) and v′ is a vertex of Γ(G, S) such that ρ(v′) = v (equivalently v′Q = v), then
there is an edge path α′ ≡ (α′0, e1, α

′
1, e1, . . .) at v′ with α′i a Q-edge path of length < F such that

the edge path (determined by) ρα′ is α . I.e. there is (Q,F)- “approximate" path lifting for ρ.



Commensurated Subgroups, Semistability and Simple Connectivity at Infinity 9

Proof Suppose v ∈ gQ and the edge labeled s at v ends in hQ. By translation, we assume
v = 1 ∈ G , g = 1 and h = s. As Q is commensurated in G, sQs−1 ∩ Q has finite index in Q.
Hence there is an integer Fs , such that for any vertex w ∈ Q, there is a Q-edge path in Γ(S,G)
of length < Fs from w to a vertex w′ of Q ∩ sQs−1 . As w′ ∈ sQs−1 , w′s ∈ sQ. I.e. the edge
labeled s at w′ ends in sQ. Let F = max{Fs}s∈S±1 .

Remark 2. For α and α′ as in Lemma 4.2, we call α′ a (Q,F)-approximate lift of α . Note
that Lemma 4.2 does not imply that if v and w are vertices of the same coset uQ, then there are
approximate lifts of a path α at ρ(v) ∈ Λ(S,Q,G) to v and w that are G translates of one another
in Γ(G, S).

The next lemma basically has the same proof as Lemma 3 [19].

Lemma 4.3 For each vertex v of Λ(S,Q,G), there is an edge path ray sv at v, such that for any
finite subgraph C of Λ(S,Q,G) only finitely many sv intersect C . Furthermore, if w ∈ v ≡ wQ
let sw be a (Q,F)-approximate lift of sρ(w) to w ∈ Γ(G, S), then

i) for any finite subgraph D of Γ(G, S) there are only finitely many vertices w ∈ Γ(G, S) such that
sw intersects D non-trivially, and

ii) for any w ∈ G, only finitely many vertices z of sw are such that zQ intersects D non-trivially.

Proof If G is a locally finite, infinite graph, then for each vertex v of G there is an edge path ray
sv at v, such that for any finite subgraph C of G , only finitely many v are such that sv intersects
C . (The idea is this: Choose a base vertex x . For any integer n > 0, G − Stn(x) has only finitely
many components. For the finitely many vertices v in St(x) or a bounded component of G − St(x)
choose sv to be an arbitrary edge path ray at v. If v is a vertex of St2(x) or of a bounded component
of G − St2(x), and sv is not defined, then v belongs to an unbounded component of G − St(x).
Choose sv to be an edge path ray at v in G − St(x). Continue in this fashion.) Now pick such edge
path rays for the vertices of Λ(S,Q,G).

As ρ(sw) = sρ(w) , sw intersects D if and only if sρ(s) intersects ρ(D). Hence, we may finish the
proof of i), by showing at most finitely many vertices v of a coset gQ are such that sv intersects
D. Otherwise, there are infinitely many distinct vertices v1, v2, . . . in gQ ⊂ Γ(G, S) such that
each edge path ray svi passes through the vertex d of D. In Λ(S,Q,G), write the edge path ray
sgQ ≡ (e1, e2, . . .). By Lemma 4.2, we may write svi = (αi,1, e1, αi,2, e2, . . .) in Γ(G, S), where
αi,j is a Q-edge path of length < F . Let n(i) be such that some vertex of αi,n(i) is d . Since
the vi are distinct and the length of each αi,j is < F , the sequence of integers {n(1), n(2), . . .} is
unbounded. But then the initial vertex of en(i) (on sgQ ≡ (e1, e2, . . .)) is ρ(d). This is impossible
since sgQ ≡ (e1, e2, . . .) is proper, and i) is proved.

Part ii) follows immediately from the fact that ρ(sw) = sρ(w) is a proper map.
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By Lemma 4.2, if two distinct cosets g1Q and g2Q of G are connected by an edge in Γ(G, S),
then they are of Hausdorff distance ≤ F . Choose M such that if two vertices of Q in Γ(G, S) are
within 2F + 1 of one another, then their Q-distance is ≤ M . Let P be the set of all S-relations in
G of length ≤ 2F + 1 + M . Let Γ̃ be Γ(G,S)(P).

The next result is Lemma 2 [19].

