Egyptian and Continued Fractions

Nashville Math Club

September 10, 2020

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Question

Who loves adding fractions?

Question

Who loves adding fractions?

• If you don't like fractions, maybe today will change your mind.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Question

Who loves adding fractions?

• If you don't like fractions, maybe today will change your mind.

Question

Who likes π ? How many digits of π do you know?

Question

Who loves adding fractions?

• If you don't like fractions, maybe today will change your mind.

(日) (四) (日) (日) (日) (日)

Question

Who likes π ? How many digits of π do you know?

• Many of you have probably heard that the digits of $\pi \approx 3.14159265359$ never repeat. There are many competitions where people try to memorize these:

Question

Who loves adding fractions?

• If you don't like fractions, maybe today will change your mind.

Question

Who likes π ? How many digits of π do you know?

- Many of you have probably heard that the digits of $\pi \approx 3.14159265359$ never repeat. There are many competitions where people try to memorize these:
- https://www.youtube.com/watch?v=hXsjwq1Q6HE

Question

Who loves adding fractions?

• If you don't like fractions, maybe today will change your mind.

Question

Who likes π ? How many digits of π do you know?

- Many of you have probably heard that the digits of $\pi \approx 3.14159265359$ never repeat. There are many competitions where people try to memorize these:
- https://www.youtube.com/watch?v=hXsjwq1Q6HE
- What if I told you there was a way to write down π as accurately as you want, with no memorization required?

Definition

A **fraction** is a number of the form $\frac{a}{b}$ where $b \neq 0$ and a, b are whole numbers. A number is called **rational** if it can be written as a fraction. Otherwise, the nubmer is **irrational**.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへぐ

Definition

A **fraction** is a number of the form $\frac{a}{b}$ where $b \neq 0$ and a, b are whole numbers. A number is called **rational** if it can be written as a fraction. Otherwise, the nubmer is **irrational**.

• There have been different types of fractions in history.

Definition

A **fraction** is a number of the form $\frac{a}{b}$ where $b \neq 0$ and a, b are whole numbers. A number is called **rational** if it can be written as a fraction. Otherwise, the nubmer is **irrational**.

• There have been different types of fractions in history.

Definition

An **Egyptian fraction** is a sum of unit fractions like $\frac{1}{2} + \frac{1}{5} + \frac{1}{11}$.

Definition

A **fraction** is a number of the form $\frac{a}{b}$ where $b \neq 0$ and a, b are whole numbers. A number is called **rational** if it can be written as a fraction. Otherwise, the nubmer is **irrational**.

• There have been different types of fractions in history.

Definition

An **Egyptian fraction** is a sum of unit fractions like $\frac{1}{2} + \frac{1}{5} + \frac{1}{11}$.

• If I have 7 pizzas for 8 people, how can I split them up evenly?

Definition

A **fraction** is a number of the form $\frac{a}{b}$ where $b \neq 0$ and a, b are whole numbers. A number is called **rational** if it can be written as a fraction. Otherwise, the nubmer is **irrational**.

• There have been different types of fractions in history.

Definition

An **Egyptian fraction** is a sum of unit fractions like $\frac{1}{2} + \frac{1}{5} + \frac{1}{11}$.

• If I have 7 pizzas for 8 people, how can I split them up evenly?

$$\frac{7}{8} = \frac{1}{2} + \frac{1}{4} + \frac{1}{8}.$$

Definition

A **fraction** is a number of the form $\frac{a}{b}$ where $b \neq 0$ and a, b are whole numbers. A number is called **rational** if it can be written as a fraction. Otherwise, the nubmer is **irrational**.

• There have been different types of fractions in history.

Definition

An **Egyptian fraction** is a sum of unit fractions like $\frac{1}{2} + \frac{1}{5} + \frac{1}{11}$.

• If I have 7 pizzas for 8 people, how can I split them up evenly?

$$\frac{7}{8} = \frac{1}{2} + \frac{1}{4} + \frac{1}{8}.$$

• Each person should take 1/2 a pizza (4 slices) then 1/4 a pizza (2 slices) then 1/8 a pizza (1 slice).

Egyptian and Continued Fractions

Egyptian Fractions

Egyptian and Continued Fractions

Egyptian Fractions

• 4000 year old Egyptian mystery: what does the sequence 13, 17, 173 mean?

ъ

Egyptian Fractions

- 4000 year old Egyptian mystery: what does the sequence 13, 17, 173 mean?
- Probably that $\pi \approx 3 + \frac{1}{13} + \frac{1}{17} + \frac{1}{173} = 3.141527$. This may have seemed very special to the Egyptians; 3 and 7 were important in mythology for them.

Egyptian Fractions

- 4000 year old Egyptian mystery: what does the sequence 13, 17, 173 mean?
- Probably that $\pi \approx 3 + \frac{1}{13} + \frac{1}{17} + \frac{1}{173} = 3.141527$. This may have seemed very special to the Egyptians; 3 and 7 were important in mythology for them.

Fact

Every rational number is an Egyptian fraction.

Algorithm

Take a fraction $\frac{a}{b} < 1$ in lowest terms. Ceiling function: $\lceil x \rceil$ is smallest whole number bigger than x; e.g., $\lceil \pi \rceil = 4$ (round up).

