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Abstract. If Λ is the Cayley graph of a Gromov hyperbolic group,
then it is a fundamental fact that quasi-geodesics in Λ are tracked by
geodesics. Let (W,S) be a finitely generated Coxeter system and Λ
be the Cayley graph of (W,S). For general Coxeter groups, not all
quasi-geodesic rays in Λ are tracked by geodesics. In this paper we
classify the Λ-quasi-geodesic rays that are tracked by geodesics. As
corollaries we show that if W acts geometrically on a CAT(0) space
X, then CAT(0) geodesics in X are tracked by Cayley graph geodesics
(taking the Cayley graph as equivariantly placed in X) and for any
A ⊂ S, the special subgroup 〈A〉 is quasi-convex in X. We also show
that if g is an element of infinite order for (W,S) then the subgroup 〈g〉
is tracked by a Cayley geodesic in Λ (in analogy with the corresponding
result for word hyperbolic groups).

1. Introduction

Suppose G is a group with finite generating set A, and Λ = Λ(G,A) is the
Cayley graph of G with respect to A. If G is word hyperbolic then any quasi-
geodesic in Λ is tracked by a geodesic (see [Sh]). The corresponding result
for CAT(0) groups is not true. Our main goal in this paper is to classify the
quasi-geodesics in the Cayley graph of a finitely generated Coxeter system
that are tracked by geodesics. We define a “bracket number” for a Cayley
path in terms of the wall crossings of the path and our main theorem is that
a quasi-geodesic ray or line is tracked by a geodesic iff the bracket number of
the ray or line is bounded. Our principal corollary to this theorem states that
if (W,S) is a finitely generated Coxeter system, and W acts geometrically
on a CAT(0) space X, then the CAT(0) geodesics of X are tracked by
(W,S) Cayley geodesics in X. The corresponding result is not true, even for
CAT(0) groups that embed as subgroups of finite index in Coxeter groups
(see remark 6.5). If X is the Davis complex for (W,S) or even if W acts
as a reflection group on X, the proof of the corollary is straightforward.
Unfortunately, the reflection group argument has no analogue when W does
not act as a reflection group on X. The principal corollary directly implies
that if A ⊂ S then the special subgroup 〈A〉 is quasi-convex in X.
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If a group G acts geometrically on a CAT(0) space X and one is inter-
ested in the asymptotic properties of X, it is a considerable advantage to
know that CAT(0) geodesics in X are tracked by Cayley geodesics. Clearly,
the algebraic properties of G are far more apparent in Cayley geodesics
than in CAT(0) geodesics. This theme is highlighted in [MRT] where local
connectivity of boundaries of right angled Coxeter groups are analyzed.

The work of B. Bowditch and G. Swarup (see [S]) imply that 1-ended
word hyperbolic groups have locally connected boundary. One can easily
see from our tracking results that any 1-ended hyperbolic Coxeter group
has locally connected boundary.

2. Coxeter Preliminaries

We use M. Davis’ book [D] as a general Coxeter group reference for this
section. A Coxeter system is a pair (W,S) where S is a generating set for
the group W and W has presentation

〈S : (sisj)
m(i,j) for all si, sj ∈ S〉

where m(i, j) ∈ {1, 2, . . . ,∞}, m(i, j) = 1 iff i = j (so all generators are
order 2) and m(i, j) = m(j, i). If m(i, j) =∞, the element sisj is of infinite
order (and the relation (sisj)

∞ is left out of the presentation).
In the Cayley graph Λ = Λ(W,S), for w ∈ W and s ∈ S there are

formally two edges from w to ws = ws−1, one labeled by the letter s and
one labeled by the letter s−1, but as every generator has order two, every
edge is doubled. Ordinarily, it is just as easy to identify the letters s and s−1

and take a single edge from w to ws corresponding to the twin edges, and we
will do so here. The Cayley graph is viewed as a 1-complex with unit length
intervals for edges. An edge path in Λ is a continuous map β : [0, n]→ Λ such
that n ∈ Z+ and for each non-negative integer k < n, β maps the interval
[k, k+ 1] isometrically to an edge of Λ. Thus an edge path is determined by
the sequence of its vertices, each adjacent to the previous, or alternatively, is
determined by its starting point and the word of labels of its edges. Then Λ
is taken with edge path metric and the distance between vertices v and vw is
the length of the shortest word representing w (the length of a shortest path
having label w). Similarly, for β satisfying the corresponding condition, if
β : [0,∞) → Λ, then β is called a ray and, if β : (−∞,∞) → Λ then β is
called a line. An edge path, ray, or line β is a geodesic if β is an isometry.

A reflection in W is a conjugate of an element of S. If w ∈W and s ∈ S,
then the edge from w to ws is mapped to itself by the reflection wsw−1, so
that the vertices w and ws are interchanged, i.e., the edge is reflected across
its midpoint. The set of those edges in Λ which are mapped to themselves
in this way by some particular reflection r is called a wall of Λ. The walls
of Λ partition the edges of Λ into disjoint sets. Notationally, we write a
wall Q as [e] where e is any edge of the wall Q and we define Q̄ to be the
union of the edges of Q in Λ. An edge e with label t ∈ S belongs to a
wall Q corresponding to the reflection wsw−1 iff a vertex of e is wq where
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qtq−1 = s. An edge path β containing more than one edge from a wall
cannot be geodesic, for if e and d are edges in β (with e before d, say)
both in the wall given by a reflection r, and β′ is the segment of β from
the terminal point of e to the initial point of d, then rβ′ is a path from the
initial point of e to the terminal point of d and replacing (e, β′, d) in β by
rβ′ shortens β. The converse of this observation is essentially the deletion
condition for Coxeter groups; if β is not geodesic, then there are edges e and
d in β belonging to the same wall. Replacing (e, β′, d) with rβ′ corresponds
to deletion of the letters labeling edges e and d in the label of β. Moreover,
in this case, we can always take a e and d in a wall where the intervening
segment β′ in β is a geodesic which does not cross this wall. The closure
of the complement of a wall in Λ has exactly two components (which are
interchanged by the reflection) called the sides of the wall. Two walls are
parallel if all edges of one are on the same side of the other. If two walls are
not parallel, then they cross. The following theorem due to B. Brink and R.
Howlett (see theorem 2.8 of [BrH]) is a fundamental result concerning the
wall structure of Λ.

