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From Algebra to Monads and T-Module Category

Algebra 𝒜 in a monoidal category 𝒞:

object 𝒜 ∈ 𝒞 with
𝜇:𝒜 ⊗𝒜 → 𝒜, 𝜂: 1 → 𝒜

𝜇 (multiplication) , 𝜂 (unit) both are 𝒜-linear:

associativity: 𝜇 𝜇 ⊗ 𝐼𝑑𝒜 = 𝜇 𝐼𝑑𝒜 ⊗𝜇

𝒜-linearity of unit: 𝜇 𝜂 ⊗ 𝐼𝑑𝒜 = 𝐼𝑑𝒜 = 𝜇(𝐼𝑑𝒜 ⊗𝜂)

• Generalization: Consider (action of 𝒜) 𝒜⊗− instead of the 
object 𝒜. The endomorphism 𝑇 𝑋 = 𝒜⊗𝑋: 𝒞 → 𝒞 has two 
associated natural transformations



𝜇: 𝑇2 → 𝑇, 𝜂: 𝐼𝑑𝒞 → 𝑇 satisfying

𝜇𝑋𝜇𝑇 𝑋 = 𝜇𝑋𝑇 𝜇𝑋 , 𝜇𝑋𝜂𝑇 𝑋 = 𝐼𝑑𝑇 𝑋 = 𝜇𝑋𝑇(𝜂𝑋)
𝑇 ∈ 𝐸𝑛𝑑 𝒞 is a monad and can be defined on any category.
𝑇 −module category 𝒞𝑇 has objects 

{ 𝑀, 𝑟 |𝑀 ∈ 𝒞, 𝑟 ∈ 𝐻𝑜𝑚𝒞 𝑇 𝑀 ,𝑀 : 𝑇 𝑀 → 𝑀}

such that 𝑟 is 𝑇 −linear:   𝑟𝑇 𝑟 = 𝑟𝜇𝑀

𝑇2 𝑀 𝑇(𝑀)

𝑇 𝑀 𝑀

𝑟𝜂𝑀 = 𝑖𝑑𝑀: 𝑀 → 𝑇 𝑀 → 𝑀

𝑇 𝑟

𝑟
𝜇𝑀 𝑟



Bimonads: a Monoidal T-Module Category
• Bialgebra 𝒜:

Δ:𝒜 → 𝒜⊗𝒜, 𝜖:𝒜 → 1

satisfying co-linearity, but also compatibility with algebra structure, which 
requires a braiding structure 𝜏 on 𝒞:

𝜇 ⊗ 𝜇 𝐼𝑑𝒜 ⊗ 𝜏𝐴,𝐴 ⊗ 𝐼𝑑𝒜 Δ⊗ Δ = Δ𝜇

loosely speaking braiding is needed to exchange 𝑦, 𝑧 in 𝑥 ⊗ 𝑦 . 𝑧 ⊗ 𝑡 =
𝑥𝑧 ⊗ (𝑦𝑡) before a “component-wise” multiplication.

• Generalize by requiring 𝑇 to be comonoidal :

counit: 𝑇0: 𝑇 1 → 1,

coproduct (comonoidal map),  𝑇2 𝑋, 𝑌 : 𝑇 𝑋 ⊗ 𝑌 → 𝑇 𝑋 ⊗ 𝑇 𝑌

satisfying colinearity. 𝑇2 for 𝑇 = 𝒜 ⊗− is 𝐼𝑑𝒜 ⊗ 𝜏𝐴,𝐴 ⊗ 𝐼𝑑𝒜 Δ⊗ Δ . 



Compatibility with 𝜂 and 𝜇 (have to be comonoidal):

• Bimonad 𝑇 is a monad on a monoidal 𝒞 with above structural 
identities.

Another point of view: Given monad 𝑇 , when does the monoidal 
structure of 𝒞 lift to a monoidal structure on 𝒞𝑇?

Answer (Moerdijk, 2002): Whenever 𝑇 is a bimonad

𝑀, 𝑟 ⊗ 𝑁, 𝑠 = 𝑀⊗𝑁, 𝑟 ⊗ 𝑠 𝑇2 𝑀,𝑁



Hopf Monads (HM): Towards a Fusion T-Module Category

Hopf algebra 𝒜 has an antipode  𝑆:𝒜 → 𝒜, 𝑆2 = 𝐼𝑑𝒜 such that:

𝜇 𝑆 ⊗ 𝐼𝑑𝒜 Δ = 𝜂𝜖 = 𝜇 𝐼𝑑𝒜 ⊗𝑆 Δ

We could start with a (left/right) rigid category 𝒞, and define (left/right) 
antipode satisfying certain equations.