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへの

Algorithm

Take a fraction $\frac{a}{b} < 1$ in lowest terms. Ceiling function: $\lceil x \rceil$ is smallest whole number bigger than x; e.g., $\lceil \pi \rceil = 4$ (round up). Let $\frac{c}{d} = \frac{a}{b} - \frac{1}{\lceil \frac{b}{a} \rceil}$. Then $\frac{a}{b} = \frac{1}{\lceil \frac{b}{a} \rceil} + \frac{c}{d}$. If c = 1, done. Otherwise repeat until you get a 1.

Algorithm

Take a fraction $\frac{a}{b} < 1$ in lowest terms. Ceiling function: $\lceil x \rceil$ is smallest whole number bigger than x; e.g., $\lceil \pi \rceil = 4$ (round up). Let $\frac{c}{d} = \frac{a}{b} - \frac{1}{\lceil \frac{b}{a} \rceil}$. Then $\frac{a}{b} = \frac{1}{\lceil \frac{b}{a} \rceil} + \frac{c}{d}$. If c = 1, done. Otherwise repeat until you get a 1.

Let's do
$$\frac{19}{20}$$
. We have $a = 19$, $b = 20$.

Algorithm

Take a fraction $\frac{a}{b} < 1$ in lowest terms. Ceiling function: $\lceil x \rceil$ is smallest whole number bigger than x; e.g., $\lceil \pi \rceil = 4$ (round up). Let $\frac{c}{d} = \frac{a}{b} - \frac{1}{\lceil \frac{b}{a} \rceil}$. Then $\frac{a}{b} = \frac{1}{\lceil \frac{b}{a} \rceil} + \frac{c}{d}$. If c = 1, done. Otherwise repeat until you get a 1.

Let's do
$$\frac{19}{20}$$
. We have $a = 19$, $b = 20$. Then
 $\frac{c}{d} = \frac{19}{20} - \frac{1}{\lfloor \frac{20}{20} \rfloor} = \frac{19}{20} - \frac{1}{2} = \frac{19}{20} - \frac{10}{20} = \frac{9}{20} \implies \frac{19}{20} = \frac{1}{2} + \frac{9}{20}$.

Algorithm

Take a fraction $\frac{a}{b} < 1$ in lowest terms. Ceiling function: $\lceil x \rceil$ is smallest whole number bigger than x; e.g., $\lceil \pi \rceil = 4$ (round up). Let $\frac{c}{d} = \frac{a}{b} - \frac{1}{\lceil \frac{b}{a} \rceil}$. Then $\frac{a}{b} = \frac{1}{\lceil \frac{b}{a} \rceil} + \frac{c}{d}$. If c = 1, done. Otherwise repeat until you get a 1.

Let's do
$$\frac{19}{20}$$
. We have $a = 19$, $b = 20$. Then
 $\frac{c}{d} = \frac{19}{20} - \frac{1}{\lceil \frac{20}{19} \rceil} = \frac{19}{20} - \frac{1}{2} = \frac{19}{20} - \frac{10}{20} = \frac{9}{20} \implies \frac{19}{20} = \frac{1}{2} + \frac{9}{20}$. Now
do this for $\frac{9}{20}$. We have $a = 9$, $b = 20$. We get
 $\frac{c}{d} = \frac{9}{20} - \frac{1}{\lceil \frac{20}{20} \rceil} = \frac{9}{20} - \frac{1}{3} = \frac{7}{60} \implies \frac{9}{20} = \frac{1}{3} + \frac{7}{60}$.

Algorithm

Take a fraction $\frac{a}{b} < 1$ in lowest terms. Ceiling function: $\lceil x \rceil$ is smallest whole number bigger than x; e.g., $\lceil \pi \rceil = 4$ (round up). Let $\frac{c}{d} = \frac{a}{b} - \frac{1}{\lceil \frac{b}{a} \rceil}$. Then $\frac{a}{b} = \frac{1}{\lceil \frac{b}{a} \rceil} + \frac{c}{d}$. If c = 1, done. Otherwise repeat until you get a 1.

Let's do
$$\frac{19}{20}$$
. We have $a = 19$, $b = 20$. Then
 $\frac{c}{d} = \frac{19}{20} - \frac{1}{\left\lceil \frac{20}{19} \right\rceil} = \frac{19}{20} - \frac{1}{2} = \frac{19}{20} - \frac{10}{20} = \frac{9}{20} \implies \frac{19}{20} = \frac{1}{2} + \frac{9}{20}$. Now
do this for $\frac{9}{20}$. We have $a = 9$, $b = 20$. We get
 $\frac{c}{d} = \frac{9}{20} - \frac{1}{\left\lceil \frac{20}{9} \right\rceil} = \frac{9}{20} - \frac{1}{3} = \frac{7}{60} \implies \frac{9}{20} = \frac{1}{3} + \frac{7}{60}$. Now do this for
 $\frac{7}{60}$. We have $a = 7$, $b = 60$. We get $\frac{c}{d} = \frac{7}{60} - \frac{1}{\left\lceil \frac{60}{7} \right\rceil} = \frac{7}{60} - \frac{1}{9} = \frac{1}{180} \implies \frac{7}{60} = \frac{1}{9} + \frac{1}{180} \implies \frac{19}{20} = \frac{1}{2} + \frac{1}{3} + \frac{1}{9} + \frac{1}{180}$.

