## Discrete scale invariance in quantum spin chains a proposed experiment.

Vaughan Jones, Vanderbilt

May 4 2019

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

The experiment first.

◆□ > < 個 > < E > < E > E 9 < 0</p>

The experiment first.

Measure the correlation between a state of a spin chain and itself, translated by one lattice site, at a quantum phase transition.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

The experiment first.

Measure the correlation between a state of a spin chain and itself, translated by one lattice site, at a quantum phase transition.



◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@





▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 \_ のへで

Correlation almost 1 away from critical point.



Correlation almost 1 away from critical point. Pass the system through a quantum phase transition.

▲ロト ▲圖ト ▲ヨト ▲ヨト ヨー のへで



Correlation almost 1 away from critical point. Pass the system through a quantum phase transition.

My "prediction": the correlation should *DROP* significantly at the critical point.

For literally scale invariant (pure) states it is true-the result of a calculation I will give.

(ロ)、

For literally scale invariant (pure) states it is true-the result of a calculation I will give.

Gives the first problem - there is no Hamiltonian, correlation length, critical exponent etc.

・ロト ・四ト ・ヨト ・ヨー うへぐ

For literally scale invariant (pure) states it is true-the result of a calculation I will give.

Gives the first problem - there is no Hamiltonian, correlation length, critical exponent etc.

The idea is simply that critical phenomena are supposed to exhibit SCALE INVARIANCE, which, while not visible on a finite lattice, is supposed to occur in the limit where the lattice spacing tends to zero.

For literally scale invariant (pure) states it is true-the result of a calculation I will give.

Gives the first problem - there is no Hamiltonian, correlation length, critical exponent etc.

The idea is simply that critical phenomena are supposed to exhibit SCALE INVARIANCE, which, while not visible on a finite lattice, is supposed to occur in the limit where the lattice spacing tends to zero.

Equivalence between 1-d quantum spin chain and 2-d classical stat mech lattice system:





Equivalence between 1-d quantum spin chain and 2-d classical stat mech lattice system:



One builds the lattice states up row by row with a matrix called the "Transfer matrix"  $T(\lambda)$ :

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

The rows and columns of  $T(\lambda)$  are indexed by the possible spin states of a row of the lattice so that the terms in the product  $T(\lambda)^n$  are enumerated by the spin states of an *n*-row lattice.

(ロ) (型) (E) (E) (E) (O)

If one thinks of the vertical axis as time, the transfer matrix can be used to express the *correlation* between the spin (say) at various lattice sites as the time ordered expectation value of operators on the horizontal vector space.

If one thinks of the vertical axis as time, the transfer matrix can be used to express the *correlation* between the spin (say) at various lattice sites as the time ordered expectation value of operators on the horizontal vector space.

 $T(\lambda)$  acts on a vector space  $V_n$  whose basis is indexed by all possible spin states.

If one thinks of the vertical axis as time, the transfer matrix can be used to express the *correlation* between the spin (say) at various lattice sites as the time ordered expectation value of operators on the horizontal vector space.

 $T(\lambda)$  acts on a vector space  $V_n$  whose basis is indexed by all possible spin states.

Thus vectors in  $V_n$  are the states of a quantum spin chain of length n.

If one thinks of the vertical axis as time, the transfer matrix can be used to express the *correlation* between the spin (say) at various lattice sites as the time ordered expectation value of operators on the horizontal vector space.

 $T(\lambda)$  acts on a vector space  $V_n$  whose basis is indexed by all possible spin states.

Thus vectors in  $V_n$  are the states of a quantum spin chain of length n. Of dimension  $2^n$ ,  $3^n$  etc.

If one thinks of the vertical axis as time, the transfer matrix can be used to express the *correlation* between the spin (say) at various lattice sites as the time ordered expectation value of operators on the horizontal vector space.

 $T(\lambda)$  acts on a vector space  $V_n$  whose basis is indexed by all possible spin states.

Thus vectors in  $V_n$  are the states of a quantum spin chain of length n. Of dimension  $2^n$ ,  $3^n$  etc.

Gambits such as logarithmic differentiation of  $T(\lambda)$  yield **local** hamiltonians on the quantum spin chain.

If one thinks of the vertical axis as time, the transfer matrix can be used to express the *correlation* between the spin (say) at various lattice sites as the time ordered expectation value of operators on the horizontal vector space.

