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Egyptian and Continued Fractions

Fractions

Question
Who loves adding fractions?

If you don’t like fractions, maybe today will change your mind.

Question
Who likes π? How many digits of π do you know?

Many of you have probably heard that the digits of
π ≈ 3.14159265359 never repeat. There are many
competitions where people try to memorize these:
https://www.youtube.com/watch?v=hXsjwq1Q6HE

What if I told you there was a way to write down π as
accurately as you want, with no memorization required?

https://www.youtube.com/watch?v=hXsjwq1Q6HE
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What is a fraction

Definition
A fraction is a number of the form a

b where b 6= 0 and a, b are
whole numbers. A number is called rational if it can be written as
a fraction. Otherwise, the nubmer is irrational.

There have been different types of fractions in history.

Definition

An Egyptian fraction is a sum of unit fractions like 1
2 + 1

5 + 1
11 .

If I have 7 pizzas for 8 people, how can I split them up evenly?
7
8
=

1
2
+

1
4
+

1
8
.

Each person should take 1/2 a pizza (4 slices) then 1/4 a
pizza (2 slices) then 1/8 a pizza (1 slice).
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Egyptian Fractions

4000 year old Egyptian mystery: what does the sequence
13, 17, 173 mean?
Probably that π ≈ 3+ 1

13 + 1
17 + 1

173 = 3.141527. This may
have seemed very special to the Egyptians; 3 and 7 were
important in mythology for them.

Fact
Every rational number is an Egyptian fraction.
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Computing Egyptian Fractions

Algorithm

Take a fraction a
b < 1 in lowest terms. Ceiling function: dxe is

smallest whole number bigger than x ; e.g., dπe = 4 (round up).

Let c
d = a

b −
1

d b
a
e . Then

a
b = 1

d b
a
e +

c
d . If c = 1, done. Otherwise

repeat until you get a 1.

Example

Let’s do 19
20 . We have a = 19, b = 20. Then

c
d = 19

20 −
1

d 20
19 e

= 19
20 −

1
2 = 19

20 −
10
20 = 9

20 =⇒ 19
20 = 1

2 + 9
20 . Now

do this for 9
20 . We have a = 9, b = 20. We get

c
d = 9

20 −
1

d 20
9 e = 9

20 −
1
3 = 7

60 =⇒ 9
20 = 1

3 + 7
60 . Now do this for

7
60 . We have a = 7, b = 60. We get c

d = 7
60 −

1
d 60

7 e = 7
60 −

1
9 =

1
180 =⇒ 7

60 = 1
9 + 1

180 =⇒ 19
20 = 1

2 + 1
3 + 1

9 + 1
180 .
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Now you do it!

Exercise

Compute 4
23 as an Egyptian fraction.

Answer
4
23

=
1
6
+

1
138

Exercise

Compute 5
22 as an Egyptian fraction.

Answer
5
22 = 1

5 + 1
47 + 1

4070 . Better answers exist!
5
22 + 1

6 + 1
22 + 1

66 .

How do you know this algorithm will ever stop?
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An open problem

Conjecture (Erdős–Straus (1948))

If n ≥ 2, then there are whole numbers x , y , z > 0:

4
n
=

1
x
+

1
y
+

1
z
.

Example

4
5
=

1
2
+

1
4
+

1
20

=
1
2
+

1
5
+

1
10

Fact

This is true for n ≤ 1017. Its much easier if we allow negatives:

4
4k + 1

=
1
k
− 1

k(4k + 1)
=

1
2k

+
1
2k
− 1

k(4k + 1)
.
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Rope puzzles

Setup
You have a bunch of ropes and a lighter. Each burns in 60 minutes.
How can you make timers for different numbers of minutes?

Example
How can you time 30 minutes? Light it on both ends!

Example

How can you time 45 minutes? 45
60 = 3

4 = 1
2 + 1

4 .So you can light
one rope on both ends, and at the same time light the other end of
a second rope. When the first rope is burned it’s been 30 min. Now
light the other end of the second rope. After that burns its been 45.
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A final rope puzzle

Question
How can you time 40 minutes?

Answer

We write 40
60 = 2

3 = 1
2 + 1

6 . So you can light one rope at both ends,
then when that’s done (30 min later), light a 2nd rope at both ends
and two points in between, giving three segments, each with both
ends burning. When a segment burns out, light a point in the
remaining segment, splitting it into two segments.
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Definition
A continued fraction is a fraction of the form

a0 +
1

a1 +
1

a2+
1

...+an

.

First mention: Indian math. Aryabhata ≈ 1500 years ago.

Notation
We write [a0; a1, a2, . . . , an] for the above.

Example

13
11

= 1+
1

5+ 1
2
= [1; 5, 2]
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Egyptian and Continued Fractions

The Euclidean Algorithm

Euclidean division: Given positive whole numbers a, b, there
are unique whole numbers q, r with

a = bq + r , 0 ≤ r < b.

This is dividing with remainder.
3 goes into 13 4 times with a remainder of 1. Thus,
13 = 4 · 3+ 1
Euclidean division: if you do this repeatedly, you eventually
get rn = 0:

a = bq0 + r0

b = q1r0 + r1

r0 = q2r1 + r2

r1 = q3r2 + r3 . . .
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Egyptian and Continued Fractions

Euclidean Algorithm (cont.)

Why does this stop?

Each time ri gets smaller,
r0 > r1 > r2 > . . . and these are all non-negative.
An example:

100 = 15 · 6+ 10,

15 = 10 · 1+ 5

10 = 5 · 2+ 0.