Or we could try to generalize definition of Hopf algebra given by the 
Fusion operator. Then:

𝒞 only needs to be monoidal!



• Diagrams:

• Define fusion operators (left) 𝐻𝑋,𝑌
𝑙 and (right) 𝐻𝑋,𝑌

𝑟 :

They only need to be invertible, and in that antipodes appear:



(left/right) fusion operator invertible → (left/right) Hopf monad.

• Will always assume a left and right Hopf monad.

• Another point of view: For a bimonad 𝑇, how do we get 𝒞𝑇 to be 
rigid assuming 𝒞 is rigid ?

Answer: if and only if 𝑇 is a Hopf monad. Then:



A tuple 𝑇,𝐻, 𝑇0, 𝜂 is all you need to define a HM. When 𝐻 is 
invertible, 𝑇 is called a left HM.



There is a lot more; e.g.

(Maschke’s Criterion of semisimplicity) TFAE for a HM 𝑇:

• 𝑇 admits a cointegral (a notion of bimonads)

• 𝑇 is separable (a notion of monads)

• 𝑇 is semisimple (a notion of monads)

Also, if 𝑇 is an additive monad and 𝒞 is abelian semisimple, then

𝒞𝑇 is abelian semisimple if and only if 𝑇 is semisimple.

We will always assume 𝒞 is fusion, 𝑇 is linear semisimple HM. So,

𝒞𝑇 is a fusion category (and 𝑇 is separable with a cointegral.)



Other parts of the theory of Hopf algebras can be generalized as well:

• Decomposition Theorem of (left,right) Hopf modules

• Integrals

• Sovereign and involutory HM

• Quasitriangular and ribbon HM

For more see:

• Bruguieres, Alain, and Alexis Virelizier. "Hopf monads." Advances in 
Mathematics 215.2 (2007): 679-733.

• Bruguieres, Alain, Steve Lack, and Alexis Virelizier. "Hopf monads on 
monoidal categories." Advances in Mathematics227.2 (2011): 745-800.



Diagrammatic Formulation

• The theory as explained was the strictified version. To do 
computations, we need a skeletal formulation. So associators are no 
longer trivial but can work with a unique object from isomorphism 
classes.

• Diagrams make calculations easier and more intuitive!





• Basic diagrams:

Associator



Co-associativity:

𝑇2 𝑎, 𝑏 : 𝑇 𝑎 ⊗ 𝑏
→ 𝑇 𝑎 ⊗ 𝑇(𝑏)



Pentagon equation becomes Heptagon equation as associator
is no longer trivial:

𝐻: 𝑇 𝑎 ⊗ 𝑇 𝑏

→ 𝑇 𝑎 ⊗ 𝑇 𝑏



𝑇(𝑎 ⊗ 𝑇 𝑏 ⊗ 𝑇 𝑐

→ 𝑇 𝑎 ⊗ (𝑇 𝑏 ⊗ 𝑇 𝑐 )



Can also write all equations explicitly. A left HM is a 
collection of data                                          satisfying:



Examples of HM:

• Hopf algebras: 𝒜⊗− , or −⊗𝒜, both are left and right HM due to 
braiding.

• Adjunctions: 𝒞,𝒟 monoidal and 𝑈:𝒟 → 𝒞 a strong monoidal functor
𝑈2 𝑋, 𝑌 : 𝑈 𝑋 ⊗ 𝑈 𝑌 → 𝑈 𝑋⊗ 𝑌 ,𝑈0: 1 → 𝑈 1

both isomorphisms, with a left adjoint 𝐹: 𝒞 → 𝒟. Then

𝑇 = 𝑈𝐹 is always a bimonad and fusion operators 𝐻𝑙 , 𝐻𝑟 can be defined. 
Then

𝑇 is a left/right HM if 𝐻𝑙/𝐻𝑟 is invertible.

Also:

𝑇 = 𝑈𝐹 is a (left/right) HM when 𝒞 is (left/right) rigid.