 $T(\lambda)$  acts on a vector space  $V_n$  whose basis is indexed by all possible spin states.

Thus vectors in  $V_n$  are the states of a quantum spin chain of length n. Of dimension  $2^n$ ,  $3^n$  etc.

Gambits such as logarithmic differentiation of  $T(\lambda)$  yield **local** hamiltonians on the quantum spin chain.

Thus: "the transfer matrix determines the infinitesimal time evolution of the chain."

It's not always quite that simple. Some stat mech models ("hard hexagon", "solid on solid", "IRF") have forbidden states.

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○

The transfer matrix approach still works but the vector spaces  $V_n$  no longer grow in dimension like  $2^n$ .

The transfer matrix approach still works but the vector spaces  $V_n$  no longer grow in dimension like  $2^n$ . In the simplest new case they grow like

$$(\frac{1+\sqrt{5}}{2})^n$$

The transfer matrix approach still works but the vector spaces  $V_n$  no longer grow in dimension like  $2^n$ . In the simplest new case they grow like

$$(\frac{1+\sqrt{5}}{2})^n$$

Question: Can we interpret the vector spaces  $V_n$  of models like the ABF one as states of a quantum spin chain?

ション ふゆ アメリア メリア しょうくの

The transfer matrix approach still works but the vector spaces  $V_n$  no longer grow in dimension like  $2^n$ . In the simplest new case they grow like

$$(\frac{1+\sqrt{5}}{2})^n$$

Question: Can we interpret the vector spaces  $V_n$  of models like the ABF one as states of a quantum spin chain? Answer. Yes if you accept my ideas about constrained quantum systems.

The transfer matrix approach still works but the vector spaces  $V_n$  no longer grow in dimension like  $2^n$ . In the simplest new case they grow like

$$(\frac{1+\sqrt{5}}{2})^n$$

Question: Can we interpret the vector spaces  $V_n$  of models like the ABF one as states of a quantum spin chain? Answer. Yes if you accept my ideas about constrained quantum systems."In and around the origin of quantum groups." arXiv

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

What if "spins" were more subtle and do not decouple so easily?

What if "spins" were more subtle and do not decouple so easily? Suppose we are dealing with a quantum field theory in one dimension.

What if "spins" were more subtle and do not decouple so easily? Suppose we are dealing with a quantum field theory in one dimension. The particle divides space into a left and right half which do not communicate.

What if "spins" were more subtle and do not decouple so easily? Suppose we are dealing with a quantum field theory in one dimension. The particle divides space into a left and right half which do not communicate.

Thus the Hilbert space of the system will be a **bimodule**  $_M\mathcal{H}_N$  where M is a type III factor of left spatial observables and N is an isomorphic type III factor of right spatial observables.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

What if "spins" were more subtle and do not decouple so easily? Suppose we are dealing with a quantum field theory in one dimension. The particle divides space into a left and right half which do not communicate.

Thus the Hilbert space of the system will be a **bimodule**  $_M\mathcal{H}_N$  where M is a type III factor of left spatial observables and N is an isomorphic type III factor of right spatial observables. So far so good. Now imagine that two such systems are constrained to be next to one another at a fixed distance on the line. Then left observable of the rightmost is the same as right observable of the leftmost.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
In QM a spin 1/2 particle is described by a Hilbert space of the form  $L^2(\mathbb{R}) \otimes \mathbb{C}^2$  where spin is tacked on as a new degree of freedom to the spatial/kinetic Hilbert space.

What if "spins" were more subtle and do not decouple so easily? Suppose we are dealing with a quantum field theory in one dimension. The particle divides space into a left and right half which do not communicate.

Thus the Hilbert space of the system will be a **bimodule**  $_M\mathcal{H}_N$  where M is a type III factor of left spatial observables and N is an isomorphic type III factor of right spatial observables. So far so good. Now imagine that two such systems are constrained to be next to one another at a fixed distance on the line. Then left observable of the rightmost is the same as right observable of the leftmost.

Thus the Hilbert space of the compound, constrained system should be something like  $\mathcal{H}\otimes\mathcal{H}$  quotiented by a relation

$$\xi x \otimes \eta = \xi \otimes x\eta.$$

In QM a spin 1/2 particle is described by a Hilbert space of the form  $L^2(\mathbb{R}) \otimes \mathbb{C}^2$  where spin is tacked on as a new degree of freedom to the spatial/kinetic Hilbert space.

