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Bekenstein-Hawking 74

o kpc’area(horizon) ! area(horizon)
B AGN T — P 411%\
Planck length
GN — gravity (=10-33 cm)

h — quantum mechanics

Event Horizon Telescope ‘19

kB — statistical mechanics

What are the “atoms” of the black hole”
Why is § «< area”




If space has d dimensions, Gn R has units of area (L4

Planck area: basic unit In guantum gravity, translates into unit of entropy

Generalizations of Bekenstein-Hawking:

o _ area(horizon)
De Sitter spacetime (Gibbons-Hawking ‘77): B A4Gxh

Holographic entropy bounds (Bekenstein ‘81, Bousso ‘99): G o U
for arbitrary closed surface in arbitrary spacetime — 4Gvh

Jacobson '95: area-entropy relation implies Einstein equation

How general is the area-entropy relation? What is its origin®
A clue: Holographic entanglement entropy (Ryu-Takayanagi '06)
Vast (but also limited) generalization of Bekenstein-Hawking

To understand it, we first need to extend our notion of entropy...



Classical mechanics:
definite state — certain outcome for any measurement

Quantum mechanics:
definite state = uncertain outcomes for some measurements

Example: | 1)
measurement of S, definitely gives +3h
measurement of S, gives+3h or —2h with equal probability

When only certain kinds of measurements are allowed, a definite (pure) state will
effectively be indefinite (mixed)

Suppose a system has two parts but we can only measure one part

1D =1V Sup=0
7 ot ’

To see that this is a pure state (superposition, not mixture, of |1)|4) and [})|1))
requires access to both A and B

Spin singlet state: |0,0) =

For an observer who only sees A, effective state is mixed:
1
= S (DO DD Sa =In2

Indefiniteness from entanglement



In general: it p is state of full system, then effective state for subsystem A is
pa = Tracp
Entanglement entropy is defined as von Neumann entropy of subsystem:
Sa=—Trpalnpy

(Any entropy can be viewed as due to entanglement with environment)

Entanglement entropies obey many important properties, such as:

Subadditivity: SAB < SA R SB

Mutual information: Iy.p := S84 + S — S5 = 0

Strong subadditivity: Sap + Spc > Sp + SaBc

(Lieb-Ruskai '73) (Uy.ge = 14.p)



In quantum field theories (& many-body systems),
spatial regions are highly entangled with each other

\ Consider microwave cavity
j\/ Even in vacuum, electromagnetic field fluctuates:
~ zero-point quantum fluctuations of modes
Each mode is distributed in space
=> fluctuations are spatially correlated
=> any part A of cavity is entangled with rest

-
N

S4 is ultraviolet divergent due to entanglement of short-wavelength modes across 0 A

Massive (gapped) field: entanglement extends out to correlation/Compton length

A E~1/m
V23

1 1
SA — area(f)’A) <€d1 €d1> + ..

short-distance cut-oft

A



In quantum field theories (& many-body systems),
¢ 0A spatial regions are highly entangled with each other

S4 depends on:

* parameters of theory (including €)
* state
* size and shape of region A

Contains a lot important physics

Examples: length(9A) "\
. : . _ topological entanglement entropy
Gapped theory in d = 2: 54 e € | (Kitaev-Preskill '05; Levin-Wen ‘05)
X_ correlation length
central charge —~ L
o . | c. L :
* Critical (conformal)theoryin d =1 S4 = —In — A
€
(Holzhey—Larsen—WiIczek ’94; Calabrese—Cardy ’03) X_ short-distance cutoff

« At finite temperature, also usual extensive entropy: s(1") x volume(A)
‘\thermal entropy density



Powerful probe of QFTs and many-body systems:
e quantum criticality

e topological order

e renormalization-group flows

e energy conditions

e many-body localization

e guenches
e much more...

However, usually very difficult to compute—even in free theories

Simplifies in certain theories with many strongly-interacting fields...



Consider a QFT with /V interacting fields
for example SU(n) Yang-Mills theory, N ~ n?