• When 𝒞,𝒟 are fusion, then TFAE:

Existence of left adjoint <-> Existence of right adjoint <-> right exact <-> left exact

• Therefore, for an adjunction to give a HM, all we need is a strong monoidal 
functor which is left exact; tensor functors 𝑈.

• If so, 𝐹 exists and 𝑇 = 𝑈𝐹 is HM.

• Further, 𝒟 ≅ 𝒞𝑇 ( (𝑈, 𝐹) pair is monadic).

• It goes both ways: a HM 𝑇, the forgetful functor 𝒞𝑇 → 𝒞 given by 

𝑈𝑇: 𝑀, 𝑟 → 𝑀

is a tensor functor (Alain Bruguieres,Sonia Natale,2010), with left adjoint

𝐹𝑇:𝑀 → 𝑇 𝑀 , 𝜇𝑀 ⇒ 𝑇 = 𝑈𝑇𝐹𝑇.

Adjunctions “≅” HM



Group Symmetries

Examples are many:
• 𝑉𝑒𝑐 with trivial 𝐺 symmetry
• 𝒟 ℤ𝑁 with ℤ2 symmetry 𝑎1, 𝑎2 → 𝑎2, 𝑎1
• 𝐺 < 𝑆𝑛 symmetry on 𝒞 ⊠ 𝒞 ⊠⋯⊠𝒞.
• 3-fermion model 𝑆𝑂 8 1 = {1, 𝜓1, 𝜓2, 𝜓3} with 𝑆3 symmetry



• We have

• The structural morphisms are derived similar to Hopf Algebra structure on 
ℂ 𝐺 .

• This makes sense as 𝑇 − modules are like fixed points of 𝑇. Hence 
equivariantization can be generalized as the process of taking 𝑇 − modules.



Condensable Algebras & Condensation
In a modular tensor category ℬ, an algebra 𝒜 which is : 

• Commutative: 𝜇 𝜏𝐴,𝐴 = 𝜇

• Connected: 𝐻𝑜𝑚 1,𝒜 = ℂ.

• Separable: 𝜇 admits a splitting 𝜁:𝒜 → 𝒜⊗𝒜, a morphism of 
𝒜,𝒜 −bimodules:

𝜇 ⊗ 𝐼𝑑𝒜 𝐼𝑑𝒜 ⊗ 𝜁 = 𝐼𝑑𝒜 ⊗𝜇 𝜁 ⊗ 𝐼𝑑𝒜 , 𝜇𝜁 = 𝐼𝑑𝒜
Take 𝒜 −module ℬ𝒜. There exist:

Condensation (Induction) functor 𝐷𝒜: ℬ → ℬ𝒜, a tensor functor

Forgetful functor 𝐸𝒜: ℬ𝒜 → ℬ, the adjoint

Hence, 𝑇𝒜 = 𝐷𝒜𝐸𝒜 is a HM and ℬ ≅ ℬ𝒜
𝑇𝒜 .



Condensation Example
To derive the condensation ℬ𝒜:

• 𝑂𝑏 ℬ𝒜 = 𝑂𝑏 ℬ

• Frobenius reciprocity:

• One can derive the induction and forgetful functors:



Then 𝑇𝒜 = 𝐷𝒜𝐸𝒜 is 2 + 𝑒 ⊗− on objects 1, 𝑒, 𝑌 and 1 + 𝑌 ⊗
− on objects 𝑚,𝜓, 𝑋.

• Observation: If we replace 𝑌 → 1 + 𝑒, and 𝑋 → 𝑚 + 𝜓, fusion rules 
still hold.

• Also, 𝑋, 𝑌 would be all irreducible modules of algebra 1 + 𝑒 and as 
𝒟 ℤ2 is module category of algebra 1, so ℬ𝒜 = 2 + 𝑒 −modules.

• In fact, the algebra 1⊕ (1 + 𝑒) has a (unique) Hopf algebra 
structure:

The algebra structure is a ℤ2 −graded algebra

where 1, 𝑥 have grade 0 (corresponding to two dimensional v.s. ℂ^2 of 
1) and 𝑦 has grade one (corresponding to one dimensional v.s. ℂ of 𝑒). 



And so ℋ = 1 − 𝑥 ⊕ 𝑥, 𝑦 is a ℤ2-graded hopf algebra. Its modules 
in 𝑉𝑒𝑐ℤ2 is 𝑅𝑒𝑝(𝑆3). Its modules in 𝒟 ℤ2 is 𝒟 ℤ2 ⊕ 𝑋, 𝑌 .