What if "spins" were more subtle and do not decouple so easily? Suppose we are dealing with a quantum field theory in one dimension. The particle divides space into a left and right half which do not communicate.

Thus the Hilbert space of the system will be a **bimodule**  $_M\mathcal{H}_N$  where M is a type III factor of left spatial observables and N is an isomorphic type III factor of right spatial observables. So far so good. Now imagine that two such systems are constrained to be next to one another at a fixed distance on the line. Then left observable of the rightmost is the same as right observable of the leftmost.

Thus the Hilbert space of the compound, constrained system should be something like  $\mathcal{H}\otimes\mathcal{H}$  quotiented by a relation

$$\xi x \otimes \eta = \xi \otimes x\eta.$$

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

"Correspondences".)

In fact the definition is surprisingly subtle mathematically, invoking the full force of Tomita-Takesaki theory.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

"Correspondences".)

In fact the definition is surprisingly subtle mathematically, invoking the full force of Tomita-Takesaki theory.

Now imagine constraining a whole sequence of such systems to be together in a one-dimensional chain. The Hilbert space of the chain will then be

 $\mathcal{H} \otimes_M \mathcal{H} \otimes_M \cdots \otimes_M \mathcal{H}$ 

"Correspondences".)

In fact the definition is surprisingly subtle mathematically, invoking the full force of Tomita-Takesaki theory.

Now imagine constraining a whole sequence of such systems to be together in a one-dimensional chain. The Hilbert space of the chain will then be

 $\mathcal{H} \otimes_M \mathcal{H} \otimes_M \cdots \otimes_M \mathcal{H}$ 

This is still an M - M bimodule so infinite dimensional (the whole chain can move along the line).

"Correspondences".)

In fact the definition is surprisingly subtle mathematically, invoking the full force of Tomita-Takesaki theory.

Now imagine constraining a whole sequence of such systems to be together in a one-dimensional chain. The Hilbert space of the chain will then be

 $\mathcal{H} \otimes_M \mathcal{H} \otimes_M \cdots \otimes_M \mathcal{H}$ 

This is still an M - M bimodule so infinite dimensional (the whole chain can move along the line). But finally imagine imposing **periodic boundary conditions**. The Hilbert space will then be the cyclic Connes tensor product defined in the obvious way:

 $(\overset{\circ}{\otimes})^n_M\mathcal{H}$ 

"Correspondences".)

In fact the definition is surprisingly subtle mathematically, invoking the full force of Tomita-Takesaki theory.

Now imagine constraining a whole sequence of such systems to be together in a one-dimensional chain. The Hilbert space of the chain will then be

 $\mathcal{H} \otimes_M \mathcal{H} \otimes_M \dots \otimes_M \mathcal{H}$ 

This is still an M - M bimodule so infinite dimensional (the whole chain can move along the line). But finally imagine imposing **periodic boundary conditions**. The Hilbert space will then be the cyclic Connes tensor product defined in the obvious way:



This idea, that constrained quantum systems should be described by a relative tensor product, should not be restricted to one dimension.

There exist bimodules  ${}_M\mathcal{H}_M$  so that  $(\overset{\bigcirc}{\otimes})^n_M\mathcal{H}$  is finite dimensional and grows like  $(2\cos \pi/k)^n$  for  $k = 3, 4, 5, \cdots$ .

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ うらつ

M is the hyperfinite type III<sub>1</sub> factor.

There exist bimodules  ${}_M\mathcal{H}_M$  so that  $(\overset{\bigcirc}{\otimes})^n_M\mathcal{H}$  is finite dimensional and grows like  $(2\cos \pi/k)^n$  for  $k = 3, 4, 5, \cdots$ .

M is the hyperfinite type III<sub>1</sub> factor.

The corresponding "quantum spin chain" is nowadays called an "anyonic spin chain".

ション ふゆ く 山 マ チャット しょうくしゃ

There exist bimodules  ${}_M\mathcal{H}_M$  so that  $(\overset{\bigcirc}{\otimes})^n_M\mathcal{H}$  is finite dimensional and grows like  $(2\cos \pi/k)^n$  for  $k = 3, 4, 5, \cdots$ .

M is the hyperfinite type III<sub>1</sub> factor.