Lemma 4.4 At each vertex v of Γ(G, S) there exists a Q-ray qv , such that for any finite subcom-
plex C in Γ(G, S) there are only finitely many vertices v such that qv meets C . �

For each S-relation r of G, consider the K-word rK obtained by eliminating from r , the Q-letters
(and their inverses). If v is a vertex of Γ(G, S) and α the edge path loop corresponding to r at
v, then ρ(α) (in Λ(S,Q,G)) has labeling rK . Let Λ̃(S,Q,G) be the 2-complex obtained from
Λ(S,Q,G) by attaching a 2-cell to each loop ρr (with label rK ) where r is a loop of Γ(G, S) of
length ≤ 2F + M + 1 (only one 2-cell for a given such loop in Λ(S,Q,G)). Then Λ̃(S,Q,G) is
locally finite and there is a natural map ρ̃ : Γ̃(G, S)→ Λ̃(S,Q,G) extending ρ and respecting the
action of G.

Lemma 4.5 If k ∈ K± labels an edge of Γ̃ from v to w and r = (e1, e2, e3, . . .) is a Q-ray at v,
then r is properly homotopic rel{v} to k ∗ (f1, f2, . . .), for (f1, f2, . . .) a Q-ray at w, by a homotopy
H with image a subset of St2F+M+1(Im(r), Γ̃), and the image of ρ̃ ◦ H is a subset of the finite
complex St(ρ̃(k)).

Proof Let vi be the terminal vertex of ei . Let v0 = v, w0 = w, α0 be the empty path. For
each i ≥ 1, Lemma 4.2 implies there is a Q-edge path αi of length < F at vi so that (αi, k)
ends at wi ∈ kQ. Note that in Γ̃ the distance from wi to wi+1 is ≤ 2F + 1. For i ≥ 1, let fi
be a Q-edge path in Γ̃ of length ≤ M from wi−1 to wi . The loop (αi, k, fi+1, k−1α−1

i+1, e
−1
i+1) has

length ≤ 2F + 1 + M and so bounds a 2-cell of Γ̃. Hence (e1, e2, . . .) is properly homotopic to
k ∗ (f1, f2, . . .) by a homotopy H with image in St2F+1+M(Im(r)), Γ̃). As each αi and each fi is a
Q-word, ρ̃ ◦ H has image in St(ρ̃(k)).

Recall, for each vertex v ∈ Γ̃, sv is a (Q,F)-approximate lift of sρ(v) (see Lemma 4.3).

Lemma 4.6 Suppose D is a finite subcomplex of Γ̃. Then there exists a finite complex E1(D) ⊆ Γ̃

such that if b = (e1, e2, e3, . . .) is a Q-ray at v with image in Γ̃ − E1(D), then b is properly
homotopic rel{v} to sv by a homotopy in Γ̃− D.

Proof Let L = 2F + M + 1 (the constant of Lemma 4.5). There are only finitely many vertices
w ∈ Λ̃ such that the edge path rays sw of Lemma 4.3 intersect St(ρ̃(D)), non-trivially. Call these
vertices y1, y2, . . . , yl. Since each syi is proper, there are integers Ji such that each edge of the ray
syi following the Jth

i -edge is in Λ̃ − St(ρ̃(D)). Let J be the maximum Ji for i = 1, 2, . . . , l. By
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Lemma 4.3, if w is any vertex of Γ̃ and e is the jth -edge of sw for j > FJ , then ρ̃(e) = d (or a
vertex of d ) for d the kth -edge of sρ(w) for some k > J . By the definition of J , d does not intersect
St(ρ̃(D)) and so ρ̃(e) does not intersect St(ρ̃(D)). In particular,

(∗) If w is any vertex of Γ̃, and e is the jth -edge of sw for j > FJ , then ρ̃(e) ⊂ Λ̃− St(ρ̃D).

Let E1(D) be a compact subcomplex of Γ̃ such that StFJL(D) ⊆ E1(D) and such that E1(D)
contains the finite set of vertices v in Γ̃ such that sv intersects StFJL(D). Assume b and v satisfy
the hypothesis of the lemma. The edge path ray sv (in Γ̃−StFJL(D)) has the form (α0, c1, α1, c2, . . .)
where αi is a Q-path of length < F and ci is a K-edge. Here sv is a (Q,F)-approximate lift of
sρ(v) = (c′1, c

′
2, . . .) (where c′i has the same label as ci ).