When N is large, these fields may admit a collective description in terms of a small
number of degrees of freedom

» classical (think of hydrodynamics)
e usually complicated

However, in certain cases, when the fields are very strongly interacting, it simplifies
dramatically:

General relativity in d 4+ 1 dimensions with cosmological constant A < 0
(plus some matter fields)
subject to certain boundary conditions: “universe in a box”
(Maldacena '97)



It QFT is conformal (scale-invariant), ground state is anti-de Sitter (AdS) spacetime:

AdS radius d dimensions of QFT
K.RQ /

ds® = > (—dt* + dz* + dz*)

extra dimension /

\ / Z = € Dboundary of AdS, where field theory “lives”

X

< Map between boundary and bulk is non-local

If QFT is gapped (massive), space ends on wall at zmax ~ & (correlation length)

Many specific examples known in various dimensions
(mostly supersymmetric, derived from string theory)



QFT GR

AdS radius” ‘R4

N Gl Planck area
thermodynamic limit N — oo classical limit A — 0
statistical fluctuations guantum fluctuations
collective modes gravitational waves, etc.
deconfined plasma black hole
area(horizon)
S x N = e
Ry
horizon —”

Holographic dualities are useful for computing many things in strongly interacting QFTs

Let’s talk about entanglement entropies...



Ryu-Takayanagi 06: ’
~
Sa =
A4Gnh \ JL%,—’

m A

M A4 = minimal-area hypersurface homologous to A
(relative to O A)
hangs down in order to minimize area

MH-Freedman '16: S’ 4 = max # “bit threads” connecting A to rest of boundary

(equivalence to minimal surface by Riemannian max flow-min cut theorem
Federer '74, ...)

Each bit thread has cross section of 4 Planck areas
Represents entangled pair of qubits between 4 and complement

A

Y ————

\ /
\ /
\\ //



Ryu-Takayanagi '06: 0A™

area(m 4)

Sp = T
AGNh

maA —

Geometrizes entanglement: minimal surface

+ Area-law UV divergence due to  @nchored to A
infinite area of M 4 near boundary

« Gapped theory: A

minimal surface extends to wall
(Klebanov, Kutasov, Murugan ‘07) «— MaAg —

1 1 - - - wall
SA:area(é’A)(Ed_l £a-1 ) oo

e Conformal theoryind =1: S4 =

e Finite temperature:
minimal surface hugs horizon
=> extensive entropy s(T)volume(A

horizon

Democratizes Bekenstein-Hawking: not about horizons!



HOLOGRAPHIC ENTANGLEMENT ENTROPY

Quantum information theory is built into classical spacetime geometry

Example: Strong subadditivity

Sap+ Spc = Sapc + Sp
A B C A B C A B C

vz
Sap + Spc = = > = Sapc + SB

(MH-Takayanagi '07)

(Dual proof using bit threads Freedman-MH "16)

In fact, RT formula obeys all general properties of entanglement entropies
(Hayden-MH-Maloney ’11; MH ’'13)



Also has special properties, such as phase transitions (MH '10)

A B A B
Ry s
SABZSA‘l‘SB — IA:BZO SAB<SA+SB = IA:B>O

Monogamy of mutual information inequality (Hayden-MH-Maloney "11; MH "13):

Sap T340+ S50 2 54+ S5+ S+ S4pc

IA:BC > IA:B T IA:C



So far, we've ignored time

In spacetime, find minimal-area codimension-2 spacelike surface homologous to A
(Hubeny-Rangamani-Takayanagi '07)

Bulk spacetime geometry (Einstein equation) directly related to
guantum information properties in field theory:
e Strong subadditivity (Wall "12)
e Causality (no faster-than-light signalling)
(MH-Hubeny-Lawrence-Rangamani '14)
I —> e First law of entanglement:

AS = <Hmod>

To some extent, Einstein equation can be derived from
properties of entanglement (Lashkari-McDermott-Van Raamsdonk '13)




HOLOGRAPHIC ENTANGLEMENT ENTROPY

Many other developments:

e Relation between bulk & boundary modular Hamiltonians and relative entropies
(Jafferis-Lewkowycz-Maldacena-Suh '15)

e Derivation of RT formula (MH 10, Lewkowycz-Maldacena '13)

* TJensor networks for modelling holography (Swingle '08)

Bit threads & entanglement structures (Cui et al '18)

Holography as quantum error-correcting code (Almheiri-Dong-Harlow *14)
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