The corresponding "quantum spin chain" is nowadays called an "anyonic spin chain".

The construction of such bimodules goes back to my work on subfactors but can be done (rigorously) within Conformal Field theory. A. Wassermann achieved this for SU(n) WZW using tecnhiques of constructive QFT- which are not too bad in this low dimensional setting.

There exist bimodules  ${}_M\mathcal{H}_M$  so that  $(\overset{\bigcirc}{\otimes})^n_M\mathcal{H}$  is finite dimensional and grows like  $(2\cos \pi/k)^n$  for  $k = 3, 4, 5, \cdots$ .

M is the hyperfinite type III<sub>1</sub> factor.

The corresponding "quantum spin chain" is nowadays called an "anyonic spin chain".

The construction of such bimodules goes back to my work on subfactors but can be done (rigorously) within Conformal Field theory. A. Wassermann achieved this for SU(n) WZW using tecnhiques of constructive QFT- which are not too bad in this low dimensional setting.

He coined the term "Connes fusion" for the Connes tensor product"

There exist bimodules  ${}_M\mathcal{H}_M$  so that  $(\overset{\bigcirc}{\otimes})^n_M\mathcal{H}$  is finite dimensional and grows like  $(2\cos \pi/k)^n$  for  $k = 3, 4, 5, \cdots$ .

M is the hyperfinite type III<sub>1</sub> factor.

The corresponding "quantum spin chain" is nowadays called an "anyonic spin chain".

The construction of such bimodules goes back to my work on subfactors but can be done (rigorously) within Conformal Field theory. A. Wassermann achieved this for SU(n) WZW using tecnhiques of constructive QFT- which are not too bad in this low dimensional setting.

He coined the term "Connes fusion" for the Connes tensor product"

Decomposing  $\mathcal{H} \otimes_M \mathcal{H}$  into a direct sum of irreducible bimodules one obtains the fusion rules of the CFT.

There exist bimodules  ${}_M\mathcal{H}_M$  so that  $(\overset{\bigcirc}{\otimes})^n_M\mathcal{H}$  is finite dimensional and grows like  $(2\cos \pi/k)^n$  for  $k = 3, 4, 5, \cdots$ .

M is the hyperfinite type III<sub>1</sub> factor.

The corresponding "quantum spin chain" is nowadays called an "anyonic spin chain".

The construction of such bimodules goes back to my work on subfactors but can be done (rigorously) within Conformal Field theory. A. Wassermann achieved this for SU(n) WZW using tecnhiques of constructive QFT- which are not too bad in this low dimensional setting.

He coined the term "Connes fusion" for the Connes tensor product"

Decomposing  $\mathcal{H} \otimes_M \mathcal{H}$  into a direct sum of irreducible bimodules one obtains the fusion rules of the CFT. the Hilbert space  $\mathcal{H}$  is obtained by fermionic second quantization of  $L^2(S^1) \otimes \mathbb{C}^N$ 

There exist bimodules  ${}_M\mathcal{H}_M$  so that  $(\overset{\bigcirc}{\otimes})^n_M\mathcal{H}$  is finite dimensional and grows like  $(2\cos \pi/k)^n$  for  $k = 3, 4, 5, \cdots$ .

M is the hyperfinite type III<sub>1</sub> factor.

The corresponding "quantum spin chain" is nowadays called an "anyonic spin chain".

The construction of such bimodules goes back to my work on subfactors but can be done (rigorously) within Conformal Field theory. A. Wassermann achieved this for SU(n) WZW using tecnhiques of constructive QFT- which are not too bad in this low dimensional setting.

He coined the term "Connes fusion" for the Connes tensor product"

Decomposing  $\mathcal{H} \otimes_M \mathcal{H}$  into a direct sum of irreducible bimodules one obtains the fusion rules of the CFT. the Hilbert space  $\mathcal{H}$  is obtained by fermionic second quantization of  $L^2(S^1) \otimes \mathbb{C}^N$ . Wassermann's calculation of the Connes tensor product uses the KZ equation. Let me say a little more about what the bimodule is.