Let vi,wi be the initial and terminal vertices of ci , respectively. Let b0 be the Q-edge path ray
(α−1

0 , b). By Lemma 4.5, b0 is properly homotopic rel{v1} to c1∗b1 , where b1 is aQ-ray at w1 , by
a proper homotopy H1 with image in StL(Im(b0)). In particular, b1 has image in Γ̃−St(FJ−1)L(D).
Again by Lemma 4.5, (α−1

1 , b1) is properly homotopic rel{v2} to c2 ∗ b2 , where b2 is a Q-edge
path ray, by a proper homotopy H2 with image in StL(Im(b1)) ⊂ Γ̃ − St(FJ−2)L(D). Iterating the
above process, the Q-ray (α−1

j , bj) is properly homotopic rel{vj+1} to cj+1 ∗ bj+1 , where bj+1 is
a Q-ray, by a proper homotopy Hj+1 with image in StL(Im(bj)). Let H be the homotopy of b to
sv obtained by patching together these Hi . For i ≤ FJ , Hi has image in Γ̃− D. By Lemma 4.5,
ρ̃ ◦ Hj has image in St(ρ̃(cj)). By (∗), if j > FJ , then ρ̃(cj) misses St(ρ̃(D)). So St(ρ̃(cj)) misses
ρ̃(D). For all positive integers j, Hj misses D and H misses D.

It remanins to show that H is a proper. Let C ⊆ Γ̃ be a finite subcomplex. Since ρ̃(sv) is proper in
Λ̃, there exists an integer R such that if j > R, then ρ̃(cj) misses St(ρ̃(C)). As ρ̃ ◦Hj has image in
St(ρ̃(cj)), Hj misses C when j > R. Since only finitely many of the proper homotopies Hj have
image that intersect an arbitrary finite subcomplex C , H is proper.

Lemma 4.7 Suppose D ⊆ Γ̃ is compact. There exists a compact set E2(D) ⊆ Γ̃ such that if e is
an edge in Γ̃− E2(D) from v to w, then the Q-ray qv is properly homotopic to e ∗ qw rel{v}, by
a proper homotopy in Γ̃− D.

Proof Again let L = 2F + M + 1 (the constant of Lemma 4.5). Let E2(D) be a compact
subcomplex of Γ̃ containing StL(E1(D)) and the finite set of vertices x such that qx intersects
StL(E1(D)). If e ∈ K±1 , then by Lemma 4.5, qv is properly homotopic to e ∗ β rel{v}, where
β is a Q-ray at w and this homotopy has image in StL(Im(qv)). In particular, β avoids E1(D).
By Lemma 4.6, β and qw are properly homotopic rel{w} to sw by proper homotopies in Γ̃− D.
Combining these homotopies gives the result.

If e ∈ Q±1 , then Lemma 4.6 implies qv and e ∗ qw are both properly homotopic rel(v), to sv by a
proper homotopy in Γ̃− D. Combining homotopies gives the desired homotopy.

Lemma 4.8 Suppose s = (s1, s2, s3, . . .) is an edge path ray at a vertex v in Γ̃, then s is properly
homotopic to qv rel{v}.
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Proof Choose a sequence of compact subcomplexes {Ci}∞i=1 such that
⋃∞

i=1 Ci = Γ̃, Ci is
contained in the interior of Ci+1 , and such that Ci+1 contains E2(Ci). Let vi be the endpoint of
si . Define H : [0,∞) × [0,∞) → Γ̃ as follows: If R is the largest integer such that the edge si

misses CR , then by definition of CR , qvi−1 is properly homotopic rel{vi−1} to si ∗ qvi by a proper
homotopy Hi , missing CR−1 . Define H on [i− 1, i]× [0,∞) to be Hi .

In order to check that H is proper, it suffices to show that for any compact set C ⊆ Γ̃ only finitely
many Hj intersect C . This follows from the fact that C ⊆ Ci for some index i. Since s is proper,
there is an integer W(i) such that for all j ≥ Wi , sj lies in Γ̃−Ci+1 . So, Hj avoids C and therefore
H is proper.

This completes the semistability part of our main theorem.

If H is a group and φ : H → H is a monomorphism the group with presentation 〈t,H :
t−1ht for all h ∈ H〉 is called the ascending HNN extension of H by φ and is denoted H∗φ . The
main theorem of Mihalik [18], states that if H is a finitely presented group and φ : H → H a
monomorphism, then the ascending HNN extension H∗φ is one-ended and semistable at∞. Con-
sider a general finite presentation of the form 〈t, h1, . . . , hn : r1, . . . , rn, t−1h1t = w1, . . . , t−1hnt =

wn〉 where ri and wi are words in {h±1
1 , . . . , h±1

n } for all i. The group G of this presentation is the
ascending HNN extension H∗φ where H is generated by {h1, . . . , hn} and φ is the monomorphism
φ : H → H , where φ(hi) = wi for all i. While G is finitely presented it would seem rare that the
finitely generated group H would be finitely presented. It has long been suggested that ascending
HNN extensions of this form may be a good place to search for non-semistable at ∞, finitely
presented groups. Conner and Mihalik [3], show that if H is finitely generated and the image of
the monomorphism φ : H → H has finite index in H , then H is commensurated in H∗φ . As a
direct consequence of this result and our main theorem we have:

Corollary 4.9 Suppose H is a finitely generated group and φ : H → H a monomorphism such
that φ(H) has finite index in H , then the ascending HNN extension H∗φ is semistable at ∞.