Theorem 2.1. (Parallel Wall theorem) Suppose (W,S) is a finitely gen-
erated Coxeter system and Λ is the Cayley graph of W with respect to S.
For each positive integer n there is a constant P (n) such that the following
holds: given a wall Q and a point p in Λ, if the distance from p to Q̄ is at
least P (n), then there exist n distinct pairwise parallel walls which separate
Q̄ from p.

For a path β in Λ and vertex t of β let the bracket number of t in β be
the number of walls Q such that there is an edge of Q on either side of t
in β. Denote the bracket number of t in β as B(t, β). If τ is a subpath of
β the bracket number of τ in β is the maximum of the numbers B(t, β) for
all vertices t of τ . Denote this number B(τ, β). Call B(β) ≡ B(β, β) the
bracket number of β.

3. Wall computations

If α is an edge path in the Cayley graph Λ having consecutive vertices
a = v0, v1, . . . , vn = b, then an L-approximation to α is an edge path β in Λ
connecting a and b of the form β = (β1, . . . , βn) where each βi is a geodesic
connecting wi−1 to wi for a sequence of vertices wi each within L of the
corresponding vi. The points wi are called approximation points.

Lemma 3.1. Suppose (W,S) is a finitely generated Coxeter system with
Cayley graph Λ. Then there is a function f such that, for α any edge path
in Λ and β an L-approximation of α, the bracket number B(β) is at most
f(B(α), L) (that is, B(β) is bounded by a constant depending only on B(α)
and L and is otherwise independent of the particular α).

Proof. Let the consecutive vertices of α be a = v0, v1, . . . , vn = b, the ap-
proximation vertices of β be a = w0, w1, . . . , wm = b (so that d(wi, vi) ≤ L
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for all i) and βi be the geodesic subpath of β connecting wi−1 to wi, so
β = (β1, . . . , βm). If x is a vertex of βi and B(x, β) is “large”, then (as each
edge belongs to exactly one wall) there is a wall Q that brackets x on β
that is “far” from x and hence far from vi. Hence it suffices to bound the
distance between vi and a wall Q that brackets x on β. The Parallel Wall
theorem implies this distance is large iff there is a large set Q of (mutually
parallel) walls that separate Q̄ from vi, so it suffices to bound the size of the
set Q of walls that separate Q̄ from vi. Say j < i < k such that ej and ek
are edges of βj and βk respectively, and each of ej , ek belongs to the wall
Q. (See figure 1.)

a b

vj−1 vj vi−1 vi vk−1 vk

wj−1 wj wi−1 wi wk−1 wkβj βi βk

ej x ek

Figure 1.

A path δj , that begins at the end point of ej follows βj to wj and then
travels geodesically from wj to vj has length ≤ 3L. If αj,i is the subpath of
α from vj to vi, then the path (δj , αj,i) must cross each wall of Q. Similarly
define a path from ek to vi (which also crosses each wall of Q). Then at
most 6L walls of Q do not bracket vi on α. This bounds the size of Q by
6L+B(α). �

Lemma 3.2. Suppose (W,S) is a Coxeter system and α = (e1, . . . , en) is a
geodesic edge path connecting vertices a and b in Λ(W,S) such that α does
not cross the wall Q. If e0 is an edge at a and en+1 an edge at b such that
e0 and en+1 belong to the wall Q then each vertex of α is within P (1) of Q̄
(where P is the function of theorem 2.1). In particular, if v is a vertex of α
and v′ the reflection of v across Q then d(v, v′) ≤ 2P (1) + 1.

Proof. Otherwise, there is a wall Q′ separating a vertex v of α from Q.
Hence there is an edge of α between a and v that belongs to Q′ and an
edge of α between v and b that belongs to Q′. This is impossible as α is
geodesic. �

Proposition 3.3. Suppose (W,S) is a Coxeter system and α is an edge
path of Λ(W,S) connecting a and b. Then there is an L-approximation β
to α such that each vertex of β is on some geodesic connecting a and b and
such that L ≤ (2P (1) + 1)B(α).
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Proof. Let the consecutive vertices of α be a = v0, . . . , vn = b. For 0 < i < n
we choose an approximation point wi for vi as follows. Let αi be a geodesic
from a to vi and βi a geodesic from vi to b. Each wall of (αi, βi) is crossed
exactly once or twice. The number of walls crossed twice by (αi, βi) is

Ni ≡
1

2
(d(a, vi) + d(vi, b)− d(a, b)) ≤ B(α)

Let e be the last edge of αi belonging to a wall which is crossed twice by
(αi, βi) and d the edge of βi in the same wall as e. (See figure 2.)

a b

vi

v′i

e d

α

αi βi

Figure 2.

The segment of (αi, βi) between e and d is geodesic. Considering the
reflection of this segment across the wall containing e and d (equivalently,
delete e and d from (αi, βi)). Then we see that v′i, the reflection of vi, is
within 2P (1)+1 of vi (lemma 3.2), and the distance from v′i to a (respectively
b) is less than that of vi to a (respectively b). Hence 1

2(d(a, v′i) + d(v′i, b) −
d(a, b)) < Ni and a geodesic from a to v′i followed by a geodesic from v′i to b
crosses at most Ni−1 walls twice. Continuing as above at most Ni(≤ B(α))
such reflections are needed to move vi to a point wi on a geodesic between
a and b, and so d(wi, vi) ≤ (2P (1) + 1)B(α).