Exercise

Compute $\frac{4}{23}$ as an Egyptian fraction.

Exercise

Compute $\frac{4}{23}$ as an Egyptian fraction.

Answer

$$\frac{4}{23} = \frac{1}{6} + \frac{1}{138}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

Exercise

Compute $\frac{4}{23}$ as an Egyptian fraction.

Answer

$$\frac{4}{23} = \frac{1}{6} + \frac{1}{138}$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへぐ

Exercise

Compute $\frac{5}{22}$ as an Egyptian fraction.

Exercise

Compute $\frac{4}{23}$ as an Egyptian fraction.

Answer

$$\frac{4}{23} = \frac{1}{6} + \frac{1}{138}$$

Exercise

Compute $\frac{5}{22}$ as an Egyptian fraction.

Answer

$$\frac{5}{22} = \frac{1}{5} + \frac{1}{47} + \frac{1}{4070}$$

Exercise

Compute $\frac{4}{23}$ as an Egyptian fraction.

Answer

$$\frac{4}{23} = \frac{1}{6} + \frac{1}{138}$$

Exercise

Compute $\frac{5}{22}$ as an Egyptian fraction.

Answer

$$\frac{5}{22} = \frac{1}{5} + \frac{1}{47} + \frac{1}{4070}$$
. Better answers exist! $\frac{5}{22} + \frac{1}{6} + \frac{1}{22} + \frac{1}{66}$.

Exercise

Compute $\frac{4}{23}$ as an Egyptian fraction.

Answer

$$\frac{4}{23} = \frac{1}{6} + \frac{1}{138}$$

Exercise

Compute
$$\frac{5}{22}$$
 as an Egyptian fraction.

Answer

$$\frac{5}{22} = \frac{1}{5} + \frac{1}{47} + \frac{1}{4070}$$
. Better answers exist! $\frac{5}{22} + \frac{1}{6} + \frac{1}{22} + \frac{1}{66}$.

• How do you know this algorithm will ever stop?

Conjecture (Erdős–Straus (1948))

If $n \ge 2$, then there are whole numbers x, y, z > 0:

$$\frac{4}{n} = \frac{1}{x} + \frac{1}{y} + \frac{1}{z}.$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへの

Conjecture (Erdős–Straus (1948))

If $n \ge 2$, then there are whole numbers x, y, z > 0:

$$\frac{4}{n}=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}.$$

Example $\frac{4}{5} = \frac{1}{2} + \frac{1}{4} + \frac{1}{20} = \frac{1}{2} + \frac{1}{5} + \frac{1}{10}$

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへの

Conjecture (Erdős–Straus (1948))

If $n \ge 2$, then there are whole numbers x, y, z > 0:

$$\frac{4}{n}=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}.$$

Example

$$\frac{4}{5} = \frac{1}{2} + \frac{1}{4} + \frac{1}{20} = \frac{1}{2} + \frac{1}{5} + \frac{1}{10}$$

Fact

This is true for $n \leq 10^{17}$.

Conjecture (Erdős–Straus (1948))

If $n \ge 2$, then there are whole numbers x, y, z > 0:

$$\frac{4}{n} = \frac{1}{x} + \frac{1}{y} + \frac{1}{z}.$$

Example

$$\frac{4}{5} = \frac{1}{2} + \frac{1}{4} + \frac{1}{20} = \frac{1}{2} + \frac{1}{5} + \frac{1}{10}$$

Fact

This is true for $n \le 10^{17}$. Its much easier if we allow negatives:

$$rac{4}{4k+1} = rac{1}{k} - rac{1}{k(4k+1)} = rac{1}{2k} + rac{1}{2k} - rac{1}{k(4k+1)}$$

Rope puzzles

Setup

You have a bunch of ropes and a lighter. Each burns in 60 minutes. How can you make timers for different numbers of minutes?

Rope puzzles

Setup

You have a bunch of ropes and a lighter. Each burns in 60 minutes. How can you make timers for different numbers of minutes?

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへの

Example

How can you time 30 minutes?

Rope puzzles

Setup

You have a bunch of ropes and a lighter. Each burns in 60 minutes. How can you make timers for different numbers of minutes?

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへの

Example

How can you time 30 minutes? Light it on both ends!
Setup

You have a bunch of ropes and a lighter. Each burns in 60 minutes. How can you make timers for different numbers of minutes?

Example

How can you time 30 minutes? Light it on both ends!

Example

How can you time 45 minutes?

Setup

You have a bunch of ropes and a lighter. Each burns in 60 minutes. How can you make timers for different numbers of minutes?

Example

How can you time 30 minutes? Light it on both ends!

Example

How can you time 45 minutes? $\frac{45}{60} = \frac{3}{4} = \frac{1}{2} + \frac{1}{4}$.

Setup

You have a bunch of ropes and a lighter. Each burns in 60 minutes. How can you make timers for different numbers of minutes?