5 A Theorem of Lew

Our goal in this section is to give an alternate proof of a theorem of V. M. Lew [15].

Theorem 5.1 (V. M. Lew) Suppose H is an infinite, finitely generated, subnormal subgroup of
the finitely generated group G and H has infinite index in G. Then G is one-ended and semistable
at ∞.

Proof Suppose k > 0 and H = N0 � N1 � N2 � . . . � Nk = G is a subnormal series. For
k ∈ {1, 2} and G finitely presented, semistability was proved by Mihalik [17] and [19]. Those
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proofs easily generalize to the finitely generated case. The result that G is one-ended can be
concluded from results of Cohen [2], or Stallings [26]. A geometric proof of this fact was given
by Lee and Raymond [14]. We may assume that the index [G : Nk−1] =∞, as G is semistable at
∞ if and only if any subgroup of finite index is semistable at ∞.

Let H = {h1, h2, . . . , hn} be a finite generating set for H . Now, G has generating set S ≡
{h1, h2, . . . , hn, a1, a2, . . . , am, k1, k2, . . . , kt} where, under the projection map ρ : G → G/Nk−1 ,
ρ(k1), . . . , ρ(kt) generate G/Nk−1 and the set {h1, . . . , hn, a1, . . . , am} is a subset of Nk−1. Let
K = {k1, . . . , kt}. We also assume that conjugates of the hi ’s by the kj ’s are among a1, . . . , am

with the corresponding defining relations, say kihjki
−1 ≡ aij , and k−1

i hjki ≡ bij for i = 1, 2, . . . , t
and j = 1, 2, . . . , n so that aij, bij ∈ {a1, a2, . . . , am}. Define Q to be this set of conjugation
relations.

Q = {kihjk−1
i a−1

ij , k
−1
i hjkib−1

ij : i = 1, . . . , t and j = 1, . . . , n}

Let A be the subgroup of Nk−1 generated by A = {h1, . . . , hn, a1, . . . , am}. Let Ai = Ni ∩ A for
i ∈ {1, . . . , n− 2}. Then the subnormal sequence

H = A0 / A1 / · · · / Ak−2 / A

has length k− 1. The proof splits naturally into the two cases of whether or not H has finite index
in A. In the case H has finite index in A, we give a straightforward argument showing that H is
commensurated in G and by our main theorem G is semistable at ∞. Note that if k = 1, this is
the only case (since A ⊂ N0 = H ). So when the proof of the first case is concluded, we are in
position to apply an induction argument (with base case in hand) to the remaining case.

Suppose H has finite index in A. Each point of Γ(A,A) is within a bounded distance of aH for
any a ∈ A. In particular the Hausdorff distance between H and aH is bounded.

If k ∈ K±1 and z ∈ kH , then z = kh for some h ∈ H . Note that khk−1 ∈ A (it is a product of the
a±1

ij or b±1
ij ). Since H has finite index in A, this point is close to H . As each point of kH is close

to H , left multiplying by k−1 shows that each point of H is close to k−1H for all k ∈ K±1 . We
have H is commensurated in G. The conditions of our main theorem are satisfied and so in the
case H has finite index in A, G is semistable at ∞.

Now suppose H has infinite index in A. The subnormal sequence H = N0 / N1 / · · · / Nk−1 / G
has length k . Case 1 (or Mihalik’s theorem [17]) shows that if k = 1, then G is semistable
at ∞. Inductively, we assume that if G′ is finitely generated and has a subnormal sequence of
H′ = N′0 / N′1 / · · · / N′k−2 / G′ of length k − 1 such that H′ is finitely generated and has infinite
index in G′ , then G′ is semistable at ∞.

In our case, H has infinite index in A, and the k − 1 length subnormal series H = A0 / A1 / · · · /
Ak−2 /A implies that A is semistable at∞. Hence we may choose a finite set of A-relations P so
that Γ(A,A)(P) is semistable. By using Lemma 3.6 or remark 1, we may assume that if r and s are
A-rays at v in Γ(A,A)(P), then r and s are properly homotopic rel{v} in Γ(A,A)(P). In this case,
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let Γ̃ be Γ(G,S)(P∪Q) (where Q is the set of conjugation relations defined at the beginning of this
proof).