It remains to see that each vertex of a geodesic connecting wi and wi+1

belongs to a geodesic connecting a and b. Consider the edge path (δi, βi, γi)
where δi is a geodesic connecting a to wi, βi is a geodesic connecting wi to
wi+1 and γi is a geodesic connecting wi+1 to b. The paths δi and γi only
cross walls crossed by some (equivalently any) geodesic connecting a to b. If
a vertex v of βi is not on a geodesic connecting a and b then there is a wall
R separating v from some (equivalently every) geodesic connecting a and b.
As R separates v from a, and δi does not cross R, βi must cross R between
wi and v. Similarly βi must cross R between v and wi+1. This is impossible
as βi is geodesic. �

If γ is an edge path in Λ connecting the vertices a and b, then each wall
separating a and b is crossed an odd number of times by γ and each wall
not separating a and b is crossed an even number of times by γ. If α is a
geodesic connecting a and b then the walls separating a and b are the walls
determined by the edges of α, so the walls separating a and b are in 1-1
correspondence with the edges of some (any) geodesic connecting a and b.
The following observations are straightforward.
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Lemma 3.4. Suppose β is an edge path in Λ connecting the vertices a and
b then the following are equivalent.

i) Each vertex of β is on some geodesic connecting a and b
ii) Each edge of β belongs to a wall that separates a from b.

iii) Each wall crossed by β is crossed an odd number of times.
iv) For any vertices c and d of β any wall separating c and d also separates

a and b.

The next result is a slightly more sophisticated version of lemma 3.2.

Lemma 3.5. Suppose α is a geodesic edge path in Λ connecting the vertices
a and b, v is a vertex of α, and a and b are each within distance A of Q̄ for
some wall Q. Then v is within distance 2A(2P (1) + 1) + P (1) of Q̄.

Proof. Let a′ (respectively b′) be a vertex of Q̄ within A of a (respectively
b) and on the same side of Q as is a (respectively b). Let β (respectively γ)
be a geodesic from a′ to a (respectively b to b′).

Case 1. The geodesic α does not cross Q.
In this case the path δ0 ≡ (β, α, γ) does not cross Q. Since |β| ≤ A and
|γ| ≤ A, a sequence of at most 2A deletions (the first in the path δ0) will
determine a geodesic connecting a′ to b′. As noted in section 2, if at some
stage δi is not geodesic, then we can take edges ei and di of δi in the same
wall and such that (∗) the subpath of δi between ei and di is geodesic and
does not cross the wall. Replacing this subpath by its reflection in the wall
and deleting ei and di will give a shorter path δi+1 from a′ to b′. Note that
if δi does not cross Q, ei and di are on the same side of Q, so the reflected
subpath, being a geodesic by (∗), cannot cross Q, and then δi+1 also does
not cross Q. After K ≤ 2A such deletions, δK will be a geodesic connecting
a′ and b′ which does not cross Q.

If v is not between e1 and d1 then v is a vertex of δ1. If v is between
e1 and d1, then v1, the reflection of v across the wall [e1] = [d1], is within
2P (1) + 1 of v, by lemma 3.2. (Note that the hypotheses of lemma 3.2 are
satisfied since we require condition (∗.)) In any case δ1 contains a vertex v1

within 2P (1) + 1 of v. If e2 and d2 are deleting edges of δ1 (satisfying (∗)),
then δ2, obtained from δ1 by deleting e2 and d2, contains a vertex v2 within
2P (1) + 1 of v1, again by lemma 3.2, and so v2 is within 2(2P (1) + 1) of
v. Inductively then, δK contains a vertex vK within K(2P (1) + 1) of v. By
lemma 3.2, vK is within P (1) of Q̄ so that v is within 2A(2P (1) + 1) +P (1)
of Q̄. This completes case 1.

Case 2. Suppose α crosses Q.
Say the edge e of α between v and b belongs to Q. Repeat the case 1
argument with δ0 replaced by (β, α′), where α′ is the subsegment of α from
a to the initial point of e. Similarly if e ∈ Q is an edge of α between a and
v. Note that in both case 2 scenarios, at most A deletions are required to
straighten to a geodesic, so the bound is reduced to A(2(P (1)+1)+P (1). �
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4. Tracking Quasi-geodesics

We are interested in quasi-geodesic edge paths in Λ. Recall that an edge
path β is a (λ, ε)-quasi-geodesic if for each pair of integers s and t in the
domain of β, |s − t| ≤ λd(β(s), β(t)) + ε. If β is a ray or line, we say β
is quasi-geodesic if it satisfies the corresponding condition for some λ and
ε. If α and β are edge paths, then β is K-tracked by α if each vertex of
β is within K of a vertex of α. If α and β are rays or lines, we say β is
tracked by α if they satisfy the corresponding condition for some K. If α is
a K-approximation to β then β is K-tracked by α, but in general there is no
requirement that a tracking path α be piecewise geodesic nor even that the
nearest points on α to vertices of β occur in the same order. More generally,
say that a set of vertices is (K-)tracked by α if every element of the set is
within (some possibly unspecified bound) K of a vertex of α.

Lemma 4.1. For i ∈ {1, 2} suppose βi is a (λi, εi)-quasi-geodesic edge path
in Λ, β1 is K-tracked by β2 and β1(0) is within K of β2(0). Assume both β1

and β2 are lines, or both are rays, or both are finite length and the terminal
points of β1 and β2 are within K of one another. Then β2 is (λ2(2K + 1) +
ε2 +K)-tracked by β1.

Proof. Since each vertex of β1 is within K of a vertex of β2, we may define
an integer function a such that for each integer m (in the domain of β1),
β1(m) is within K of β2(a(m)). We take a(0) = 0 and if βi has ni edges
then a(n1) = n2.

The first two sets of inequalities below follow from the definitions and
triangle inequalities and the third set follows from the first two.

|a(m+ i)− a(m)| − ε2
λ2

− 2K ≤ d(β2(a(m+ i)), β2(a(m)))− 2K

≤ d(β1(m+ i), β1(m))

≤ d(β2(a(m+ i)), β2(a(m))) + 2K

≤ |a(m+ i)− a(m)|+ 2K

i− ε1
λ1

≤ d(β1(m+ i), β1(m)) ≤ i

i− ε1
λ1

− 2K ≤ |a(m+ i)− a(m)|(1)