Example

How can you time 30 minutes? Light it on both ends!

Example

How can you time 45 minutes? $\frac{45}{60} = \frac{3}{4} = \frac{1}{2} + \frac{1}{4}$. So you can light one rope on both ends, and at the same time light the other end of a second rope.

Setup

You have a bunch of ropes and a lighter. Each burns in 60 minutes. How can you make timers for different numbers of minutes?

Example

How can you time 30 minutes? Light it on both ends!

Example

How can you time 45 minutes? $\frac{45}{60} = \frac{3}{4} = \frac{1}{2} + \frac{1}{4}$. So you can light one rope on both ends, and at the same time light the other end of a second rope. When the first rope is burned it's been 30 min. Now light the other end of the second rope. After that burns its been 45.

Question

How can you time 40 minutes?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Question

How can you time 40 minutes?

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

Answer

We write $\frac{40}{60} = \frac{2}{3} = \frac{1}{2} + \frac{1}{6}$.

Question

How can you time 40 minutes?

Answer

We write $\frac{40}{60} = \frac{2}{3} = \frac{1}{2} + \frac{1}{6}$. So you can light one rope at both ends, then when that's done (30 min later), light a 2nd rope at both ends and two points in between, giving three segments, each with both ends burning.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

Question

How can you time 40 minutes?

Answer

We write $\frac{40}{60} = \frac{2}{3} = \frac{1}{2} + \frac{1}{6}$. So you can light one rope at both ends, then when that's done (30 min later), light a 2nd rope at both ends and two points in between, giving three segments, each with both ends burning. When a segment burns out, light a point in the remaining segment, splitting it into two segments.

(日) (四) (日) (日) (日) (日)

Question

How can you time 40 minutes?

Answer

We write $\frac{40}{60} = \frac{2}{3} = \frac{1}{2} + \frac{1}{6}$. So you can light one rope at both ends, then when that's done (30 min later), light a 2nd rope at both ends and two points in between, giving three segments, each with both ends burning. When a segment burns out, light a point in the remaining segment, splitting it into two segments.

Definition

A continued fraction is a fraction of the form

$$a_0 + rac{1}{a_1 + rac{1}{a_2 + rac{1}{\cdots}}}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Definition

A continued fraction is a fraction of the form

$$b_0 + rac{1}{a_1 + rac{1}{a_2 + rac{1}{\cdots}}}$$

ullet First mention: Indian math. Aryabhata pprox 1500 years ago.

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

Definition

A continued fraction is a fraction of the form

$$a_0 + rac{1}{a_1 + rac{1}{a_2 + rac{1}{\cdots}}}$$

 $\bullet\,$ First mention: Indian math. Aryabhata $\approx\,1500$ years ago.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

Notation

We write $[a_0; a_1, a_2, \ldots, a_n]$ for the above.

Definition

A continued fraction is a fraction of the form

$$a_0 + \frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{\cdots + a_n}}}$$

 $\bullet\,$ First mention: Indian math. Aryabhata $\approx\,1500$ years ago.

Notation

We write $[a_0; a_1, a_2, \ldots, a_n]$ for the above.

Example

$$\frac{13}{11} = 1 + \frac{1}{5 + \frac{1}{2}} = [1; 5, 2]$$

• Euclidean division: Given positive whole numbers *a*, *b*, there are unique whole numbers *q*, *r* with

$$a = bq + r$$
, $0 \le r < b$.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへぐ

• Euclidean division: Given positive whole numbers *a*, *b*, there are unique whole numbers *q*, *r* with

$$a = bq + r$$
, $0 \le r < b$.

This is dividing with remainder.

• Euclidean division: Given positive whole numbers *a*, *b*, there are unique whole numbers *q*, *r* with

$$a = bq + r$$
, $0 \le r < b$.

This is dividing with remainder.

• 3 goes into 13 4 times with a remainder of 1.

• Euclidean division: Given positive whole numbers *a*, *b*, there are unique whole numbers *q*, *r* with

$$a = bq + r$$
, $0 \le r < b$.

This is dividing with remainder.

• 3 goes into 13 4 times with a remainder of 1. Thus, $13 = 4 \cdot 3 + 1$

• Euclidean division: Given positive whole numbers *a*, *b*, there are unique whole numbers *q*, *r* with

$$a = bq + r$$
, $0 \le r < b$.

This is dividing with remainder.

- 3 goes into 13 4 times with a remainder of 1. Thus, $13 = 4 \cdot 3 + 1$
- Euclidean division: if you do this repeatedly, you eventually get $r_n = 0$:

• Euclidean division: Given positive whole numbers *a*, *b*, there are unique whole numbers *q*, *r* with

$$a = bq + r$$
, $0 \le r < b$.

This is dividing with remainder.

- 3 goes into 13 4 times with a remainder of 1. Thus, $13 = 4 \cdot 3 + 1$
- Euclidean division: if you do this repeatedly, you eventually get $r_n = 0$:

$$a = bq_0 + r_0$$

• Euclidean division: Given positive whole numbers *a*, *b*, there are unique whole numbers *q*, *r* with

$$a = bq + r$$
, $0 \le r < b$.