If v ∈ G (so v is a vertex of Γ̃) and Cv is a compact subcomplex of vΓ(A,A)(P) ⊂ Γ̃ there
is a compact subcomplex Dv of vΓ(A,A)(P) such that if r and s are edge path rays at w ∈
vΓ(A,A)(P)−Dv , then, r and s are properly homotopic rel{v} by a proper homotopy whose image
does not intersect Cv . Hence, if C is a compact subcomplex of Γ̃ and we let Cv = C ∩ vΓ(A,A)(P)
(for the finite set of vertices v such C ∩ vΓ(A,A)(P) 6= ∅) and let D = ∪Dv , then any two A-rays r
and s at w ∈ vΓ(A,A)(P)− D are properly homotopic rel{w} in Γ̃− C .

We use H-rays rv , as defined in Lemma 4.4.

Choose a sequence of compact subcomplexes {Ci}∞i=1 of Γ̃ satisfying the following conditions:

(1)
⋃∞

i=1 Ci = Γ̃

(2) St(Ci) is contained in the interior of Ci+1 , and the finite set of vertices v such that rv

intersects Ci , is a subset of Ci+1 .

(3) If r and s are A-rays both based at a vertex v with images missing Ci , then r and s are
properly homotopic rel{v} by a proper homotopy missing Ci−1 .

For convenience define Ci = ∅ for i < 1 and observe that conditions (1), (2), and (3) remain
valid for all Ci . The next lemma concludes the proof of the second case and the theorem.

Lemma 5.2 If v is a vertex of Γ̃, and s = (s1, s2, . . .) is an S-ray at v, then s is properly
homotopic to rv , rel{v}.

Proof Assume that s has consecutive vertices v = v0, v1, . . .. By construction, if vj ∈ Ci−Ci−1 ,
then rvj avoids Ci−1 . Assume j is the largest integer such that Cj avoids si . We will show rvi−1 is
properly homotopic to si ∗ rvi rel{vi−1} by a proper homotopy Hi with image avoiding Cj−2 .

If si ∈ A±1 , this is clear by condition (3) with Hi avoiding Cj−1 . If si ∈ K±1 , then si ∗ rvi

is properly homtopic rel{vi−1} to an A-ray, tvi−1 (using only 2-cells arising from Q) and this
homotopy has image in St(Im(si ∗ rvi)) ⊂ Γ̃− Cj−1 . Since tvi−1 and rvi−1 are A-rays with images
avoiding Cj−1 , condition (3) on the sets Ci gives a proper homotopy between them rel{vi−1},
whose image avoids Cj−2 . Patch these two proper homotopies together to obtain Hi .

Let H be the homotopy rel{v} of s to rv , obtained by patching together the homotopies Hi . We
need to check that H is proper. Let C ⊂ Γ̃ be compact. Choose an index j such that C ⊆ Cj .
Since s is a proper edge path to infinity, choose an index N such that all edges after the Nth edge
of s avoid Cj+2 . Then for all i > N , Hi avoids Cj , so H is proper.

This concludes the proof of the theorem.
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6 Simple Connectivity at ∞

Recall, a connected locally finite CW-complex X is simply connected at∞ if for each compact set
C in X there is a compact set D in X such that loops in X−D are homotopically trivial in X−C .
A group G is simply connected at ∞ if given some, equivalently any (see Lee and Raymond [14],
Theorem 3), finite complex X with π1(X) = G, then the universal cover of X is simply connected
at ∞.

If G is a group and H a subgroup of G there are various notions for the number of ends of the pair
(G,H). Chapter 14 of Geoghegan [7], gives a good account of these notions. In particular, the
idea of the number of filtered ends of the pair (G,H) is developed and compared to the standard
number of ends of a pair. In any case, the number of filtered ends of the pair (G,H) is greater than
or equal to the number of standard ends of the pair. Proposition 14.5.9 [7], shows that if H is a
normal subgroup of G, then the number of ends of G/H , the standard number of ends of (G,H)
and the number of filtered ends of (G,H) are all the same. Conner and Mihalik [3], show that if
G is a group with finite generating set S and Q is a finitely generated commensurated subgroup of
G, then the number of filtered ends of (G,Q) equals the number of ends of Λ(S,Q,G).

Theorem 6.1 Suppose G is a finitely presented group with finite generating set S , and Q is a
finitely presented, infinite commensurated subgroup of infinite index in G. If Q or Λ(S,Q,G) is
one-ended, then G is simply connected at ∞.