≤ λ2(d(β1(m+ i), β1(m)) + 2K) + ε2

≤ (i+ 2K)λ2 + ε2

The inequality |a(i+ 1)− a(i)| ≤ λ2(2K + 1) + ε2 implies if k is between
a(i) and a(i + 1) for some i then β2(k) is within λ2(2K + 1) + ε2 + K of
β1(i). In the case β1 and β2 are finite, the condition that terminal points
are within K of one another (so that a(n1) = n2) implies that every integer
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in the domain of β2 is between a(i) and a(i+ 1) for some i and this case is
finished. If β1 and β2 are rays then a(i) is non-negative and equation 1 (with
m = 0) implies a(i) is arbitrarily large for large i and again every integer in
the domain of β2 is between a(i) and a(i + 1) for some i. If β1 and β2 are
bi-infinite, then the a(i) may be positive or negative and (again by 1) for
large |i|, |a(i)| is large, and limi→+∞ a(i) = ±∞ and limi→−∞ a(i) = ±∞.
It remains to see limi→+∞ a(i) 6= limi→−∞ a(i). Equality is impossible, since
otherwise, for every large positive integer i, a(−i) would be between a(j)
and a(j+1) for some (depending on i) large positive integer j. But equation
1 implies a(j) and a(j + 1) are relatively close and a(−i) and a(j) are far
apart. �

Proposition 4.2. Suppose β is a quasi-geodesic edge path ray in Λ and β
is tracked by a geodesic, then β has bounded bracket number.

Proof. Assume that β is a (λ, ε)-quasi-geodesic. Suppose α is a geodesic
such that each vertex of β is within L of a vertex of α. For each integer
n ≥ 0, choose an integer a(n) such that d(β(n), α(a(n))) ≤ L. We assume
that a(0) = 0.

The next two sets of inequalities follow from the definitions and triangle
inequalities, and the third follows from the first two.

a(n)− 2L ≤ d(β(n), β(0)) ≤ a(n) + 2L

n− ε
λ
≤ d(β(n), β(0)) ≤ n

n− ε
λ
− 2L ≤ a(n) ≤ n+ 2L

The proof now makes use of the following claim.

Claim 4.3. Suppose K is an integer larger than λ(4L + 1) + ε. Then for
any integer n, a(n+K) > a(n).

Proof. Note that if m > λ(n + 4L) + ε then a(m) > n + 2L ≥ a(n). So
if K > λ(4L + 1) + ε, and a(n + K) ≤ a(n), then there is a last integer
K1 > λ(4L+ 1) + ε such that a(n+K1) ≤ a(n). Then (see figure 3)

a(n+K1 + 1) > a(n) ≥ a(n+K1)

Since d(β(n+K1), β(n+K1 + 1)) = 1 for all n, and d(β(i), α(a(i))) ≤ L
for all i, we have

d(α(a(n+K1)), α(a(n+K1 + 1))) ≤ 2L+ 1

But as α(a(n)) is between α(a(n+K1)) and α(a(n+K1 +1)) on the geodesic
α,

d(α(a(n)), α(a(n+K1 + 1))) ≤ 2L+ 1

Then d(β(n), β(n+K1 + 1)) ≤ 4L+ 1. But

d(β(n), β(n+K1 + 1)) ≥ 1

λ
(K1 + 1− ε) > 4L+ 1

the desired contradiction (so the claim is proved). �
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β

α

β(n) β(n+K1) β(n+K1 + 1)

α(a(n+K1)) α(a(n)) α(a(n+K1 + 1))

≤ L≤ L≤ L

1

Figure 3.

Now suppose v ≡ β(n) is a vertex of β with bracket number at least
2λ(4L+ 1) + 2ε+K. Then there are K distinct walls, Q1, . . . , QK such that
for each i ∈ {1, . . . ,K}, there is an edge ei of β preceding v and an edge di
of β following v such that ei and di belong to the wall Qi, the subpath of β
between ei and di does not cross Qi, ei is not one of the λ(4L+ 1) + ε edges
of β immediately preceding v and di is not one of the λ(4L+1)+ε edges of β
immediately following v. I.e. ei = β([ti, ti+1]) where ti+1 ≤ n−λ(4L+1)−ε
and di = β([ui, ui + 1]) where ui ≥ n+ λ(4L+ 1) + ε. (See figure 4.)

β

α

ei div = β(n)

α(a(ti + 1)) α(a(n)) α(a(ui))

≥ λ(4L+ 1) + ε≥ λ(4L+ 1) + ε

≤ L≤ L

Figure 4.

By claim 4.3, a(ti + 1) < a(n) < a(ui). Hence, by lemma 3.5, α(a(n)) is
within 2L(2P (1) + 1) + P (1) of the wall Qi. For x a vertex of Λ, let C(k)
be the number of distinct walls that pass within k of x. Note that C is
independent of vertex in Λ. Hence K ≤ C(2L(2P (1) + 1) +P (1)), bounding
the bracket number of a vertex of β. �
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5. Proof of Main Theorem

In order to prove the main theorem, we need two results, one due to B.
Brink and R. Howlett [BrH], and a second, due to R. P. Dilworth [Di].

Theorem 5.1. (Brink-Howlett) Suppose (W,S) is a finitely generated Cox-
eter system, and Λ(W,S) is the Cayley graph of W with respect to S. There
is a bound F(W,S) on the number of mutually crossing walls of Λ.

Dilworth’s theorem requires several definitions. If A is a partially ordered
set (a set with reflexive, antisymmetric and transitive binary relation ≤
on A), then any two elements x and y are comparable if either x ≤ y or
y ≤ x. Otherwise they are in incomparable. A subset C of A is a chain
when every pair of points in C is a comparable pair. A subset B of A is
called an anitchain when every pair of points in B is an incomparable pair.
The number of points in a maximal antichain is called the width of A.

Theorem 5.2. (Dilworth) If A is a partially ordered set of width w, then
A can be partitioned into w chains.

Suppose x and y are vertices of Λ(W,S) and W(x,y) is the set of walls
that separate x and y. We partially order W(x,y) by saying P ≤ Q if either
P = Q, or P and Q are parallel and P separates x from Q. Note that P
and Q are parallel walls of W(x,y), iff they are comparable. Hence P and Q
are incomparable iff they cross. By proposition 5.1, the width of W(x,y) is
at most F(W,S). Applying Dilworth’s theorem we have:

Proposition 5.3. Suppose (W,S) is a finitely generated Coxeter system,
and Λ(W,S) is the Cayley graph of W with respect to S. For any vertices
x and y of Λ the walls separating x and y can be partitioned into at most
F(W,S) chains (where any two walls in the same chain are parallel).