This is dividing with remainder.

- 3 goes into 13 4 times with a remainder of 1. Thus, $13 = 4 \cdot 3 + 1$
- Euclidean division: if you do this repeatedly, you eventually get $r_n = 0$:

$$a = bq_0 + r_0$$

$$b = q_1 r_0 + r_1$$
$$r_0 = q_2 r_1 + r_2$$

• Euclidean division: Given positive whole numbers *a*, *b*, there are unique whole numbers *q*, *r* with

$$a = bq + r$$
, $0 \le r < b$.

This is dividing with remainder.

- 3 goes into 13 4 times with a remainder of 1. Thus, $13 = 4 \cdot 3 + 1$
- Euclidean division: if you do this repeatedly, you eventually get $r_n = 0$:

$$a = bq_0 + r_0$$

$$b = q_1 r_0 + r_1$$
$$r_0 = q_2 r_1 + r_2$$

 $r_1 = q_3 r_2 + r_3 \dots$

• Euclidean division: Given positive whole numbers *a*, *b*, there are unique whole numbers *q*, *r* with

$$a = bq + r$$
, $0 \le r < b$.

This is dividing with remainder.

- 3 goes into 13 4 times with a remainder of 1. Thus, $13 = 4 \cdot 3 + 1$
- Euclidean division: if you do this repeatedly, you eventually get $r_n = 0$:

$$a = bq_0 + r_0$$

$$b = q_1 r_0 + r_1$$
$$r_0 = q_2 r_1 + r_2$$

 $r_1 = q_3 r_2 + r_3 \dots$

• Why does this stop?

• Why does this stop? Each time r_i gets smaller, $r_0 > r_1 > r_2 > \ldots$ and these are all non-negative.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- Why does this stop? Each time r_i gets smaller, $r_0 > r_1 > r_2 > \ldots$ and these are all non-negative.
- An example:

 $100 = 15 \cdot 6 + 10,$

- Why does this stop? Each time r_i gets smaller, $r_0 > r_1 > r_2 > \ldots$ and these are all non-negative.
- An example:

 $100 = 15 \cdot 6 + 10,$

 $15=10\cdot 1+5$

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへの

- Why does this stop? Each time r_i gets smaller, $r_0 > r_1 > r_2 > \ldots$ and these are all non-negative.
- An example:

 $100 = 15 \cdot 6 + 10,$

 $15=10\cdot 1+5$

 $10=5\cdot 2+0.$

- Why does this stop? Each time r_i gets smaller, $r_0 > r_1 > r_2 > \ldots$ and these are all non-negative.
- An example:

 $100 = 15 \cdot 6 + 10,$

 $15=10\cdot 1+5$

 $10 = 5 \cdot 2 + 0.$

• Why should we care?

- Why does this stop? Each time r_i gets smaller, $r_0 > r_1 > r_2 > \ldots$ and these are all non-negative.
- An example:

 $100 = 15 \cdot 6 + 10,$

 $15 = 10 \cdot 1 + 5$

$$10 = 5 \cdot 2 + 0.$$

• Why should we care? The number 5 here, the last "r" before we stopped, is the greatest common divisor gcd(100, 15).

 This is super fast for computers. Breaking into primes 100 = 2² · 5², 15 = 3 · 5 is super slow eventually. If you could factor numbers into primes fast, you could break a lot of security on the internet, and many bank accounts would be insecure.

 This is super fast for computers. Breaking into primes 100 = 2² · 5², 15 = 3 · 5 is super slow eventually. If you could factor numbers into primes fast, you could break a lot of security on the internet, and many bank accounts would be insecure.

Example

Let's use the steps above to write $\frac{100}{15}$ as a continued fraction:

 This is super fast for computers. Breaking into primes 100 = 2² · 5², 15 = 3 · 5 is super slow eventually. If you could factor numbers into primes fast, you could break a lot of security on the internet, and many bank accounts would be insecure.

Example

Let's use the steps above to write $\frac{100}{15}$ as a continued fraction: $100 = 15 \cdot 6 + 10 \implies \frac{100}{15} = 6 + \frac{10}{15}$

 This is super fast for computers. Breaking into primes 100 = 2² · 5², 15 = 3 · 5 is super slow eventually. If you could factor numbers into primes fast, you could break a lot of security on the internet, and many bank accounts would be insecure.

Example

Let's use the steps above to write $\frac{100}{15}$ as a continued fraction: $100 = 15 \cdot 6 + 10 \implies \frac{100}{15} = 6 + \frac{10}{15}$ Now $15 = 10 \cdot 1 + 5 \implies \frac{15}{10} = 1 + \frac{5}{10} \implies \frac{10}{15} = \frac{15}{1 + \frac{5}{10}} \implies \frac{10}{15} = \frac{100}{1 + \frac{5}{10}} = 6 + \frac{1}{1 + \frac{5}{10}}$.

• This is super fast for computers. Breaking into primes $100 = 2^2 \cdot 5^2$, $15 = 3 \cdot 5$ is **super slow eventually**. If you could factor numbers into primes fast, you could break a lot of security on the internet, and many bank accounts would be insecure.