Why should we care? The number 5 here, the last “r ” before
we stopped, is the greatest common divisor gcd(100, 15).
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Egyptian and Continued Fractions

Relation to continued fractions

This is super fast for computers. Breaking into primes
100 = 22 · 52, 15 = 3 · 5 is super slow eventually. If you
could factor numbers into primes fast, you could break a lot of
security on the internet, and many bank accounts would be
insecure.

Example

Let’s use the steps above to write 100
15 as a continued fraction:

100 = 15 · 6+ 10 =⇒ 100
15 = 6+ 10

15 Now 15 = 10 · 1+ 5 =⇒
15
10 = 1+ 5

10 =⇒ 10
15 = 1

1+ 5
10

=⇒ 100
15 = 6+ 1

1+ 5
10
. Then

10 = 5 · 2+ 0 =⇒ 10
5 = 2 =⇒ 5

10 = 1
2 =⇒ 100

15 = 6+ 1
1+ 5

10
=

6+ 1
1+ 1

2
= [6; 1, 2].
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Egyptian and Continued Fractions

What’s going on

General observation: Our Euclidean algorithm can be
rearranged to give

a

b
= q0 +

r0
b
,

b

r0
= q1 +

r1
r0
,

r0
r1

= q2 +
r2
r1
, . . .

What we were doing above:

b

r0
= q1 +

r1
r0

=⇒ r0
b

=
1

q1 +
r1
r0

=⇒ a

b
= q0 +

1
q1 +

r1
r0

.

General formula:
a

b
= q0 +

1
q1 +

1
q2+

1

...+ 1
qN

= [q0; q1, . . . , qN ].
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Egyptian and Continued Fractions

Now you do it!

Question

What is a continued fraction for 1071
462 ?

Answer
We do the Euclidean Algorithm:

1071 = 462 · 2+ 147,

462 = 147 · 3+ 21,

147 = 21 · 7+ 0.

Thus, 1071
462 = [2; 3, 7].
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Egyptian and Continued Fractions

Are all fractions continued fractions?

We saw that all fractions are Egyptian fractions. What about
continued fractions?

The algorithm above gives us a way to compute continued
fractions, so they exist.
Even better, they are essentially unique. One issue: 1

2 = 1
1+ 1

1
.

So if it ends in a 1, we just combine to get a shorter one.
Fact: A number is rational if and only if its decimal
expansion eventually repeats.
Example of repeating decimal to fraction: 0.135135135 . . .:

x = 0.135135135 . . . =⇒ 1000x = 135.135135 . . .

=⇒ 1000x − 135 = 0.135135 . . . = x =⇒ 999x = 135

=⇒ x =
135
999

=
5
37
.
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Egyptian and Continued Fractions

Properties of continued fractions

What we’ve done above allows us to conclude:

A number is
rational if and only if it is a (finite) continued fraction.
We can also let continued fractions go on forever.
Try this example: what is x = 1+ 1

1+ 1
1+ 1

1+...

= [1; 1, 1, 1, . . . , ]?

x − 1 =
1

1+ 1
1+ 1

1+...

=⇒ 1
x − 1

= 1+
1

1+ 1
1+...

= x

=⇒ 1 = x(x − 1) =⇒ x2 − x − 1 = 0 =⇒ x =
1±
√
5

2
.

Thus, x is the Golden Ratio 1+
√

5
2 , since the negative answer

doesn’t make sense.
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1+...

= [1; 1, 1, 1, . . . , ]?

x − 1 =
1

1+ 1
1+ 1

1+...

=⇒ 1
x − 1

= 1+
1

1+ 1
1+...

= x

=⇒ 1 = x(x − 1) =⇒ x2 − x − 1 = 0 =⇒ x =
1±
√
5

2
.

Thus, x is the Golden Ratio 1+
√

5
2 , since the negative answer

doesn’t make sense.
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Egyptian and Continued Fractions

Try it for yourself!

Question
What is [1; 1, 2, 1, 2, 1, 2, . . .]?

Answer

It is
√
3!

Thus, [1; 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2] = 3691
2131 should be really

close to
√
3. Indeed,

√
3− 3691

2131 = 0.000000127 . . ..

This is really close to
√
3 for a fraction with denominator only

2131.
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Egyptian and Continued Fractions

Continued fractions for any number

There is an algorithm to compute continued fractions, even for
irrational numbers.

For example, π = [3; 7, 15, 1, 292, 1, 1, 1, 2, 1, 3, 1, 14, . . .].
If we approximate, we get π ≈ [3; 7, 15, 1] = 333

106 .Indeed,
333
106 − π = 0.0000002667 . . . is really small for such a simple
fraction.
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Egyptian and Continued Fractions

Why are continued fractions important?

They give us the best possible rational approximations.

What does this mean? It means that it is a fact that the
closest we can get to irrational numbers like π using fractions
with small denominators is with continued fractions.
So it was not a coincidence that the numbers above were so
close to

√
3, π.

A number is rational if and only if its continued fraction is
finite.
A number is quadratic (built out of square roots) if and only
if its continued fraction eventually repeats.
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Egyptian and Continued Fractions

Back to π

If we use other types of continued fractions, we can get
amazing formulas.

Indian mathematical genius Ramanujan discovered:

π =
4

1+ 12

2+ 32

2+ 52

2+
...

.

So if you know the number 2, the number 4, and the squares
of odd numbers, then you know π!
I always thought that unlike π, its a shame Euler’s constant
e ≈ 2.71828 doesn’t have a holiday. Maybe this is because
February 71st isn’t a real day...
But e = [2; 1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8, 1, 1, 10, . . . , ], so maybe
February 12th should be e day!
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