◆□ > < 個 > < E > < E > E の < @</p>

Let me say a little more about what the bimodule is. According to algebraic quantum field theory, in a one dimensional (one space-time dimensional) theory, as would be supplied by a chiral half of a 2d CFT, there is a Hilbert space  $\mathcal{H}$  associated with the circle and type III<sub>1</sub> factors A(I) and  $A(I^c)$  of localised observables associated to each of complementary intervals I and  $I^c$  depicted below:



・ロト ・個ト ・ヨト ・ヨト

æ



The observables in A(I) commute with those in  $A(I^c)$  so we have a bimodule as required for our anyonic spin chain.

・ロッ ・雪 ・ ・ ヨ ・ ・

э

Thus we see that Conformal Field theory can be used to construct anyonic spin chains in the above sense.

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○

Given a bimodule over the hyperfinite  $III_1$  factor as above, is there a CFT which creates it?

Given a bimodule over the hyperfinite  $III_1$  factor as above, is there a CFT which creates it?

Many people have thought about this question in different guises.

# Given a bimodule over the hyperfinite $III_1$ factor as above, is there a CFT which creates it?

Many people have thought about this question in different guises.

There are certain obstructions, most notably the existence of a "braiding", but these are understood and do not really affect the generality of the question.

# Given a bimodule over the hyperfinite $III_1$ factor as above, is there a CFT which creates it?

Many people have thought about this question in different guises.

There are certain obstructions, most notably the existence of a "braiding", but these are understood and do not really affect the generality of the question.

My own approach has been inspired by the **diagrammatic**, **planar** nature of the structure of bimodules over a factor and the idea that quantum field theories should occur as the "scaling limit" of lattice models.

My own approach has been inspired by the **diagrammatic**, **planar** nature of the structure of bimodules over a factor and the idea that quantum field theories should occur as the "scaling limit" of lattice models. And as we have seen, the bimodules in question provide anyonic quantum spin chains.

(ロ) (型) (E) (E) (E) (O)

To my knowledge the first people to consider the coninuum limit of such a chain, in the language of what is now called the Temperley-Lieb algebra, were physicists Pasquier and Saleur in a 1990 paper.

・ロト ・ 通 ト ・ ヨ ト ・ ヨ ト ・ らへで

To my knowledge the first people to consider the coninuum limit of such a chain, in the language of what is now called the Temperley-Lieb algebra, were physicists Pasquier and Saleur in a 1990 paper. They argued, using Bethe Ansatz ideas, that the scaling limit of an anyonic spin chain with a certain Hamiltonian, is a conformal field theory of SU(2) - WZW type.

To my knowledge the first people to consider the coninuum limit of such a chain, in the language of what is now called the Temperley-Lieb algebra, were physicists Pasquier and Saleur in a 1990 paper. They argued, using Bethe Ansatz ideas, that the scaling limit of an anyonic spin chain with a certain Hamiltonian, is a conformal field theory of SU(2) - WZW type. Connes and Evans also produced some ingredients of a CFT-namely a Virasoro algebra, directly out of the Temperly-Lieb algebra, at about the same time.

To my knowledge the first people to consider the coninuum limit of such a chain, in the language of what is now called the Temperley-Lieb algebra, were physicists Pasquier and Saleur in a 1990 paper. They argued, using Bethe Ansatz ideas, that the scaling limit of an anyonic spin chain with a certain Hamiltonian, is a conformal field theory of SU(2) - WZW type. Connes and Evans also produced some ingredients of a CFT-namely a Virasoro algebra, directly out of the Temperly-Lieb algebra, at about the same time. Interestingly the Pasquier Saleur Hamiltonian will always be present. It is not clear that this is the "right" Hamiltonian as the complexity of the structure generated by a bimodule offers other choices.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Besides planar diagrams, the idea comes from **block spin renormalisation** according to which, at criticality, the mathematical description of the system should be invariant under the operation of blocking together groups of neighbouring spins on the lattice together to form a single spin of the same kind.

Besides planar diagrams, the idea comes from **block spin renormalisation** according to which, at criticality, the mathematical description of the system should be invariant under the operation of blocking together groups of neighbouring spins on the lattice together to form a single spin of the same kind.

Thus one is led to create a Hilbert space associated to the circle by reversing block spin renormalisation and embedding the Hilbert space for any anyonic chain of length, say,  $2^n$  inside one of length  $2^{n+1}$  by **doubling all the spins**.

Besides planar diagrams, the idea comes from **block spin renormalisation** according to which, at criticality, the mathematical description of the system should be invariant under the operation of blocking together groups of neighbouring spins on the lattice together to form a single spin of the same kind.