Example

Let's use the steps above to write $\frac{100}{15}$ as a continued fraction: $100 = 15 \cdot 6 + 10 \implies \frac{100}{15} = 6 + \frac{10}{15}$ Now $15 = 10 \cdot 1 + 5 \implies \frac{15}{10} = 1 + \frac{5}{10} \implies \frac{10}{15} = \frac{1}{1 + \frac{5}{10}} \implies \frac{100}{15} = 6 + \frac{1}{1 + \frac{5}{10}}$. Then $10 = 5 \cdot 2 + 0 \implies \frac{10}{5} = 2 \implies \frac{5}{10} = \frac{1}{2} \implies \frac{100}{15} = 6 + \frac{1}{1 + \frac{5}{10}} = 6 + \frac{1}{1 + \frac{5}{10}} = 6 + \frac{1}{1 + \frac{5}{10}} = 6 + \frac{1}{1 + \frac{1}{2}} = [6; 1, 2].$

What's going on

• General observation: Our Euclidean algorithm can be rearranged to give

$$\frac{a}{b} = q_0 + \frac{r_0}{b}, \quad \frac{b}{r_0} = q_1 + \frac{r_1}{r_0}, \quad \frac{r_0}{r_1} = q_2 + \frac{r_2}{r_1}, \dots$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

What's going on

• General observation: Our Euclidean algorithm can be rearranged to give

$$\frac{a}{b} = q_0 + \frac{r_0}{b}, \quad \frac{b}{r_0} = q_1 + \frac{r_1}{r_0}, \quad \frac{r_0}{r_1} = q_2 + \frac{r_2}{r_1}, \dots$$

• What we were doing above:

$$rac{b}{r_0} = q_1 + rac{r_1}{r_0} \implies rac{r_0}{b} = rac{1}{q_1 + rac{r_1}{r_0}} \implies rac{a}{b} = q_0 + rac{1}{q_1 + rac{r_1}{r_0}}.$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで
What's going on

• General observation: Our Euclidean algorithm can be rearranged to give

$$\frac{a}{b} = q_0 + \frac{r_0}{b}, \quad \frac{b}{r_0} = q_1 + \frac{r_1}{r_0}, \quad \frac{r_0}{r_1} = q_2 + \frac{r_2}{r_1}, \dots$$

• What we were doing above:

$$rac{b}{r_0} = q_1 + rac{r_1}{r_0} \implies rac{r_0}{b} = rac{1}{q_1 + rac{r_1}{r_0}} \implies rac{a}{b} = q_0 + rac{1}{q_1 + rac{r_1}{r_0}}.$$

• General formula:

$$\frac{a}{b} = q_0 + \frac{1}{q_1 + \frac{1}{q_2 + \frac{1}{\cdots + \frac{1}{q_N}}}} = [q_0; q_1, \dots, q_N].$$

Question

What is a continued fraction for $\frac{1071}{462}$?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Question

What is a continued fraction for $\frac{1071}{462}$?

Answer

We do the Euclidean Algorithm:

 $1071 = 462 \cdot 2 + 147,$

Question

What is a continued fraction for $\frac{1071}{462}$?

Answer

We do the Euclidean Algorithm:

 $1071 = 462 \cdot 2 + 147$,

 $462 = 147 \cdot 3 + 21,$

▲□▶▲圖▶▲圖▶▲圖▶ ▲国▶ ▲□

Question

What is a continued fraction for $\frac{1071}{462}$?

Answer

We do the Euclidean Algorithm:

 $1071 = 462 \cdot 2 + 147$,

 $462 = 147 \cdot 3 + 21,$

 $147 = 21 \cdot 7 + 0.$

▲口▶▲圖▶▲圖▶▲圖▶ ▲国▶

Question

What is a continued fraction for $\frac{1071}{462}$?

Answer

We do the Euclidean Algorithm:

 $1071 = 462 \cdot 2 + 147,$

 $462 = 147 \cdot 3 + 21,$

 $147 = 21 \cdot 7 + 0.$

Thus, $\frac{1071}{462} = [2; 3, 7]$.

• We saw that all fractions are Egyptian fractions. What about continued fractions?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

• We saw that all fractions are Egyptian fractions. What about continued fractions?

• The algorithm above gives us a way to compute continued fractions, so they exist.

- We saw that all fractions are Egyptian fractions. What about continued fractions?
- The algorithm above gives us a way to compute continued fractions, so they exist.
- Even better, they are essentially unique. One issue: ¹/₂ = ¹/_{1+¹/₁}.
 So if it ends in a 1, we just combine to get a shorter one.

- We saw that all fractions are Egyptian fractions. What about continued fractions?
- The algorithm above gives us a way to compute continued fractions, so they exist.
- Even better, they are essentially unique. One issue: ¹/₂ = ¹/_{1+¹/₁}.
 So if it ends in a 1, we just combine to get a shorter one.

• Fact: A number is rational **if and only if** its decimal expansion eventually repeats.