Classification of Hopf Algebras is a big problem, even in 𝑉𝑒𝑐. 



• Think of the previous example as an extension and then an 
equivariantization (:= HM gauging) given by taking modules of the Hopf
monad 𝑇 = 2 + 𝑒 ⊗− on 𝒟(ℤ2):

𝒟 ℤ2 → 𝒟 ℤ2 ⊕ 𝑋,𝑌 → 𝒟 𝑆3
Example of HA symmetry with nontrivial extension:𝑇𝒜 is 2 + 𝑒 ⊗− on 
objects 1, 𝑒, 𝑌 and 1 + 𝑌 ⊗− on objects 𝑚,𝜓, 𝑋.

In general, condensed ℬ𝒜 = 𝑑𝑒𝑐𝑜𝑛𝑓𝑖𝑛𝑒𝑑 ⊕ (𝑐𝑜𝑛𝑓𝑖𝑛𝑒𝑑) and the 
deconfined part (here is 𝒟 ℤ2 ) to which 𝑇𝒜 should be restricted (by the 
substitution 𝑌 = 1 + 𝑒) . It should give a (special) case of HM gauging

𝑑𝑒𝑐𝑜𝑛𝑓𝑖𝑛𝑒𝑑 → ℬ𝒜 → ℬ

• Condensable algebras behave like “normal subgroups” for modular 
categories.



Generalized Symmetry & Extension Theory

• Notice by adjunction, any tensor functor 𝑈:𝒟 → 𝒞, gives a HM. Define a 
category symmetry of fusion 𝒞 as a pair 𝑈,𝒟 .

• To generalize symmetries, first look examples we have from HM point of view:

Group symmetry: gauging starts with an action                                 .  

Then a 𝐺 −graded 𝒞𝐺
× =⊕𝑔 𝒞𝑔 extension of 𝒞 = 𝒞𝑒 is derived. 

HA symmetry (condensation 𝒟 𝑆3 ): grading is given by how the HA breaks into 
irreducible algebras: 1⊕ 1 + 𝑒 .

• In general what is the grading for 𝒞𝑇
× =⊕𝑖 𝒞𝑚𝑖

?

In fact 𝑇 itself seems to be graded in both cases: 

𝑇 =⊕𝑔 𝜌 𝑔 , 𝑇 =⊕𝑖 (𝑚𝑖⊗−)



Same answer for both: 

𝑚𝑖 is the irreducible coalgebra decomposition of coalgebra
𝑇 1 , 𝑇2 1,1 , 𝑇0 as it acts on itself.

Groups: 𝑇𝐺 1 = ℂ 𝐺 . 1 with 𝑇2 1,1 1𝑔 = 1𝑔 ⊗1𝑔, so coalgebra
decomposition is 𝑇 1 =⊕ 1𝑔.

HA: 𝑇 1 = 𝒜 which breaks into its coalgebra decomposition.

• Observation: As (𝑇 𝑋 , 𝑇2(1, 𝑋)) is a 𝑇 1 comodule, can define 𝑇 =
⊕𝑖 𝑇𝑚𝑖

where 𝑇𝑚𝑖
(𝑋) is a 𝑚𝑖-comodule. Further, there is 𝑚1 = 1, and 

𝑋 is inside 𝑇1(𝑋) so 𝒞 ⊂ 𝒞𝑚1
. Conjectured to be equal. 



• Next, what is 𝒞𝑚𝑖
?  

Group: Fixed points of 𝜌 𝑔 = 𝑇1𝑔, i.e. 𝑇1𝑔 𝑋 ≅ 𝑋 ≅ 1𝑔 ⊗𝑋.

HA: comodules of 𝑚𝑖.

In general:

𝒞𝑚𝑖
= 𝑋 𝑋 ∈ 𝒞, 𝑇𝑚𝑖

𝑋 ≅ 𝑚𝑖 ⊗𝑋, 𝑋 𝑎𝑛 𝑚𝑖 𝑐𝑜𝑚𝑜𝑑𝑢𝑙𝑒}.