Say a path is geodesic with respect to a set of walls if the path crosses
each wall of the set either 0 or 1 times. The following lemma is clear.

Lemma 5.4. Suppose α is an edge path in Λ and α is geodesic with respect
to the set of parallel walls Q. If a subpath of α is replaced by a geodesic edge
path, then the resulting edge path is geodesic with respect to Q.

Theorem 5.5. Suppose (W,S) is a finitely generated Coxeter system with
Cayley graph Λ. Then there is a function f such that, for any α a (λ, ε)-
quasi-geodesic edge path from a to b in Λ, there is a geodesic edge path β
from a to b such that α is K-tracked by β for K = f(B(α), λ, ε). That is,
any (λ, ε)-quasi-geodesic α is K-tracked by a geodesic β where the K depends
only on the bracket number of α, B(α), and on λ and ε, but is otherwise
independent of the particular α.

Proof. Fix B0, λ, and ε. Consider a (λ, ε)-quasi-geodesic α from a to b with
B(α) ≤ B0. By proposition 3.3, take α′ an L-approximation to α with
every vertex on some geodesic connecting a and b, where L depends only
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on B(α) ≤ B0. By proposition 3.1, B(α′) ≤ B1 for a larger bound B1

still determined only from B0. Moreover, α′ is a (λ′, ε′)-quasi-geodesic for
a λ′ and ε′ determined only from L, λ and ε. More specifically, write α′

as (α′1, . . . , α
′
q) where the α′i are geodesic of length ≤ 2L + 1, with initial

and terminal vertices of α′i within L of α(i− 1) and α(i) respectively. Then
each interior vertex of α′i is within 3L of α(i − 1) and α(i). Thus an α′(i)
and α′(j) are within 3L of vertices α(l) and α(m), respectively, such that
vertices of α between these have approximation points between α′(i) and
α′(j), and hence

|i− j| ≤ (2L+ 1)(|l −m|+ 2)

≤ (2L+ 1)(λd(α(l), α(m)) + ε+ 2)

≤ (2L+ 1)(λ(d(α′(i), α′(j)) + 6L) + ε+ 2)

= (2L+ 1)λd(α′(i), α′(j)) + (2L+ 1)(λ(6L) + ε+ 2)

from which λ′ and ε′ can be read off.
A geodesic β that K-tracks α′ will K+L-track α. Thus it suffices to find,

in terms of B1, λ′, and ε′, a K that works for those (λ′, ε′)-quasi-geodesics
α′ with B(α′) ≤ B1 and having every vertex on some geodesic between its
endpoints, i.e., we may as well prove the theorem for α having every vertex
on some geodesic between its endpoints.

The proof is a double induction argument. For the “outside” induction,
we show by induction on A with 1 ≤ A ≤ F ≡ F(W,S) that, for any positive
integer B0 and constants λ and ε, there is a constant KA such that, for any
(λ, ε)-quasi-geodesic α from a to b, with B(α) ≤ B0 and every vertex on a
geodesic between a and b, if W(a,b), the set of walls separating a and b, can
be partitioned into A or fewer chains, then there is a geodesic edge path β
from a to b such that α is KA-tracked by β. By proposition 5.3, the set of
walls separating any a and b can be partitioned into at most F chains, so
K = KF suffices for the theorem.

Note that if A = 1 then all walls separating a and b are parallel. In
this case, the walls separating a and b are ordered as Q1, . . . , Qm where for
i < j < k, Qj separates Qi from Qk. Hence, there is a unique, geodesic edge
path β connecting a and b, and β crosses Q1, then Q2, etc. The path α only
crosses the walls separating a and b (see lemma 3.4) and, in this case, is a
geodesic modulo backtracking. Eliminating backtracking on α produces β.
Each vertex of α is a vertex of β and the basis case is complete with K1 = 0.

Assume the (outside) induction statement is true for A < M . For the
“inside” induction, we show by induction on N with 0 ≤ N ≤ M that, for
any positive integer B0 and constants λ and ε, there is a constant KM,N

such that, for any (λ, ε)-quasi-geodesic α from a to b, with B(α) ≤ B0 and
every vertex on a geodesic between a and b, ifW(a,b) can be partitioned into
M chains Q1, . . . ,QM , such that α is geodesic with respect to all but at
most N of the Qi, then there is a geodesic edge path β from a to b such
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that α is KM,N -tracked by β. The induction step for the outside induction
is completed then by taking KM = KM,M .

Fix a B0, λ, and ε. Consider a (λ, ε)-quasi-geodesic α from a to b, with
B(α) ≤ B0 and every vertex on a geodesic between a and b, such that M
chains Q1, . . . ,QM partition the set of walls separating a and b. Again by
lemma 3.4, α only crosses walls separating a and b, each an odd number of
times, and each of which belongs to some Qi. Suppose α is geodesic with
respect to all but at most N of these Qi. If N = 0, then α is geodesic, so
β = α with KM,0 = 0.

Assume the (inside) induction statement is true for N = H−1. Assume α
is such that, taking Qi indexed conveniently, α is geodesic with respect to Qi

for H + 1 ≤ i ≤M . If α is also geodesic with respect to QH , then apply the
induction hypothesis. Otherwise, write α as (e1, . . . , en) with consecutive
vertices a ≡ a1, . . . , an ≡ b. Let i be the first integer such that ei is an
edge of a wall of QH where for some j > i, ej and ei are in the same wall
Q. Take j the largest integer such that ej ∈ Q. Since α crosses Q an odd
number of times, the path αi,j ≡ (ei, . . . , ej−1) (from ai to aj) crosses Q an
even number of times. A geodesic βi,j connecting ai to aj does not cross
Q. All walls of QH are parallel to one another, and βi,j begins and ends
adjacent to (at endpoints of edges in), and on the same side of, Q ∈ QH ,
Suppose Q′ is a wall of Q other than Q, with sides S1 (containing Q) and
S2, so β begins and ends in S1. If βi,j crossed Q′ to side S2, then as βi,j
ends in side S1, βi,j would cross Q′ a second time. But a geodesic cannot
cross a wall twice and so βi,j does not cross a wall of QH .. Hence ai and
aj are not separated by a wall of QH . By proposition 3.3, take α′i,j an L-

approximation to αi,j for L determined from B(αi,j) ≤ B(α) ≤ B0, with
α′i,j a (λ′, ε′)-quasi-geodesic edge path connecting ai to aj (for some λ′ and