- We saw that all fractions are Egyptian fractions. What about continued fractions?
- The algorithm above gives us a way to compute continued fractions, so they exist.
- Even better, they are essentially unique. One issue: ¹/₂ = ¹/_{1+¹/₁}. So if it ends in a 1, we just combine to get a shorter one.
- Fact: A number is rational **if and only if** its decimal expansion eventually repeats.
- Example of repeating decimal to fraction: 0.135135135...:

- We saw that all fractions are Egyptian fractions. What about continued fractions?
- The algorithm above gives us a way to compute continued fractions, so they exist.
- Even better, they are essentially unique. One issue: ¹/₂ = ¹/_{1+¹/₁}.
 So if it ends in a 1, we just combine to get a shorter one.
- Fact: A number is rational **if and only if** its decimal expansion eventually repeats.
- Example of repeating decimal to fraction: 0.135135135...:

 $x = 0.135135135\ldots \implies 1000x = 135.135135\ldots$

- We saw that all fractions are Egyptian fractions. What about continued fractions?
- The algorithm above gives us a way to compute continued fractions, so they exist.
- Even better, they are essentially unique. One issue: ¹/₂ = ¹/_{1+¹/₁}.
 So if it ends in a 1, we just combine to get a shorter one.
- Fact: A number is rational **if and only if** its decimal expansion eventually repeats.
- Example of repeating decimal to fraction: 0.135135135...:

 $x = 0.135135135... \implies 1000x = 135.135135...$

 \implies 1000x - 135 = 0.135135... = $x \implies$ 999x = 135

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- We saw that all fractions are Egyptian fractions. What about continued fractions?
- The algorithm above gives us a way to compute continued fractions, so they exist.
- Even better, they are essentially unique. One issue: ¹/₂ = ¹/_{1+¹/₁}.
 So if it ends in a 1, we just combine to get a shorter one.
- Fact: A number is rational **if and only if** its decimal expansion eventually repeats.
- Example of repeating decimal to fraction: 0.135135135...:

 $x = 0.135135135... \implies 1000x = 135.135135...$

 $\implies 1000x - 135 = 0.135135 \ldots = x \implies 999x = 135$

$$\implies x = \frac{135}{999} = \frac{5}{37}.$$

• What we've done above allows us to conclude:

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ ▲国 ● のへで

• What we've done above allows us to conclude: A number is rational if and only if it is a (finite) continued fraction.

• What we've done above allows us to conclude: A number is rational if and only if it is a (finite) continued fraction.

• We can also let continued fractions go on forever.

- What we've done above allows us to conclude: A number is rational if and only if it is a (finite) continued fraction.
- We can also let continued fractions go on forever.

• Try this example: what is
$$x = 1 + \frac{1}{1 + \frac{1}{1 + \frac{1}{1 + \frac{1}{1 + \dots}}}} = [1; 1, 1, 1, \dots,]?$$

- What we've done above allows us to conclude: A number is rational if and only if it is a (finite) continued fraction.
- We can also let continued fractions go on forever.
- Try this example: what is $x = 1 + \frac{1}{1 + \frac{1}{1 + \frac{1}{1 + \frac{1}{1 + \dots}}}} = [1; 1, 1, 1, \dots,]?$

$$x - 1 = \frac{1}{1 + \frac{1}{1 + \frac{1}{1 + \dots}}} \implies \frac{1}{x - 1} = 1 + \frac{1}{1 + \frac{1}{1 + \dots}} = x$$

- What we've done above allows us to conclude: A number is rational if and only if it is a (finite) continued fraction.
- We can also let continued fractions go on forever.
- Try this example: what is $x = 1 + \frac{1}{1 + \frac{1}{1 + \frac{1}{1 + \frac{1}{1 + \dots}}}} = [1; 1, 1, 1, \dots,]?$

$$x - 1 = \frac{1}{1 + \frac{1}{1 + \frac{1}{1 + \dots}}} \implies \frac{1}{x - 1} = 1 + \frac{1}{1 + \frac{1}{1 + \dots}} = x$$

$$\implies 1 = x(x-1) \implies x^2 - x - 1 = 0 \implies x = \frac{1 \pm \sqrt{5}}{2}.$$

- What we've done above allows us to conclude: A number is rational if and only if it is a (finite) continued fraction.
- We can also let continued fractions go on forever.
- Try this example: what is $x = 1 + \frac{1}{1 + \frac{1}{1 + \frac{1}{1 + \frac{1}{1 + \dots}}}} = [1; 1, 1, 1, \dots,]?$

$$x - 1 = \frac{1}{1 + \frac{1}{1 + \frac{1}{1 + \dots}}} \implies \frac{1}{x - 1} = 1 + \frac{1}{1 + \frac{1}{1 + \dots}} = x$$

 $\implies 1 = x(x-1) \implies x^2 - x - 1 = 0 \implies x = \frac{1 \pm \sqrt{5}}{2}.$

Thus, x is the Golden Ratio $\frac{1+\sqrt{5}}{2}$, since the negative answer **doesn't make sense**.

Question

What is [1; 1, 2, 1, 2, 1, 2, ...]?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Question What is [1; 1, 2, 1, 2, 1, 2, ...]?

Answer It is $\sqrt{3}$!

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

Question What is [1; 1, 2, 1, 2, 1, 2, ...]?

Answer It is $\sqrt{3}!$

• Thus, $[1; 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2] = \frac{3691}{2131}$ should be really close to $\sqrt{3}$.

