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The experiment first.

Measure the correlation between a state of a spin chain and itself,
translated by one lattice site, at a quantum phase transition.
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Correlation almost 1 away from critical point. Pass the system
through a quantum phase transition.
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critical point.
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The reason for the prediction:
For literally scale invariant (pure) states it is true-the result of a
calculation I will give.

Gives the first problem - there is no Hamiltonian, correlation length,
critical exponent etc.
The idea is simply that critical phenomena are supposed to exhibit
SCALE INVARIANCE, which, while not visible on a finite lattice, is
supposed to occur in the limit where the lattice spacing tends to
zero.
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Equivalence between 1-d quantum spin chain and 2-d classical stat
mech lattice system:

One builds the lattice states up row by row with a matrix called the
"Transfer matrix" T (λ):
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The rows and columns of T (λ) are indexed by the possible spin
states of a row of the lattice so that the terms in the product
T (λ)n are enumerated by the spin states of an n-row lattice.

And the transfer matrix T (λ) is designed so that the sum of the
matrix entries is the partition function for some nearest neighbour
interaction parametrized by λ.Boundary conditions....
If one thinks of the vertical axis as time, the transfer matrix can be
used to express the correlation between the spin (say) at various
lattice sites as the time ordered expectation value of operators on
the horizontal vector space.

T (λ) acts on a vector space Vn whose basis is indexed by all
possible spin states.

Thus vectors in Vn are the states of a quantum spin chain of lengtn
n. Of dimension 2n, 3n etc.

Gambits such as logarithmic differentiation of T (λ) yield local
hamiltonians on the quantum spin chain.

Thus: "the transfer matrix determines the infinitesimal time
evolution of the chain."
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It’s not always quite that simple. Some stat mech models ("hard
hexagon", "solid on solid", "IRF") have forbidden states.

Such is
the case of the Andrews-Baxter-Forester model (ABF).

The transfer matrix approach still works but the vector spaces Vn

no longer grow in dimension like 2n. In the simplest new case they
grow like

(
1+
√
5

2
)n

Question: Can we interpret the vector spaces Vn of models
like the ABF one as states of a quantum spin chain?
Answer. Yes if you accept my ideas about constrained quantum
systems."In and around the origin of quantum groups." arXiv
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In QM a spin 1/2 particle is described by a Hilbert space of the
form L2(R)⊗ C2 where spin is tacked on as a new degree of
freedom to the spatial/kinetic Hilbert space.

What if "spins" were more subtle and do not decouple so easily?
Suppose we are dealing with a quantum field theory in one
dimension.The particle divides space into a left and right half which
do not communicate.

Thus the Hilbert space of the system will be a bimodule MHN

where M is a type III factor of left spatial observables and N is an
isomorphic type III factor of right spatial observables.
So far so good. Now imagine that two such systems are
constrained to be next to one another at a fixed distance on the
line. Then left observable of the rightmost is the same as right
observable of the leftmost.

Thus the Hilbert space of the compound, constrained system
should be something like H⊗H quotiented by a relation

ξx ⊗ η = ξ ⊗ xη.
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Such a tensor product, H⊗M H does indeed exist and is called the
"Connes tensor product" (Connes called such bimodules
"Correspondences".)

In fact the definition is surprisingly subtle mathematically, invoking
the full force of Tomita-Takesaki theory.
Now imagine constraining a whole sequence of such systems to be
together in a one-dimensional chain. The Hilbert space of the chain
will then be

H⊗M H⊗M · · · ⊗M H

This is still an M −M bimodule so infinite dimensional (the whole
chain can move along the line). But finally imagine imposing
periodic boundary conditions. The Hilbert space will then be the
cyclic Connes tensor product defined in the obvious way:

(
	
⊗)nMH

This idea, that constrained quantum systems should be described by
a relative tensor product, should not be restricted to one dimension.
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Theorem
There exist bimodules MHM so that (

	
⊗)nMH is finite dimensional

and grows like (2 cosπ/k)n for k = 3, 4, 5, · · · .
M is the hyperfinite type III1 factor.

The corresponding "quantum spin chain" is nowadays called an
"anyonic spin chain".

The construction of such bimodules goes back to my work on
subfactors but can be done (rigorously) within Conformal Field
theory. A. Wassermann achieved this for SU(n) WZW using
tecnhiques of constructive QFT- which are not too bad in this low
dimensional setting.

He coined the term "Connes fusion" for the Connes tensor product"

Decomposing H⊗M H into a direct sum of irreducible bimodules
one obtains the fusion rules of the CFT. the Hilbert space H is
obtained by fermionic second quantization of L2(S1)⊗ CN

.Wassermann’s calculation of the Connes tensor product uses the
KZ equation.
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Let me say a little more about what the bimodule is.