ε′ determined from L as above), B(α′i,j) ≤ B1 (for a B1 determined from L

as above), and such that each vertex of α′i,j is on a geodesic connecting ai to
aj . By lemma 3.4, each wall separating ai and aj also separates a and b, and
the walls separating ai and aj can be partitioned into fewer than M chains.
By (outside) induction, there is a geodesic βi,j connecting ai and aj which
KM−1-tracks α′i,j and therefore KM−1 + L-tracks αi,j (where the KM−1 is

determined using B1, λ′, and ε′). Replace αi,j in α by βi,j to obtain a path
α1.

Now the path α1 crosses Q exactly once at ej . The walls of QH are
ordered as Q1, Q2, . . . so that if i < j, then Qi separates a from Qj , and
Qj separates Qi from b. A wall of QH preceding Q in this ordering is not
crossed by α1 after ej . Hence if Q ⊂ QH is the set of walls of QH preceding
Q and including Q, then α1 is geodesic with respect to Q and (by lemma
5.4), α1 is geodesic with respect to each set Qi for i > H. Now suppose ek
is the first edge of α1 such that ek is an edge of a wall Q of QH , and for
some l > k, el ∈ Q. Then ek follows ej on α1, and if we assume el is the last
edge of α1 in Q, then as above (ek, . . . , el−1) can be replaced by a geodesic
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close to (ek, . . . , el−1) with the same tracking constant KM−1 + L. At each
step, disjoint subpaths of the original α are replaced.

Continuing, the resulting path α∗ KM−1 + L-tracks α, is geodesic with
respect to Qi for H ≤ i ≤ M , and crosses the same walls as α. By lemma
3.4 every vertex of α∗ belongs to some geodesic connecting a to b. We show
α∗ is a (λ̂, ε̂)-quasi-geodesic with B(α∗) ≤ B2 for appropriately bounded B2,

λ̂ and ε̂. Let α∗∗ be a KM−1 +L approximation to α obtained by replacing

each αi,j by a path β̂i,j described as follows: If the consecutive vertices of
αi,j are w0, . . . , wm then for 1 ≤ k ≤ m−1 let ŵk be a vertex of the geodesic
βi,j within KM−1 + L of wk. For 0 ≤ k ≤ m− 1 connect ŵk and ŵk+1 with

a geodesic subpath of βi,j . Concatenate these geodesics to form β̂i,j . Then

as above α∗∗ is a (λ̂, ε̂)-quasi-geodesic with B(α∗) ≤ B2 for appropriately

bounded B2, λ̂ and ε̂. Note that βi,j is obtained by eliminating backtracking

in β̂i,j . Eliminating backtracking in a (λ, ε)-quasi-geodesic does not increase
bracket number and the resulting path remains a (λ, ε)-quasi-geodesic. The
path α∗ is obtained from α∗∗ by eliminating backtracking so that α∗ is a
(λ̂, ε̂)-quasi-geodesic with bracket number ≤ B2.

By induction hypothesis, there is a geodesic β that KM,H−1-tracks α∗,
and so β KM,H -tracks α for KM,H = KM,H−1 +KM−1 +L. Hence the inside
induction step is established and the theorem follows. �

Note that the bound F from proposition 5.3 on the number of chains
needed to partition the set of walls separating two points a and b of Λ limits
the total number of times the induction steps are carried out to arrive at a
geodesic.

6. Consequences of the Main Theorem

Corollary 6.1. Suppose (W,S) is a finitely generated Coxeter system, and Λ
is the Cayley graph of W with respect to S. Any infinite or bi-infinite (λ, ε)-
quasi-geodesic edge path α with bounded bracket number B is K ′-tracked by
an edge path geodesic where K ′ is a constant only depending on λ, ε, B and
S.

Proof. The proof is a standard local finiteness argument in both the infinite
and bi-infinite case. We give the bi-infinite case. Write α as the edge path
(. . . , e−1, e0, e1, . . .) in Λ. Let vi be the initial point of ei. By theorem 5.5,
there is a Λ-geodesic βn which K-tracks αn ≡ (e−n, . . . , en). Note that every
vertex of βn is within 2K of a vertex of α. For each positive integer n, some
vertex xn of βn is within K of v0. Hence there is an infinite number of xn
that are equal. Of this infinite subcollection of xn, infinitely many have the
same pair of edges one preceding and one following xn on βn, of this infinite
collection of xn there is an infinite subcollection that have the same four
edges - the two preceding and the two following xn being exactly the same.
Continuing, we have a bi-infinite geodesic β and each vertex of β is within
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2K of a vertex of α. As α is a (λ, ε)-quasi-geodesic, lemma 4.1 implies each
point of α is within λ(4K + 1) + ε+ 2K of β. �

The next result follows directly from proposition 4.2 and corollary 6.1.

Corollary 6.2. Suppose (W,S) is a finitely generated Coxeter system, and
Λ is the Cayley graph of W with respect to S. Then a quasi-geodesic edge
path ray in Λ is tracked by a geodesic iff it has bounded bracket number.

A metric space (X, d) is a called a geodesic metric space if every pair of
points are joined by a geodesic. It is proper if for any x ∈ X, the ball of
radius r about X is compact for all positive numbers r. A group W acts
geometrically on a space if the action is properly discontinuous, co-compact
and by isometries.

Let (X, d) be a proper complete geodesic metric space. If M a b c is a
geodesic triangle in X, then consider M a b c in the Euclidean plane E2 with
the same side lengths, called a comparison triangle. We say X satisfies the
CAT(0) inequality, and say (X, d) is a CAT(0) space, if for any M a b c in X,
and any two points p, q on M a b c, the corresponding points p, q the same
distances from vertices on the sides in a comparison triangle satisfy

d(p, q) ≤ dE2(p, q)

If (X, d) is a CAT(0) space, then the following basic properties hold:

(1) The distance function d : X ×X → R is convex.
(2) X has unique geodesic segments between points.
(3) X is contractible.