Proof Suppose P = 〈q1, . . . , qa, k1, . . . , kb : R〉 is a finite presentation of the group G such that
the qi generate the infinite commensurated subgroup Q, no ki is an element of Q, and R contains
relations R′ such that 〈q1, . . . , qa : R′〉 is a finite presentation of Q. Assume that Q has infinite
index in G. Let X be the Cayley 2-complex of P , X̃ the universal cover for X and X̃(Q, v) ⊂ X̃
the copy of the universal cover of the Cayley 2-complex for 〈q1, . . . , qa : R′〉 containing v. Let
K = {k1, . . . , kb} and Q = {q1, . . . qa}.

Let N1 be an integer such that if cosets gQ and hQ of G are connected by an edge in X̃ , then the
Hausdorff distance between gQ and hQ in X̃ is ≤ N1 . For each relator r ∈ R, let r′ be the word
obtained from r by removing Q letters. For each such (non-trivial) r′ and edge loop in Λ(S,Q,G)
with edge label r′ , attach a 2-cell and call the resulting locally finite 2-complex Λ̂(S,Q,G). Note
that Γ(S,G) is the 1-skeleton of X̃ . Extend the map ρ : Γ(S,G) → Λ(S,Q,G) (see proposition
2.2), to ρ : X̃ → Λ̂(S,Q,G). Let C be a finite subcomplex of X̃ . Let d1 ≥ 1 be an integer such that
for each vertex v of ρ(C), there is a K-edge path in Λ̂(S,Q,G) of length ≤ d1 from v to a vertex
of Λ̂(S,Q,G) − ρ(C). In particular, for each vertex v of X̃ , there is an edge path at v of length
≤ N1d1 and with end point w such that X̃(Q,w) ∩ C = ∅. For each k ∈ {k1, . . . , kb} assume that
Q and kQ are within Hausdorff distance N1 . Choose N2 so that if q1 and q2 are two Q-vertices
of X̃ with the edge path distance in X̃ between q1 and q2 less than or equal to 2N1 + 1, then the
edge path distance between q1 and q2 in X̃(Q, q1) is ≤ N2 . In particular, there is a Q-edge path
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between q1 and q2 of length ≤ N2 . Choose N3 such that if α is an edge path loop at ∗ ∈ X̃ of
length ≤ 2N1 + N2 + 1, then α is homotopically trivial in StN3(∗).

Lemma 6.2 Suppose G is a finitely presented group, Q is a finitely presented, infinite commen-
surated subgroup of infinite index in G, P is a presentation of G as above, and X is the Cayley
2-complex of P . If α is a Q-loop in X̃ , with image in X̃ − Std1N1N3(C), then α is homotopically
trivial in X̃ − C .

Proof We may assume v is the initial vertex of α . If X̃(Q, v) ∩ C = ∅, then α is homotopically
trivial in X̃(Q, v) and we are finished. If X̃(Q, v) ∩ C 6= ∅, there is an edge path β = (b1, . . . , bk)
at v with k ≤ N1d1 and with end point w such that X̃(Q,w) ∩ C = ∅. Let v ≡ v0, . . . , vk ≡ w
be the consecutive vertices of α . For each vertex x of β , there is an edge path of length ≤ N1

from x to a vertex of X̃(Q, v1) (if b1 is a Q-edge, this path is trivial) and hence α is homotopic
rel{0, 1} to a loop (b1, α1, b−1

1 ), where α1 is a Q-loop in X̃(Q, v1), by a homotopy in StN3(im(α)).
Inductively, α is freely homotopic to a Q-loop αk at the end point of β , by a homotopy in
StkN3(im(α)) ⊂ X̃ − C . As X̃(Q,w) ∩ C = ∅ and im(αk) ⊂ X̃(Q,w), αk (and hence α) is
homotopically trivial in X̃ − C .

Case 1: Q is one-ended. There are finitely many vertices w1, . . . ,wn ∈ X̃ such that X̃(Q,wi) ∩
St(d1N1+1)N3(C) 6= ∅. As X̃(Q,wi) is one-ended, there is a compact subcomplex D of X̃ such that
St(d1N1+1)N3(C) ⊂ D and for all i ∈ {1, . . . , n} and vertices x, y ∈ X̃(Q,wi) − D, x and y can be
joined by a Q-edge path in X̃(Q, vi) − St(d1N1+1)N3(C). Now, suppose α is an arbitrary loop in
X̃ − D with initial vertex v. Choose L a positive integer such that if q1 and q2 are vertices of
X̃(Q, ∗) that are of distance ≤ N1|α| apart in X̃ , then they are of distance ≤ L in X̃(Q, ∗). Choose
E such that any edge path loop τ at a vertex x of X̃ , of length ≤ N1|α| + L , is homotopically
trivial in StE(x). Let β1 be a Q-path in X̃(Q, v)− St(d1N1+1)N3(C) from v to a point

w ∈ X̃ − (StE(C) ∪ Std1N1N3+L(C) ∪ StN1|α|(D))

