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From Algebra to Monads and T-Module Category

Algebra <A in a monoidal category C:

object A € C with
UARQA->AN1->A

u (multiplication) , n (unit) both are A-linear:

associativity: u(u @ Id z) = u(ld 4 @ )
A-linearity of unit: u(n @ Id 4) = 1d 4 = u(ld 4 Q n)
* Generalization: Consider (action of A) A @ — instead of the

object A. The endomorphism T(X) = A Q X: C - C has two
associated natural transformations



w:T? - T,n:1ds - T satisfying

UxHUT(x) = uxT (uy), UxNT(x) = IdT(X) = uxT (nx)
T € End(C) is a monad and can be defined on any category.
T —module category CT has objects

{(M,r)IM € C,r e Hompe(T(M),M): T(M) — M}
such thatris T —linear: rT(r) = ruy

ey T
HUm l iy lr
T(M) - M




Bimonads: a Monoidal T-Module Category
* Bialgebra A.:
ANA->AQRQA e€A—-1

satisfying co-linearity, but also compatibility with algebra structure, which
requires a braiding structure 7 on C:

(L@ W(Idy @ T4 ®1dg)(A® D) = Au

loosely speaking braiding is needed to exchange y,zin (x Q y).(zQ t) =
(xz) @ (yt) before a “component-wise” multiplication.

* Generalize by requiring T to be comonoidal :
counit: Ty: T(1) — 1,
coproduct (comonoidal map), T,(X,Y):T(X QYY) > T(X) Q T(Y)
satisfying colinearity. T, forT = A @ —is (Iddq QR T44 & Iddq)(A X A).



Compatibility with n and u (have to be comonoidal):
To(X.Y )uxey = (kx @ py ) T2(T(X). T(Y))T(T2(X.Y)):
Tops = ToT(Tp);
To(X, Y )nxey = (nx @ny);

Tony = idy.

e Bimonad T is a monad on a monoidal C with above structural
identities.

Another point of view: Given monad T , when does the monoidal
structure of C lift to a monoidal structure on C*?

Answer (Moerdijk, 2002): Whenever T is a bimonad
M, 1) @ (N,s)=(MQN,(r ® s)T,(M,N))



Hopf Monads (HM): Towards a Fusion T-Module Category
Hopf algebra <A has an antipode S: A — A, S? = Id 4 such that:

u(S  Id4)A =ne =u(ld,; ® S)A

We could start with a (left/right) rigid category C, and define (left/right)
antipode satisfying certain equations.

st = {sl: T('T(X)) — "X} xeom(c)

Or we could try to generalize definition of Hopf algebra given by the
Fusion operator. Then:

C only needs to be monoidal!



* Diagrams:

A X A X AXAY
Iy = H\ ‘ - | ‘ (A27)2(X.Y) = % } (A27)o = T
AAX X A XY 1

e Define fusion operators (left) H}(,Y and (right) H}},Y:

HX}—(]/L) and HYy = &
A
AAXY

They only need to be invertible, and in that antipodes appear:
AX AY AAXY

A A \
—1 —1 —1
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A A \ -
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2.6. Fusion operators. Let T be a bimonad on a monoidal category C. The left
fusion operator of T is the natural transformation H': T(1e ® T) — T @ T defined

by:
Hi-_}- = (TX @ uy )T5(X.TY ). T(XRTY) 2 TX 2TY.

The right fusion operator of T is the natural transformation H": T(T®1¢) = T&T
defined by:

Hy v = (ux 9 TY)T(TX.Y): T(TX®Y) - TX @ TY.
(left/right) fusion operator invertible — (left/right) Hopf monad.

* Will always assume a left and right Hopf monad.

* Another point of view: For a bimonad T, how do we get C to be
rigid assuming C is rigid ?

Answer: if and only if T is a Hopf monad. Then:

(M,r) = ("M, s\, T("r)) and (M,r)" = (MY,syT(r")).



More precisely, let T" be an endofunctor of a monoidal category C endowed with a
natural transformation Hx y: T(X ®7TY ) - TX @TY satisfying the left pentagon
equation:

(TXQ®Hyz)Hxyeorz = (Hxy @ TZ)Hxgry.zT(X @ Hy z),

and with a morphism 7,: 71 — 1 and a natural transformation nx: X — TX
satisfying:

Hx ynxery =nx QTY, Ton: = idy,
(TX ®To)Hx 1 =T (X ®Tp), (To @ TX)H; xT(nx) = idrx.