According to
algebraic quantum field theory, in a one dimensional (one
space-time dimensional) theory, as would be supplied by a chiral
half of a 2d CFT, there is a Hilbert space H associated with the
circle and type III1 factors A(I ) and A(I c) of localised observables
associated to each of complementary intervals I and I c depicted
below:
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Thus we see that Conformal Field theory can be used to construct
anyonic spin chains in the above sense.

Now comes the question
that appears to be really hard:

Given a bimodule over the hyperfinite III1 factor as above, is
there a CFT which creates it?

Many people have thought about this question in different guises.

There are certain obstructions, most notably the existence of a
"braiding", but these are understood and do not really affect the
generality of the question.
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My own approach has been inspired by the diagrammatic, planar
nature of the structure of bimodules over a factor and the idea that
quantum field theories should occur as the "scaling limit" of lattice
models.

And as we have seen, the bimodules in question provide
anyonic quantum spin chains.This is not especially naive but faces
huge mathematical difficulties.

To my knowledge the first people to consider the coninuum limit of
such a chain, in the language of what is now called the
Temperley-Lieb algebra, were physicists Pasquier and Saleur in a
1990 paper.They argued, using Bethe Ansatz ideas, that the scaling
limit of an anyonic spin chain with a certain Hamiltonian, is a
conformal field theory of SU(2)−WZW type. Connes and Evans
also produced some ingredients of a CFT-namely a Virasoro algebra,
directly out of the Temperly-Lieb algebra, at about the same time.
Interestingly the Pasquier Saleur Hamiltonian will always be present.
It is not clear that this is the "right" Hamiltonian as the complexity
of the structure generated by a bimodule offers other choices.
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In a genuinely naive attempt to circumvent the difficulties of taking
a scaling limit I have adopted a "toy model" approach which has
been instructive at least and has led to several spinoffs.

Besides planar diagrams, the idea comes from block spin
renormalisation according to which, at criticality, the
mathematical description of the system should be invariant under
the operation of blocking together groups of neighbouring spins on
the lattice together to form a single spin of the same kind.

Thus one is led to create a Hilbert space associated to the circle by
reversing block spin renormalisation and embedding the Hilbert
space for any anyonic chain of length, say, 2n inside one of length
2n+1 by doubling all the spins. For this one needs an elementary
"spin doubling" operator
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Thus the embedding of one row of spins into another is represnted
diagramatically by:

· · ·

This gives an inductive "semicontinuous" limit Hilbert space
corresponding to a "lattice" with spins on all dyadic rationals.

There is in general a lot of choice in but for a certain family of

bimodules (WZW SO(3) all levels) there is a unique choice.
Local scale invariance at criticality is implemented by an action of
the Thompson groups F (interval) and T (circle)

This has given rise to an interesting family of unitary
representations of the Thompson groups with conjectured rather
general irreducibility properties.

And a new construction of all knots and links from Thompson
group elements.
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Theorem
Thompson’s groups F and T of homeomorphisms defined by local
scaling transformations act unitarily on the semicontinuous limit.

By local scaling transformations....
Thompson’s group F is the group of all piecewise linear orientation
preserving homeomorphisms of [0, 1] whose (finitely many)
non-smooth points are dyadic rationals p

2q for p, q ∈ Z and whose
slopes, when defined, are powers of 2.Thompson’s group T is the
same as F but defined on the circle
thus in particular T contains all rotations by dyadic rationals.The
definition of the action is geometric but a little complicated since of
necessity any scale transformations will not preserve a given finite
dimensional approximation to the direct limit.
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A hallmark of CFT is the presence of representations of Diff (S1)
on the Hilbert space. It was originally hoped that the Thompson
group representations would tend as the lattice spacing tends to
zero, to an action of Diff (S1).

This has proved to not work, the required smoothness of rotations
being strongly violated.

The calculation that yields this discontinuity is however very
suggestive.

It involves iterating a classical dynamical system (which can
even be a rational transformation of the Riemann sphere) in
the spectral parameter space of a transfer matrix!
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To approach the continuous limit we need to investigate how the
ROTATION ρ 1

2n
by 1

2n , which is an element of Thompson’s group
T , acts on states. In particular I want to calculate the coefficients

< ρ 1
2n
(ξ), η >

Suppose that ξ and η are actually in some space ⊗2kH. The
following picture is 〈ρ 1

2k+n+1
ξ, η〉 which we illustrate here for k = 1

and n = 3.
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Now all the regions in the blue dotted circles can be deformed to
look like

so if we call x the element inside the box with 4

legs, the picture becomes:
η

x xxx x x x xx xxx x x

ξ

xx



We recognise the transfer matrix T2n+k (x) !
Thus " The transfer matrix determines infinitesimal space
translation". If we are in one dimension and time=space then we
have recovered our previous mantra in a topsy turvy fashion!

Note the resemblance between the calculation and the experiment.
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