Fusion rules and associators
Fusion rules: in case of groups they are derived from a strong
monoidal functor

𝜙𝐺: 𝑐𝑜 − 𝑇𝐺 1 = 𝑐𝑜 − (ℂ 𝐺 . 1) = 𝑉𝑒𝑐𝐺 → 𝐵𝑖𝑚𝑜𝑑𝑐(𝒞). 

The image, as 𝜙𝐺 is strong monoidal and all elements 𝑉𝑒𝑐𝐺 are 
invertible, are the invertible bimodules 𝑃𝑖𝑐 𝒞 .

𝜙𝐺 𝑔 ⊠𝒞 𝜙𝐺 ℎ ≅ 𝜙𝐺 𝑔⊗ h ⇒ ⊗: 𝒞𝑔⊠𝒞ℎ → 𝒞𝑔ℎ
In general: monoidal functor 𝜙𝑇 from category of 𝑇 1 −comodules to 
𝐵𝑖𝑚𝑜𝑑𝑐 𝒞 to get ⊗: 𝒞𝑚𝑖

⊠𝒞𝑚𝑗
→⊕𝑥 𝒞𝑚𝑥

assuming 𝑚𝑖 ⊗𝑚𝑗 =
⊕𝑥 𝑚𝑥.

• More generally, 𝜇: 𝑇2 → 𝑇 restricted to 𝑇𝑚𝑖
(𝑇𝑚𝑗

𝑋 ) should tell us 
what the result is for 𝒞𝑚𝑖

⊠𝒞𝑚𝑗
.



Fusion rules for 𝒞𝐺
× exist iff there is a lifting of 𝜌: 𝐺 → 𝐴𝑢𝑡⊗ 𝒞 to a 

strong monoidal                              . 

This is equivalent to a vanishing of an obstruction class in 𝐻𝜌
3 𝐺, 𝑍

where 𝑍 are invertible elements of 𝒞. Then all fusion rules are classified 
by 𝐻𝜌

2 𝐺, 𝑍 .

• In general, may need to consider “some cohomology” like 

𝐻𝜙𝑇

3 𝑐𝑜 − 𝑇 1 , something like the Davydov-Yetter (DY) cohomology.

Fact: DY-cohomology 𝐻𝐹
2 𝒞 for a tensor functor 𝐹: 𝒞 → 𝒞′ (both 𝒞, 𝒞′

fusion) parametrizes additively trivial first order deformations of 𝐹 as a 
tensor functor modulo equivalence, and 𝐻𝐹

3 𝒞 is the obstruction 
space for such deformations.



But associators (fusion F-matrices) are not unique and relate to 
vanishing of a class in 𝐻4 𝐺, ℂ× , classified by 𝐻3 𝐺, ℂ× . In general, 
may need to consider DY-cohomology like 𝐻𝐼𝑑

4 𝑐𝑜 − 𝑇 1 , ℂ× .

Fact: 𝐻𝐼𝑑
3 𝒞 parametrizes additively trivial first order deformations of 

C as a tensor category modulo equivalence, and 𝐻𝐼𝑑
4 𝒞 is the 

obstruction space for such deformations

• Example: 𝐻𝐼𝑑
𝑖 𝑉𝑒𝑐𝐺 , ℂ

× = 𝐻𝑖 𝐺, ℂ× . So DY-cohomology gives what 
we want for the case of group symmetry.



Examples of HM extension and a final piece of the puzzle:

• Group symmetry

• Hopf Algebra symmetry:

Given 𝑇 = 𝒜⊗− , 𝒜 a HA in 𝒞, then 𝒞𝑇
× =⊕𝒞𝑚𝑖

= 𝒞𝑇 . What is the 
extension of  𝑇 to 𝒞𝑇

×? In case of groups, extension is unique. In case of HA, 
there is always a canonical extension 

𝑇× 𝑀, 𝑟 = 𝑇 𝑀 , 𝑇 𝑟 , basically 𝑇× = 𝒜⊗−

Need not be unique, recall 𝒟(𝑆3) condensation, where 𝒜 = 2 + 𝑒:

“𝑇𝒜 = 𝐷𝒜𝐸𝒜 is 2 + 𝑒 ⊗− on objects 1, 𝑒, 𝑌 and 1 + 𝑌 ⊗− on objects 
𝑚,𝜓, 𝑋.”

After deriving 𝑇×, can equivariantize (get 𝑇×-modules) to get 𝒞𝑇
×,𝑇× .
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