Then T admits a unique bimonad structure (7, p.n, 75, Ty) having left fusion oper-
ator H. The product i and comonoidal structural morphism 75 are given by:

px = (To®TX)H; x and T3(X.Y)=HxyT(X @ny).

A tuple (T, H, Ty, n) is all you need to define a HM. When H is
invertible, T is called a left HM.



There is a lot more; e.g.
(Maschke’s Criterion of semisimplicity) TFAE fora HM T
e T admits a cointegral (a notion of bimonads)
* T is separable (a notion of monads)
* T is semisimple (a notion of monads)
Also, if T is an additive monad and C is abelian semisimple, then
CT is abelian semisimple if and only if T is semisimple.
We will always assume C is fusion, T is linear semisimple HM. So,
CT is a fusion category (and T is separable with a cointegral.)



Other parts of the theory of Hopf algebras can be generalized as well:
* Decomposition Theorem of (left,right) Hopf modules

* Integrals

* Sovereign and involutory HM

* Quasitriangular and ribbon HM

For more see:

* Bruguieres, Alain, and Alexis Virelizier. "Hopf monads." Advances in
Mathematics 215.2 (2007): 679-733.

* Bruguieres, Alain, Steve Lack, and Alexis Virelizier. "Hopf monads on
monoidal categories." Advances in Mathematics227.2 (2011): 745-800.



Diagrammatic Formulation

* The theory as explained was the strictified version. To do
computations, we need a skeletal formulation. So associators are no
longer trivial but can work with a unique object from isomorphism
classes.

* Diagrams make calculations easier and more intuitive!



4.1. Diagrammatic Notations. Let C be a fusion category and L(C) = {a.b,c,--- }
be a complete set of representatives, 1.e., a set that contains a representative for each
isomorphism class of simple objects of C. Let N, be the fusion coefficients,

a®b =~ Beer )Ny
Foreach b € L(C),
(5) T(b) = ®acr(D)Tava, Tap € N.
For each a. b € L(C), there exists a natural isomorphism,
(6) Tr(a,b) : T(a)@T(H) — T(a®Db).

The isomorphism 7%(a, b) determines a family of invertible matrices {7%° : a.b €
L(C),c € L(D)}, where the matrix elements of 7)*” are given by

(7)
{Tgl()fq).(da;ea) : feEL(C);d,ecL(D);1 £ a<T;1 <P T, 1 <9< Ty}



* Basic diagrames:

T T

I 11 111

FIGURE 1. (I) &; (II) Ide; (D) T°; (IV) T' o @ o (Id =< T): (V)
o (T xT).

a b c
. Y —:_> \f/ Y FE?Z
Associlator
d

FIGURE 3. (Left) the associator natural isomorphism; (Right) the
matrix elements of the associator natural isomorphism in the basis
given by labels of internal edges.



el
I:.':llf’;- ), (da;e3)
LY

T,(a,b):T(a @ b)
- T(a) ® T(b)

Co-associativity:  ° ﬂ* i

a b c a b c a b -

FIGURE 5. The hexagon equation for 75.



Pentagon equation becomes Heptagon equation as associator
is no longer trivial:

e Heptagon Equation®,

(idr(x) @ Hy z)Hx ygz =

(2) aT(.\').T(Y).T(Z)(II.\'.Y X T(Z):)I]‘\':;;T()')_Z(l;..l].()..).T(Z)T(i(]_\’ R Hy 7)

H:T(a @ T(b))
- T(a) ® T(b)




T(a®T(bQT(c))
= T(a) ® (T(h) ® T(c))

FIGURE 10. Heptagon equation for I



Can also write all equations explicitly. A left HM is a
collection of data {Tus. HZ ;.. 16) (daes)- €a-Taa ) SALiSTYiNG:

af be
Z H{i’;{g’ﬂ":h’ﬂ].{g.ﬁi:hﬁr} Hh":[&’u'r:f":r"}.[eu'.fu'}
)

be agfy— g ab ge'f
) Z ﬂ ﬂHy (a: fB),(ea: fB) (Eh }éry Hd-.(f&;fn,*}.[f&;hn,jHf|[ '8¢’ o), (Ed;)3) Fd;mf
é.f.a.fa.B.8

Z Ne,3 HSEEE“ J0).(daze3) — 'ﬂf I’-Eéfi uﬂ'ﬂ alla.v; Z M.a €a = 1.

al - _ la . . x
Z Hb:_[ v:18),(ca:d3) €p = 5"—'-15d-ﬂé'i‘-jfﬂ' Z Hb‘.{lﬁr:{ﬂ}-[uj:uu} Nag €4 = 06, cx -
7] 5-’?