Thus one is led to create a Hilbert space associated to the circle by reversing block spin renormalisation and embedding the Hilbert space for any anyonic chain of length, say,  $2^n$  inside one of length  $2^{n+1}$  by **doubling all the spins**. For this one needs an elementary "spin doubling" operator

Thus the embedding of one row of spins into another is represented diagramatically by:

ΥΥΥ···Υ
YYY...Y

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

This gives an inductive "semicontinuous" limit Hilbert space corresponding to a "lattice" with spins on all dyadic rationals.

YYY...Y

This gives an inductive "semicontinuous" limit Hilbert space corresponding to a "lattice" with spins on all dyadic rationals.

There is in general a lot of choice in  $\Upsilon$  but for a certain family of bimodules (WZW SO(3) all levels) there is a **unique choice**.

(ロ) (型) (E) (E) (E) (O)

ΥΥΥ…Υ

This gives an inductive "semicontinuous" limit Hilbert space corresponding to a "lattice" with spins on all dyadic rationals.

There is in general a lot of choice in  $\Upsilon$  but for a certain family of bimodules (WZW SO(3) all levels) there is a **unique choice**. Local scale invariance at criticality is implemented by an action of the Thompson groups *F* (interval) and *T*(circle)

YYY...Y

This gives an inductive "semicontinuous" limit Hilbert space corresponding to a "lattice" with spins on all dyadic rationals.

There is in general a lot of choice in  $\Upsilon$  but for a certain family of bimodules (WZW SO(3) all levels) there is a **unique choice**. Local scale invariance at criticality is implemented by an action of the Thompson groups *F* (interval) and *T*(circle)

This has given rise to an interesting family of unitary representations of the Thompson groups with conjectured rather general irreducibility properties.

YYY...Y

This gives an inductive "semicontinuous" limit Hilbert space corresponding to a "lattice" with spins on all dyadic rationals.

There is in general a lot of choice in  $\Upsilon$  but for a certain family of bimodules (WZW SO(3) all levels) there is a **unique choice**. Local scale invariance at criticality is implemented by an action of the Thompson groups *F* (interval) and *T*(circle)

This has given rise to an interesting family of unitary representations of the Thompson groups with conjectured rather general irreducibility properties.

And a new construction of all knots and links from Thompson group elements.

YYY...Y

This gives an inductive "semicontinuous" limit Hilbert space corresponding to a "lattice" with spins on all dyadic rationals.

There is in general a lot of choice in  $\Upsilon$  but for a certain family of bimodules (WZW SO(3) all levels) there is a **unique choice**. Local scale invariance at criticality is implemented by an action of the Thompson groups *F* (interval) and *T*(circle)

This has given rise to an interesting family of unitary representations of the Thompson groups with conjectured rather general irreducibility properties.

And a new construction of all knots and links from Thompson group elements.

Thompson's groups F and T of homeomorphisms defined by local scaling transformations act unitarily on the semicontinuous limit.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Thompson's groups F and T of homeomorphisms defined by local scaling transformations act unitarily on the semicontinuous limit. By local scaling transformations....

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Thompson's groups F and T of homeomorphisms defined by local scaling transformations act unitarily on the semicontinuous limit. By local scaling transformations....

Thompson's group F is the group of all piecewise linear orientation preserving homeomorphisms of [0, 1] whose (finitely many) non-smooth points are dyadic rationals  $\frac{p}{2^q}$  for  $p, q \in \mathbb{Z}$  and whose slopes, when defined, are powers of 2.

ション ふゆ く 山 マ チャット しょうくしゃ

Thompson's groups F and T of homeomorphisms defined by local scaling transformations act unitarily on the semicontinuous limit. By local scaling transformations....

Thompson's group F is the group of all piecewise linear orientation preserving homeomorphisms of [0, 1] whose (finitely many) non-smooth points are dyadic rationals  $\frac{p}{2^q}$  for  $p, q \in \mathbb{Z}$  and whose slopes, when defined, are powers of 2. Thompson's group T is the same as F but defined on the circle

ション ふゆ く 山 マ チャット しょうくしゃ

Thompson's groups F and T of homeomorphisms defined by local scaling transformations act unitarily on the semicontinuous limit. By local scaling transformations....