Write the edge path α as (e1, . . . , em) with consecutive vertices v = v1, . . . , vm . As w ∈ X̃(Q, v)
there is an edge path τ1 of length ≤ N1 from w = w1 to w2 ∈ X̃(Q, v2). Let τ2 be an edge path
of length ≤ N1 from w2 to w3 ∈ X̃(Q, v3). Inductively, τm is an edge path of length ≤ N1 from
wm to a vertex wm+1 ∈ X̃(Q, v). (Note that τi may be taken as the trivial path if ei is a Q-edge.)
As the edge path (τ1, . . . , τm) has length ≤ N1|α|, there is a Q-path λ, from wm+1 to w of length
≤ L . By the definition of E , the loop τ ≡ (τ1, . . . , τm, λ) at w is homotopically trivial in X̃ − C .
Hence, it suffices to show that α is freely homotopic to τ in X̃ − C . (See Figure 1.)

First note that each vertex of (τ1, . . . , τm) is in X̃ −D, since the vertex w ∈ X̃ − StN1|α|(D). Next,
write β1 as the edge path (b1, . . . , bs). Let φ0 = e1 and let φi be an edge path of length ≤ N1

from the end point of bi to a point of X̃(Q, v2). Let ψi be a Q-edge path of length ≤ N2 from the
end point of φi−1 to the end point of φi . (Choose φs = τ1 .) Then the loop (φi−1, ψi, φ

−1
i , b−1

i )
has length ≤ 2N1 + N2 + 1 and is homotopically trivial by a homotopy in the N3 -star of the
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initial point of bi . String together these homotopies and we have that the edge path 〈e−1
1 , β1, τ1)

is homotopic rel{0, 1} to the Q-edge path β′2 ≡ (ψ1, . . . , ψm) by a homotopy with image in
StN3(im(β1)) ⊂ X̃− Std1N1N3(C). By the definition of D, there is an Q-edge path β2 with the same
end points as β′2 and with image in X̃− St(d1N1+1)N3(C). By Lemma 6.2, β2 and β′2 are homotopic
rel{0, 1} by a homotopy in X̃ − C . Continue inductively until βm and β′m+1 are defined. Since
w ∈ X̃− Std1N1N3+L(C), the path λ (of length ≤ L) has image in X̃− Std1N1N3(C). By Lemma 6.2,
the Q-loop (β′m+1, λ, β

−1
1 ) is homotopically trivial in X̃ − C .

Case 2: Λ(S,Q,G) is one-ended. The letters N1 , N2 and N3 remain as in case 1 and we recycle
letters used for any other constant.

Given C a finite subcomplex of X̃ . Consider ρ(C) ⊂ Λ̂(S,Q,G). Choose D a finite subgraph
of Λ(S,Q,G) such that any two vertices of Λ̂(S,Q,G) − D can be connected by a path in
Λ̂(S,Q,G) − ρ(StN3(C)). For each vertex v of D choose a path ᾱv from v to a vertex of
Λ̂(S,Q,G)− D. If v is a vertex of Λ̂(S,Q,G)− D, let ᾱv be the trivial path. Let N be the length
of the longest path ᾱv for v ∈ D. If v is a vertex of X̃ such that ρ(v) ∈ D let αv be an edge
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path of the form (β1, . . . , βm) where each βi has length ≤ N1 and ρ(βi) has the same end points
as the ith edge of ᾱρ(v) (so |αv| ≤ N1N ). In analogy with previous terminology, we call αv an
N1 -approximate lift of ᾱρ(v) . If ρ(v) 6∈ D, let αv be the trivial path.

Choose an integer M such that if v and w are adjacent vertices of St(D), then there is an edge
path ᾱv,w in Λ̂(S,Q,G)− ρ(StN3(C)) of length ≤ M from the end point of ᾱv to the end point of
ᾱw . Choose an integer B such that if β is a X̃ -edge path of length ≤ (2N + M)N1 + 1 connecting
∗ (the vertex of X̃ corresponding to the identity element of G) to a vertex q ∈ Q, then there is a
Q-edge path of length ≤ B connecting ∗ to q. Choose an integer A such that if β is an edge path
loop at ∗ of length ≤ (2N + M)N1 + B + 1, then β is homotopically trivial in StA(∗).