Y Ty TpNj,= Y TuTeNy

f.geL d.ecL



Examples of HM:

* Hopf algebras: A Q@ —, or — Q) A, both are left and right HM due to
braiding.

* Adjunctions: C, D monoidal and U: D — C a strong monoidal functor
U, (X, Y):UX) QUY) »UX QY),Uy:1 - U(L)
both isomorphisms, with a left adjoint F: C = D. Then

T = UF is always a bimonad and fusion operators H', H" can be defined.
Then

T is a left/right HM if H'/H" is invertible.
Also:
T = UF is a (left/right) HM when C is (left/right) rigid.



Adjunctions “=” HM
* When C, D are fusion, then TFAE:
Existence of left adjoint <-> Existence of right adjoint <-> right exact <-> left exact

* Therefore, for an adjunction to give a HM, all we need is a strong monoidal
functor which is left exact; tensor functors U.

e Ifso, F existsand T = UF is HM.
e Further, D = CT ( (U, F) pair is monadic).
* |t goes both ways: a HM T, the forgetful functor CT — C given by
U (M,r) > M
is a tensor functor (Alain Bruguieres,Sonia Natale,2010), with left adjoint
Fr:M - (T(M),uy) =T = UrFr.



Group Symmetries

Definition 4.17. An action of a group G on a tensor category C (by tensor autoe-
quivalences) is a strong monoidal functor

(4.1) p:G — End,C.

In other words, it consists in the following data:

(1) For each g € GG, a tensor endofunctor p? : C — C;

e

_ .y : . : 7.}
(2) For each pair g, h € GG, a monoidal isomorphism p3™" : p9 pt = pah.
(3) A monoidal isomorphism pg : ide — p';

Examples are many:

 Vec with trivial G symmetry

* D(Zy) with Z, symmetry (a{,a,) — (a,,a,)

* G <S5, symmetryonCXCX - [X C.

» 3-fermion model SO(8); = {1, Y, Y5, Y3} with S3 symmetry



* We have

Theorem 4.21. Let C be a tensor category over a field k. and let p be an action
of a finite group G on C by tensor autoequivalences. Then:

(1) The k-linear exact endofunctor

TP = @ p?
geG
admits a canonical structure of Hopf monad on C;
(2) There is a canonical isomorphism of categories:
CE ~ €Y

over C, where C¢ denotes the equivariantization of C under G:

* The structural morphisms are derived similar to Hopf Algebra structure on
ClaG].

* This makes sense as T — modules are like fixed points of T. Hence
equivariantization can be generalized as the process of taking T — modules.



Condensable Algebras & Condensation

In @ modular tensor category B, an algebra A which is:

* Commutative: u 744 = U
e Connected: Hom(1,A) = C.

* Separable: u admits a splitting {: A = A & A, a morphism of
(A, A) —bimodules:

w®ldg)Udys Q) =Udg QW QIdy),ul =1d,
Take A —module B 4. There exist:
Condensation (Induction) functor D 4: B — B 4, a tensor functor

Forgetful functor E 4: B 4, — B, the adjoint

Hence, T4 = D4E 5 isaHM and B = quﬂ.



Condensation Example

To derive the condensation B 4:
. 0b(B,,) = Ob(B)
* Frobenius reciprocity: Homs(X, A®@Y) =Homgz,(X.Y)

5.2.2. D(S3). Consider the case B = D(S3) and the condensable algebra A =
A + C. The objects are denoted by {A, B.C, D, E . F,G, H} where {A, B,C} is
the canonical image of Rep(S3) in D(S3). By using the framework in 3.2.4, one
derives the condensed category B4 = D(Z3) & {X,Y} with the following
fusion rules for X, Y°:

mX =Y.mY =X. Y =X. v X =Y.eY =Y.
X2=14e+Y. XY =m+v+X.Y?’=1+e+Y.