Thompson's group F is the group of all piecewise linear orientation preserving homeomorphisms of [0, 1] whose (finitely many) non-smooth points are dyadic rationals  $\frac{p}{2^q}$  for  $p, q \in \mathbb{Z}$  and whose slopes, when defined, are powers of 2. Thompson's group T is the same as F but defined on the circle

ション ふゆ く 山 マ チャット しょうくしゃ

thus in particular T contains all rotations by dyadic rationals.

Thompson's groups F and T of homeomorphisms defined by local scaling transformations act unitarily on the semicontinuous limit. By local scaling transformations....

Thompson's group F is the group of all piecewise linear orientation preserving homeomorphisms of [0, 1] whose (finitely many) non-smooth points are dyadic rationals  $\frac{p}{2^q}$  for  $p, q \in \mathbb{Z}$  and whose slopes, when defined, are powers of 2. Thompson's group T is the same as F but defined on the circle thus in particular T contains all rotations by dyadic rationals. The definition of the action is geometric but a little complicated since of

necessity any scale transformations will not preserve a given finite dimensional approximation to the direct limit.

A hallmark of CFT is the presence of representations of  $Diff(S^1)$  on the Hilbert space. It was originally hoped that the Thompson group representations would tend as the lattice spacing tends to zero, to an action of  $Diff(S^1)$ .

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへの

A hallmark of CFT is the presence of representations of  $Diff(S^1)$ on the Hilbert space. It was originally hoped that the Thompson group representations would tend as the lattice spacing tends to zero, to an action of  $Diff(S^1)$ .

This has proved to not work, the required smoothness of rotations being strongly violated.

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ うらつ

The calculation that yields this discontinuity is however very suggestive.

A hallmark of CFT is the presence of representations of  $Diff(S^1)$ on the Hilbert space. It was originally hoped that the Thompson group representations would tend as the lattice spacing tends to zero, to an action of  $Diff(S^1)$ .

This has proved to not work, the required smoothness of rotations being strongly violated.

The calculation that yields this discontinuity is however very suggestive.

It involves iterating a classical dynamical system (which can even be a rational transformation of the Riemann sphere) in the spectral parameter space of a transfer matrix!

To approach the continuous limit we need to investigate how the ROTATION  $\rho_{\frac{1}{2^n}}$  by  $\frac{1}{2^n}$ , which is an element of Thompson's group T, acts on states. In particular I want to calculate the coefficients

 $< \rho_{\frac{1}{2^n}}(\xi), \eta >$ 

To approach the continuous limit we need to investigate how the ROTATION  $\rho_{\frac{1}{2^n}}$  by  $\frac{1}{2^n}$ , which is an element of Thompson's group T, acts on states. In particular I want to calculate the coefficients

 $<
ho_{rac{1}{2^n}}(\xi),\eta>$ 

Suppose that  $\xi$  and  $\eta$  are actually in some space  $\otimes^{2^k} \mathcal{H}$ . The following picture is  $\langle \rho_{\frac{1}{2^{k+n+1}}}\xi,\eta\rangle$  which we illustrate here for k=1 and n=3.

To approach the continuous limit we need to investigate how the ROTATION  $\rho_{\frac{1}{2^n}}$  by  $\frac{1}{2^n}$ , which is an element of Thompson's group T, acts on states. In particular I want to calculate the coefficients

 $<
ho_{rac{1}{2^n}}(\xi),\eta>$ 

Suppose that  $\xi$  and  $\eta$  are actually in some space  $\otimes^{2^k} \mathcal{H}$ . The following picture is  $\langle \rho_{\frac{1}{2^{k+n+1}}}\xi,\eta\rangle$  which we illustrate here for k=1 and n=3.



Now all the regions in the blue dotted circles can be deformed to look like

so if we call x the element inside the box with 4

legs, the picture becomes:



We recognise the *transfer matrix*  $T_{2^{n+k}}(x)$  ! Thus " The transfer matrix determines infinitesimal space translation". If we are in one dimension and time=space then we have recovered our previous mantra in a topsy turvy fashion!

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

We recognise the *transfer matrix*  $T_{2^{n+k}}(x)$  ! Thus " The transfer matrix determines infinitesimal space translation". If we are in one dimension and time=space then we have recovered our previous mantra in a topsy turvy fashion!

Note the resemblance between the calculation and the experiment.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●