For details, see [BH].
Suppose (W,S) is a finitely generated Coxeter system, Λ is the Cayley

graph of W with respect to S, and W acts geometrically on a CAT(0) space
X. Fix a point x ∈ X, and define Λx ⊂ X to have as vertices, the orbit Wx,
and as edges, CAT(0) geodesic paths connecting wx and wsx, for w ∈ W
and s ∈ S. There is a proper W -equivariant map Px : Λ → Λx so that
Px maps the identity vertex of Λ to x. This Px is a quasi-isometry of Λ
with edge path metric dΛ into (X, d), and we ordinarily think of Λx as being
essentially a copy of Λ in X (though for some purposes we might require
at least that x is not fixed by any generator). We consider rays and lines
in (X, d), and define tracking in (X, d) with respect to the metric d, all
analogously to the definitions given earlier for Cayley graphs.

Intuitively, the next result says that when a Coxeter group acts geomet-
rically on a CAT(0) space, CAT(0) geodesics are tracked by Cayley graph
geodesics. This result generalizes the right angled version of the same result
in [MRT].

Corollary 6.3. Suppose (W,S) is a finitely generated Coxeter system, Λ
is the Cayley graph of W with respect to S, W acts geometrically on the
proper CAT(0) space X, and take x ∈ X with Px : Λ→ Λx as above. Then
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any CAT(0) geodesic ray in X is tracked by (the image of) a Cayley graph
geodesic in Λx.

Proof. For a given CAT(0) geodesic α we find a Cayley graph geodesic β
such that Px(β) tracks α. It suffices to find λ, ε, K and B such that any
(finite) CAT(0) geodesic α is K-tracked by a Cayley (λ, ε)-quasi-geodesic
with bracket number ≤ B. Since W acts co-compactly on X, there is an
integer K1 such that every point of X is within K1 of the orbit Wx. For
each integer 0, 1, . . . , N such that N is less that or equal to the length of
α, choose a point vix of Wx within K1 of α(i). Let βi be a Λ-geodesic
connecting vi to vi+1 and β be the Λ-edge path (β0, β1, . . .). Since the map
Px : Λ → Λx is quasi-isometric, there are numbers λ and ε such that any
such β is a (λ, ε)-quasi-geodesic in Λ, and numbers DΛ and DX such that
the length of any βi is less than or equal to DΛ (in Λ) and every point of
such a Px(βi) is within DX of α(i) (in X). Certainly every point of α is
within K ≡ K1 + 1 of Px(β).

α

Px(β) vj−1x
Px(v) vk+1x

d′ e′

α(i)α(j) α(k)

Figure 5.

Hence it suffices to bound the bracket number of such a β. If v is a vertex
of βi and e and d are edges of β preceding and following v respectively such
that e and d belong to the same wall Q of Λ, then e is an edge of βj and d
is an edge of βk where j ≤ i ≤ k. The mid-points e′ of Px(e) and d′ of Px(d)
are fixed (in Λx and X) by the reflection rQ ∈ W for the wall Q. Hence
the geodesic in X connecting d′ and e′ is fixed by rQ. Now, d′ (respectively
e′) is within DX of α(j − 1) (respectively α(k+ 1)) and Px(v) is within DX

of α(i). By the CAT(0) inequality for quadrilaterals (in particular for the
quadrilateral determined by d′, e′, α(j−1), and α(k+ 1)) α(i) is within DX

of a point of the X-geodesic connecting d′ to e′ and hence α(i) is within DX

of a fixed point of rQ. (See figure 5.)
Since the action of W on X is properly discontinuous, there is a bound B

on the number of reflections rQ such that rQ does not take the ball of radius
DX centered at α(i) ∈ X (or any other point of X) off of itself. Hence there
cannot be more than B walls bracketing the vertex v of β. �

Remark 6.4. Note that the above proof is valid even when W does not
act co-compactly on the CAT(0) space X, as long as the CAT(0) geodesic
remains a bounded distance from Λx for some x.



16 MICHAEL MIHALIK AND STEVEN TSCHANTZ

Remark 6.5. Unfortunately, this result does not hold for arbitrary finitely
generated CAT(0) groups. Let T be the Cayley graph of the free group
F2 = 〈x, y〉, a tree, and R the Cayley graph of the infinite cyclic group
Z = 〈z〉, a line, both CAT(0) spaces. Take G = F2 × Z acting compo-
nentwise and geometrically on the CAT(0) space X = T × R with metric

d((w1, h1), (w2, h2)) =
√
dT (w1, w2)2 + dR(h1, h2)2. Now with a = xz and

b = yz, S = {a, b, z} is a generating set of G. Let Λ be the Cayley graph
with respect to this generating set and fix ∗ ∈ X to have components the
identity vertices of the Cayley graphs T and R, thus determining Λ∗. Let
α be the CAT(0) geodesic ray from ∗ which passes through the points vn∗
where v0 = 1, and for n > 0, vn = vn−1x

2ny−2n, that is, a ray having a con-
stant second component, contained in a horizontal copy of T , but following
exponentially increasing long sequences of x and y−1 edges. A Cayley graph
geodesic from vn−1∗ to vn∗ is labeled a2nb−2n but this path in Λ∗ increases
to a second component value of 2n at its midpoint, far from α. Any Cayley
graph geodesic approaching α within some bound arbitrarily far along must
also diverge arbitraily far from α far enough along.

We close this remark with the observation that the Coxeter group W =
(Z2 ∗ Z2 ∗ Z2)× (Z2 ∗ Z2) contains as a subgroup of finite index isomorphic
to G ≡ F2 × Z. So, while CAT(0) geodesics for W are tracked by Cayley
geodesics (determined by Coxeter generators), G acts geometrically on a
CAT(0) space where CAT(0) geodesics are not tracked by Cayley geodesics
(for the obvious generators).

The following result answers a question posed by K. Ruane.