* One can derive the induction and forgetful functors:
(28)
Eps:1—-A+C.e—-B+Cm—-D.¢v—-EX->D+FEY - F+G+ H,
(29)

Dyj:A—=1,B—=eC—-1+eD—-m+X.EFE—-v+X, FG,H—=Y.
C. Delaney

(27)



ThenT; = D4E ;is (2 +e) @ —onobjects 1,e,Yand (1 +Y) &
— on objects m, Y, X.

* Observation: If we replaceY - 1 + e¢,and X - m + 1, fusion rules
still hold.

* Also, {X, Y} would be all irreducible modules of algebra 1 + e and as
D(Z,) is module category of algebra 1, so B; = (2 + e) —modules.

* In fact, the algebra 1 @ (1 + e) has a (unique) Hopf algebra
structure:

The algebra structure is a Z, —graded algebra Clz,y|/(z? — z,4* — 7,2y — y),

where 1, x have grade O (corresponding to two dimensional v.s. C*2 of
1) and y has grade one (corresponding to one dimensional v.s. C of e).



3 1
Ar) =1+ zzR1 — 5T RxT + 5Y @Y,
G 5 TR B 3
Aly) =1y — >F RLy+yYyR1 — 5Y X I.

-

e(r) =€e(y) = 0.

S(x) = =, S(y) = —y.

Andso H = {1 — x} @ {x,y}is a Z,-graded hopf algebra. Its modules
in Vecy, is Rep(S3). Its modules in D(Z,) is D(Z,) D {X,Y}.

Classification of Hopf Algebras is a big problem, even in Vec.

Conjecture 5.1. In Vecz,, the algebra 1% Vecz,, admits a categorical Hopf algebra
structure whose representation category is the near group category given by G =
Ly, and multiplicity m = |G| — 1, if and only if p = q™ — 1 for some prime q.



* Think of the previous example as an extension and then an
equivariantization (:= HM gauging) given by taking modules of the Hopf
monadT = (24+e) ® —onD(Z,):

D(Z,) —» D(Z,) D {X,Y} - D(S3)

Example of HA symmetry with nontrivial extension:T 4 is (2 + e) @ — on
objects 1,e,Y and (1 +Y) @ — on objects m, Y, X.

In general, condensed B 4, = (deconfined) @ (confined) and the
deconfined part (here is D(Z,)) to which T 4 should be restricted (by the
substitution Y = 1 + e) . It should give a (special) case of HM gauging

(deconfined) -» B, — B

e Condensable algebras behave like “normal subgroups” for modular
categories.



Generalized Symmetry & Extension Theory

* Notice by adjunction, any tensor functor U:D — C, gives a HM. Define a
category symmetry of fusion C as a pair (U, D).

* To generalize symmetries, first look examples we have from HM point of view:
Group symmetry: gauging starts with an action p : G — Aut C
Then a G —graded Cz =@, C, extension of C(= C,) is derived.

HA symmetry (condensation D(S3)): grading is given by how the HA breaks into
irreducible algebras: 1 1+ e.

* In general what is the grading for C; =@®; Cp,,?
In fact T itself seems to be graded in both cases:

T =@4p(9), T =B; (m;® —)



Same answer for both:

m; is the irreducible coalgebra decomposition of coalgebra
(T(1),T,(1,1),T,) as it acts on itself.

Groups: T (1) = C[G]. 1 with Tz(l,l)(lg) =1, ® 1,, so coalgebra
decomposition is T(1) = 1.
HA: T(1) = A which breaks into its coalgebra decomposition.

 Observation: As (T(X),T,(1,X)) isa T(1) comodule, can define T =
@i Trn, where Ty, (X) is a m;-comodule. Further, there ism; =1, and

X isinside T;(X) so C < Cpy,,. Conjectured to be equal.



* Next, what is C;;, . ?

Group: Fixed points of p(g) = Tlg, i.e. Tlg(X) =X=1,RX.
HA: comodules of m;.

In general:

Cm, ={X| X € C, T,,,,(X) =2 m; ® X, X an m; comodule}.



Fusion rules and associators

Fusion rules: in case of groups they are derived from a strong
monoidal functor

dc:co—T4(1) = co — (C[G].1) = Vec; —» Bimodc(C).