Question What is [1; 1, 2, 1, 2, 1, 2, ...]?

Answer It is $\sqrt{3}$!

• Thus, $[1; 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2] = \frac{3691}{2131}$ should be really close to $\sqrt{3}$. Indeed, $\sqrt{3} - \frac{3691}{2131} = 0.000000127....$

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

Question What is [1; 1, 2, 1, 2, 1, 2, ...]?

Answer

It is $\sqrt{3}!$

- Thus, $[1; 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2] = \frac{3691}{2131}$ should be really close to $\sqrt{3}$. Indeed, $\sqrt{3} \frac{3691}{2131} = 0.000000127....$
- This is **really** close to $\sqrt{3}$ for a fraction with denominator only 2131.

• There is an algorithm to compute continued fractions, even for irrational numbers.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

• There is an algorithm to compute continued fractions, even for irrational numbers.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

• For example, $\pi = [3; 7, 15, 1, 292, 1, 1, 1, 2, 1, 3, 1, 14, \ldots].$

 There is an algorithm to compute continued fractions, even for irrational numbers.

- For example, $\pi = [3; 7, 15, 1, 292, 1, 1, 1, 2, 1, 3, 1, 14, \ldots].$
- If we approximate, we get $\pi \approx [3; 7, 15, 1] = \frac{333}{106}$.

- There is an algorithm to compute continued fractions, even for irrational numbers.
- For example, $\pi = [3; 7, 15, 1, 292, 1, 1, 1, 2, 1, 3, 1, 14, \ldots]$.
- If we approximate, we get $\pi \approx [3; 7, 15, 1] = \frac{333}{106}$.Indeed, $\frac{333}{106} - \pi = 0.0000002667...$ is really small for such a simple fraction.

• They give us the best possible rational approximations.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- They give us the best possible rational approximations.
- What does this mean? It means that it is a fact that the closest we can get to irrational numbers like π using fractions with small denominators is with continued fractions.

- They give us the best possible rational approximations.
- What does this mean? It means that it is a fact that the closest we can get to irrational numbers like π using fractions with small denominators is with continued fractions.
- So it was **not a coincidence** that the numbers above were so close to $\sqrt{3}$, π .

- They give us the best possible rational approximations.
- What does this mean? It means that it is a fact that the closest we can get to irrational numbers like π using fractions with small denominators is with continued fractions.
- So it was **not a coincidence** that the numbers above were so close to $\sqrt{3}$, π .

• A number is rational if and only if its continued fraction is **finite**.

- They give us the best possible rational approximations.
- What does this mean? It means that it is a fact that the closest we can get to irrational numbers like π using fractions with small denominators is with continued fractions.
- So it was **not a coincidence** that the numbers above were so close to $\sqrt{3}$, π .
- A number is rational if and only if its continued fraction is **finite**.
- A number is **quadratic** (built out of square roots) if and only if its continued fraction **eventually repeats**.

Back to π

• If we use other types of continued fractions, we can get amazing formulas.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●
- If we use other types of continued fractions, we can get amazing formulas.
- Indian mathematical genius Ramanujan discovered:

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- If we use other types of continued fractions, we can get amazing formulas.
- Indian mathematical genius Ramanujan discovered:

$$\pi = \frac{4}{1 + \frac{1^2}{2 + \frac{3^2}{2 + \frac{5^2}{2 + \frac{5}{2 + 1}}}}}}}}$$

• So if you know the number 2, the number 4, and the squares of odd numbers, then you know $\pi!$

- If we use other types of continued fractions, we can get amazing formulas.
- Indian mathematical genius Ramanujan discovered:

$$\pi = \frac{4}{1 + \frac{1^2}{2 + \frac{3^2}{2 + \frac{5^2}{2 + \frac{5}{2 + 1}}}}}}}}$$

- So if you know the number 2, the number 4, and the squares of odd numbers, then you know π !
- I always thought that unlike π , its a shame Euler's constant $e \approx 2.71828$ doesn't have a holiday.

- If we use other types of continued fractions, we can get amazing formulas.
- Indian mathematical genius Ramanujan discovered:

$$\pi = \frac{4}{1 + \frac{1^2}{2 + \frac{3^2}{2 + \frac{5^2}{2 + \frac{5}{2 + 1}}}}}}}}$$

- So if you know the number 2, the number 4, and the squares of odd numbers, then you know π !
- I always thought that unlike π , its a shame Euler's constant $e \approx 2.71828$ doesn't have a holiday. Maybe this is because February 71st isn't a real day...

- If we use other types of continued fractions, we can get amazing formulas.
- Indian mathematical genius Ramanujan discovered:

$$\pi = \frac{4}{1 + \frac{1^2}{2 + \frac{3^2}{2 + \frac{5^2}{2 + \cdots}}}}$$

- So if you know the number 2, the number 4, and the squares of odd numbers, then you know π !
- I always thought that unlike π , its a shame Euler's constant $e \approx 2.71828$ doesn't have a holiday. Maybe this is because February 71st isn't a real day...
- But e = [2; 1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8, 1, 1, 10, ...,], so maybe
 February 12th should be e day!