Corollary 6.6. Suppose (W,S) is a finitely generated Coxeter group with
Cayley graph Λ, acting geometrically on the CAT(0) space X, and take an
x ∈ X, and Px : Λ → Λx, as before, mapping Λ quasi-isometrically and
W -equivariantly into X. Then for each subset A ⊂ S, (the image of) the
subgroup 〈A〉 is quasi-convex in X.

Proof. Let K be the tracking constant from corollary 6.3. Suppose a1, a2 ∈
〈A〉 and α is a CAT(0) geodesic in X from Px(a1) to Px(a2). Let β be a Λx,
edge path geodesic which K-tracks α. I.e. there is a Λ(W,S) geodesic β′,
from a1 to a2 such that Px(β′) = β. Since ai ∈ 〈A〉, the edge labels of β′

are all in A. This means all vertices of β′ are in 〈A〉, and so the image of α
is within K of Px(〈A〉). �

The next result says that elements of infinite order in a Coxeter group
are tracked by geodesics in the standard Cayley graph.

Corollary 6.7. Suppose (W,S) is a finitely generated Coxeter system and
g ∈W is an element of infinite order. Then in the Cayley graph Λ(W,S) the
elements {. . . , g−2, g−1, 1, g, g2, . . .} are tracked by a Cayley graph geodesic.

Proof. We know by G. Moussong [Mo], all finitely generated Coxeter groups
are CAT(0). Let X be any CAT(0) space such that W acts geometrically
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on X. We write |g| = inf{d(x, gx) : x ∈ X} and define the min set of g by
min(g) = {x ∈ X : d(x, gx) = |g|}, those points of X moved a minimum
amount by g. The min set of g contains a geodesic line l that is invariant
under the action of g. Let x be any point in X and Λx the copy of Λ(W,S)
in X at x. Let α be an S-geodesic for g. Observe that the edge path line lg
in Λx determined by positive and negative iterates of α at x is a bounded
distance from l. The proof of corollary 6.3 shows that lg is a quasi-geodesic
with bounded bracket number and so by corollary 6.1 is tracked by a Cayley
graph geodesic. �

One of the fundamental asymptotic results for word hyperbolic groups is
that 1-ended word hyperbolic groups have locally connected boundary. This
result follows from a long program of results by several authors, notably B.
Bowditch, and concluded by G. Swarup [S]. To give a feeling for the reach of
our results, we outline an elementary proof of this fact for Coxeter groups.

Corollary 6.8. If W is a 1-ended word hyperbolic Coxeter group then the
boundary of W is locally connected.

y

∗

a1 b1

v2 v3

r′ s′

. . .

Figure 6.

Proof. We use an elementary form of a construction of a “filter” in [MRT]
(where a partial classification of right angled Coxeter groups with locally
connected boundaries is produced). Suppose W acts geometrically on the
CAT(0) space X, with base point x. Let Λx be the copy of the Cayley
graph of (W,S) at x in X with proper W -equivariant map Px : Λ(W,S)→
Λx. Suppose r and s are “close” geodesic rays in X, with r(0) = s(0) =
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x. Choose Λ (edge path) geodesics r′ and s′ at ∗ (the identity vertex of
Λ(W,S)), such that Px(r′) and Px(s′) K-track r and s respectively. Since
r and s are close in ∂X, we may assume that r′ and s′ have long initial
segments with “close” terminal points. For simplicity we assume these initial
segments agree. If y is the last vertex of this common initial segment, say
the edge of r′ following y has label a1 and the edge of s′ following y has
lablel b1. The presentation diagram Γ(W,S) of (W,S) has vertex set S and
an edge labeled m(i, j) between distinct vertices si, sj if m(i, j) 6=∞. Since
W is 1-ended no subset A of S with 〈A〉 a finite group separates Γ (see
corollary 16 of [MT]). The set B of S-elements that label edges at y with
end points closer to ∗ than y is to ∗ generates a finite subgroup of W (see
lemma 4.7.2 of [D]). The set of vertices of Γ corresponding to B does not
separate Γ and B does not contain a1 or b1. Hence there is an edge path
in Γ from a1 to b1 avoiding B. Let the consecutive vertices of this path be
a1 = v1, v2, . . . , vn = b1. If q(i, i+ 1) is the (finite) order of vivi+1 then the

relation (vivi+1)q(i,i+1) determines a loop at y ∈ Λ. By way of the deletion
condition, it is an easy exercise to see that for any subset C of S and geodesic
α connecting vertices v1, v2 of Λ there is a unique closest vertex x of v2〈C〉
to v1, and for any geodesic β at x in the letters of C, (α, β) is geodesic in Λ.
Since the edges labeled vi and vi+1 at y extend the geodesic from ∗ to y, it
must be that y is the closest point of y〈vi, vi+1〉 to ∗, and the two half loops
at y making up this loop extend the Cayley geodesic from ∗ to y. Consider
the subgraph F1 of Λ determined by the edge paths r′, s′ and the edge loops
for each vivi+1 (see figure 6). Each vi determines an edge of F1 (with label
vi) beginning at y. At the end point of this edge there are two edges of F1

that extend a Cayley geodesic from ∗ to y. Build a set of loops as with a1

and b1 for each of these pairs of edges. Then F2 is F1 union all new loops.
Continuing we build a 1-ended subgraph F = ∪∞i=1Fi of Λ such that for each
vertex v of F , not on the common overlap of r′ and s′, there is a Cayley
geodesic from ∗ to v in F which passes through y. We claim that L, the
limit set of Px(F ) is a “small” connected set containing r and s (and so ∂X
is locally connected). Certainly, r and s are in L. Since F is 1-ended and
Px is proper, L is connected. If v is a vertex of F , then there is a Cayley
geodesic αv from ∗ to v (which passes through y for all but finitely many v).
If z ∈ L then let z1, z2, . . . be a sequence of vertices of F such that Px(zi)
converges to z. The CAT(0) geodesic from x to Px(zi) is K- tracked by a
Cayley geodesic βi in Λx. As W is word hyperbolic the Cayley geodesics
Px(αvi) and βi (with the same end points) must δ-fellow travel (for a fixed
constant δ). In particular each βi must pass “close” to Px(y) and so z is
close to both r and s in ∂X ≡ ∂W . �
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