The image, as ¢ is strong monoidal and all elements Vec are
invertible, are the invertible bimodules Pic(C).

$(g) Xe pg(h) = ps(g®h) = &: C4,X Cl — Cypy
In general: monoidal functor ¢ from category of T(1) —comodules to
Bimodc(C) to get ®: Cp, X Cppy . D, Cppn, assuming m; Q m; =
69JC mx
* More generally, u: T# — T restricted to Ty, (T, (X)) should tell us
what the result is for Cp,.X C;y,



Fusion rules for C¢ exist iff there is a lifting of p: G = Autg(C) to a
strong monoidal p: G — Aut . C

This is equivalent to a vanishing of an obstruction class in Hg (G,Z)
where Z are invertible elements of C. Then all fusion rules are classified

by H5 (G, Z).
* In general, may need to consider “some cohomology” like

H(%T(co — T(1)), something like the Davydov-Yetter (DY) cohomology.

Fact: DY-cohomology Hz(C) for a tensor functor F: C — C’ (both C,C’
fusion) parametrizes additively trivial first order deformations of F as a

tensor functor modulo equivalence, and H3(C) is the obstruction
space for such deformations.



But associators (fusion F-matrices) are not unique and relate to
vanishing of a class in H*(G, C*), classified by H3(G, C*). In general,
may need to consider DY-cohomology like H7;(co — T(1),C*).

Fact: H,(C) parametrizes additively trivial first order deformations of
C as a tensor category modulo equivalence, and Hfd (C) is the
obstruction space for such deformations

* Example: H:;(Vecg, CX) = HY(G, C*). So DY-cohomology gives what
we want for the case of group symmetry.



Examples of HM extension and a final piece of the puzzle:

* Group symmetry
* Hopf Algebra symmetry:

GivenT = A Q —,AaHAinC,thenCy =@ C,,, = CT . What is the
extension of T to C‘T7 In case of groups, extension 's unique. In case of HA,
there is always a canonical extension

TX((M, r)) = (T(M), T(r)), basically T* = A Q —
Need not be unique, recall D(S3) condensation, where A = 2 + e:
“Tg=D4E is(2+e)® —onobjects1,e,Y and (1 +Y) Q — on objects
m lp X”

After deriving T, can equivariantize (get T *-modules) to get C’X T



6.3.2. A generalization of the Haagerup category Haag,. Fib as a fusion category
fits into another potential sequence of fusion categories whose fusion rules will

be denoted as Haag,,. Haag, has 2p classes of simple objects denotes as at,i =
0.1,...p—1,and p;,i = 0,1....,p — 1, where a” = 1, py = p. The o' 's obey Z,
fusion rule. The non-group fusion rules are determined by:

'Rp=pi=pRal", p=16& Pi-
1=0
For p = 2, this is the fusion rule of PSU(2)g. and for p = 3. this is the Haagerup
fusion rule.

Open Question 6.2. Is there a HM on Vecz,, with an extension that realizes Haag,,
for each prime p?



6.3.3. The Doubled Haagerup category D(Haag,). The hypothetical modular cat-
egory D(Haag,), defined in [15], for all odd prime p is of rank p” + 3 with
anyons 1.b,ay. dy with 1 < h < %,1 < | < # of quantum dimensions

1.pd+1.pé+2.pb, and § = &= "’f“ satisfying 6° = 1+ pd. It is known to exist
for p < 13 [16].

Proposition 2. The object A = 1 + b of DHaag has a condensable algebra struc-

fure.
Consider the condensable algebra A = 1 + b, then we have’
Da(1) =1.Da(b) =1+ X, Dalap) = X +aij +a; ;. Dald) = X,

where «; ; form D(Z,), and X* = D(Z,) + p°X. SoC = D(Z,) ® {X} with
deconfined D = D(Z,). It follows the HM is

Ta(l) = 2+ X,Ta(yj) = aij + af ; + X. Tx(X) = D(Z,) + (p* + 2)X.

SoTala) =a+a*"+X@aisaHMon D(Z,) & { X }. and the question in general
is what 7 is on D(Zp)?

Open Question 6.3. Can D(Haag,) be realized through gauging a Hopf monad
symmetry on D(Z,)?
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