Introduction

High School Math Circle, Tiling and Uncut Spaghetti

1	2	3	4	5	6
7	8	9	10	11	12
13	14	15	16	17	18
19	20	21	22	23	24
25	26	27	28	29	30
31	32	33	34	35	36

Spaghetti path rules

High School Math Circle, Tiling and Uncut Spaghetti

Brian Lucza

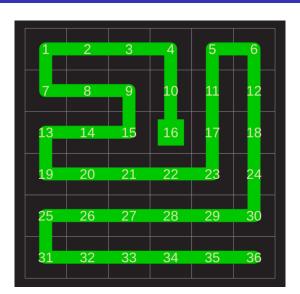
- We start with an n by n grid that has the numbers $1, 2, 3, 4, ..., n^2$.
- Pick any number *k* to start with. Then, we create a path on the grid starting at *k* with the following rules:
 - 1 At each point in the grid, we can only move left, right, up, or down.
 - 2 We cannot move to a square that has already been occupied by the path.
 - If more than one square is available, we must move to the square with the smallest number. (If only one square is available, then we take that square).

Definition 1.

A path in the grid starting at a number k will be called a **spaghetti path** if it goes through all of the squares in the grid and doesn't break any of the rules above.

For the 6×6 grid, which starting numbers result in a spaghetti path?

High School Math Circle, Tiling and Uncut Spaghetti



Solution for the 6 x 6 grid

High School Math Circle, Tiling and Uncut Spaghetti

1	2	3	4	5	6
7	8	9	10	11	12
13	14	15	16	17	18
19	20	21	22	23	24
25	26	27	28	29	30
31	32	33	34	35	36

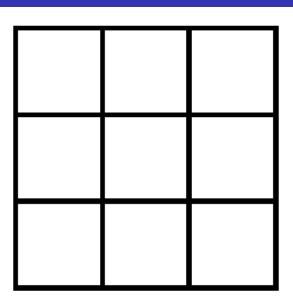
Key Question

High School Math Circle, Tiling and Uncut Spaghetti

- Let n be a natural number i.e. 1, 2, 3, ...
- Is it possible to label all the numbers in an $n \times n$ grid so that every number has a spaghetti path?
 - What about the opposite question? Can we arrange all the numbers in the grid so that no number has a spaghetti path?
- A good strategy is to start with a much easier case.

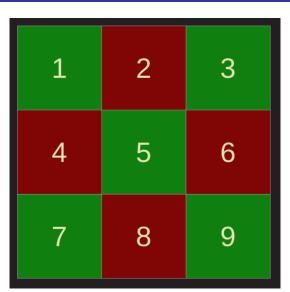
The 3×3 grid

High School Math Circle, Tiling and Uncut Spaghetti



The 3×3 grid

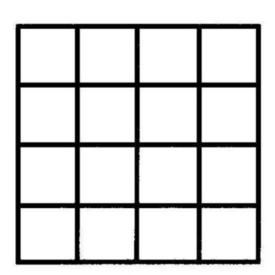
High School Math Circle, Tiling and Uncut Spaghetti



High School Math Circle, Tiling and Uncut Spaghetti

The 4×4 grid

High School Math Circle, Tiling and Uncut Spaghetti



High School Math Circle, Tiling and Uncut Spaghetti

Brian Luczal

 \blacksquare Can we label the 4 \times 4 grid so that every number has a spaghetti path?

High School Math Circle, Tiling and Uncut Spaghetti

Prion Luczo

- \blacksquare Can we label the 4 \times 4 grid so that every number has a spaghetti path?
- 2 Can we label the 4×4 grid so that every number **does not** have a spaghetti path?

High School Math Circle, Tiling and Uncut Spaghetti

- \blacksquare Can we label the 4 \times 4 grid so that every number has a spaghetti path?
- 2 Can we label the 4×4 grid so that every number **does not** have a spaghetti path?
- 3 What do you think will happen for the 5×5 grid?

High School Math Circle, Tiling and Uncut Spaghetti

Prion Lucza

- \blacksquare Can we label the 4 \times 4 grid so that every number has a spaghetti path?
- 2 Can we label the 4×4 grid so that every number **does not** have a spaghetti path?

Solving the general problem

High School Math Circle, Tiling and Uncut Spaghetti

Brian Luczal

1 What do you think will happen for the 5×5 grid? Try to use the same argument from the 3×3 case.

Solving the general problem

High School Math Circle, Tiling and Uncut Spaghetti

- What do you think will happen for the 5×5 grid? Try to use the same argument from the 3×3 case.
- 2 What do you think will happen for the 6×6 grid? Can we arrange the numbers so that every square has a spaghetti path?

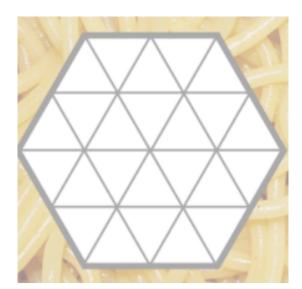
Solving the general problem

High School Math Circle, Tiling and Uncut Spaghetti

- I What do you think will happen for the 5×5 grid? Try to use the same argument from the 3×3 case.
- 2 What do you think will happen for the 6×6 grid? Can we arrange the numbers so that every square has a spaghetti path?
- **3** What about for the $n \times n$ grid?

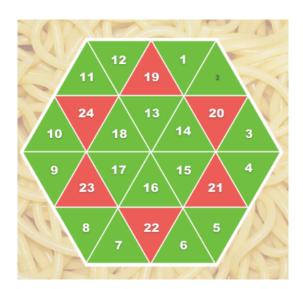
The 24-triangle Hexagon

High School Math Circle, Tiling and Uncut Spaghetti



The 24-triangle Hexagon

High School Math Circle, Tiling and Uncut Spaghetti



Final Remarks

High School Math Circle, Tiling and Uncut Spaghetti

- 1 This problem is closely related to the area of Graph theory with Hamiltonian paths.
- 2 Given an arbitrary graph or polygonal grid, it is extremely hard to determine whether we can label the grid to get any spaghetti paths at all!
- 3 Check out the Hamiltonian path problem.