We next show: If β is an edge path loop in X̃−StA(C), then β is freely homotopic to a loop β̂ by a
homotopy in X̃−C where β̂ can be chosen so that for each vertex v of β̂ , ρ(v) 6∈ ρ(StN3(C)). If e is
a directed edge of X̃ or Λ(S,Q,G), with initial point a and terminal point b, then let [a, b] represent
this edge. Suppose β is the edge path (d1, d2, . . . , dn) with consecutive vertices b1, . . . , bn+1 . If
(cyclically) neither ρ(bi) nor ρ(bi+1) is in D, then let β̂i be the single edge di . Otherwise, ρ(bi)
and ρ(bi+1) belong to St(D). In this case, consider the edge path δi ≡ (α−1

bi
, di, αbi+1) of X̃ .

If ρ(bi) 6= ρ(bi+1), the edge path ᾱρ(bi),ρ(bi+1) joins the end points of ρ(δi) and has length ≤ M .
Let αi be an N1 -approximate lift of ᾱρ(bi),ρ(bi+1) to the initial point of δi (otherwise, let αi be the
trivial path at the initial point of δi ).

Note that the end point of αi and the end point of δi belong to the same left Q-coset. As the length
of (α−1

i , δi) is ≤ (2N + M)N1 + 1 there is a Q-edge path γi of length ≤ B from the initial point
to the end point of (α−1

i , δi). The loop (γ−1
i , α−1

i , δi) has length ≤ 2N + M + B + 1 and so is
homotopically trivial in X̃ − C (by the definition of A). Let β̂i = (αi, γi), for i ∈ {1, . . . , n}. Let
β̂ be the loop (β̂1, . . . , β̂n). Combining homotopies shows that β is freely homotopic to β̂ by a
homotopy in X̃ − C . As ρ(αi) avoids ρ(StN3(C)), ρ(β̂) avoids ρ(StN3(C)). (See Figure 2.)

We conclude the proof of case 2 by showing β̂ is homotopically trivial in X̃ − C . The proof
is analogous to the closing argument of case 1. Let v be the initial vertex of β̂ . Choose L a
positive integer such that if q1 and q2 are vertices of X̃(Q, ∗) that are of distance ≤ N1|β̂| apart
in X̃ , then they are of distance ≤ L in X̃(Q, ∗). Choose E such that any edge path loop τ at a
vertex x of X̃ and of length ≤ N1|β̂|+ L , is homotopically trivial in StE(x). Let β1 be a Q-path
from v to a point w ∈ X̃ − StE(C). Write the edge path β̂ as (e1, . . . , em) with consecutive
vertices v ≡ v1, v2, . . . , vm . As w ∈ X̃(Q, v) there is an edge path τ1 of length ≤ N1 from w to
w2 ∈ X̃(Q, v2). Let τ2 be an edge path of length ≤ N1 from w2 to w3 ∈ X̃(Q, v3). Inductively, τm

is an edge path of length ≤ N1 from wm to a vertex wm+1 ∈ X̃(Q, v). (Note that τi may be taken
as the trivial path if ei is a Q-edge.) As the edge path (τ1, . . . τm) begins and ends in X̃(Q, v) and
has length ≤ N1|β̂|, there is a Q-path λ, from wm+1 to w of length ≤ L . By the definition of E ,
the loop τ ≡ (τ1, . . . , τm, λ) at w is homotopically trivial in X̃−C . Hence, it suffices to show that
α is freely homotopic to τ in X̃ − C .

Each vertex b of β1 is such that ρ(v) = ρ(b) ∈ Λ̂(S,Q,G) − ρ(StN3(C)) and so the image of
β1 avoids StN3(C). As in case 1, this implies that the path (e−1

1 , β1, τ1) is homotopic rel{0, 1}
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to a Q-edge path β2 by a homotopy with image in StN3(im(β1)) ⊂ X̃ − C . Each vertex b of
β2 is such that ρ(b) = ρ(v2) ∈ Λ̂(S,Q,G) − ρ(StN3(C)) and so the image of β2 avoids StN3(C).
The path (e−1

2 , β2, τ2) is homotopic rel{0, 1} to a Q-edge path β3 by a homotopy with image in
StN3(im(β2)) ⊂ X̃−C . Continue inductively until βm+1 is defined (as a Q-path from v to wm+1 ).
As ρ(v) ∈ Λ̂(S,Q,G) − ρ(StN3(C)), the Q-loop (β1, λ

−1, β−1
m+1) has image in X̃(Q, v) ⊂ X̃ − C ,

and so is homotopically trivial in X̃ − C . (See Figure 3.) Combining homotopies produces a null
homotopy of β̂ with image in X̃ − C .
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