

ENTROPY AND AREA

Planck length

 $(\approx 10^{-33} \text{ cm})$

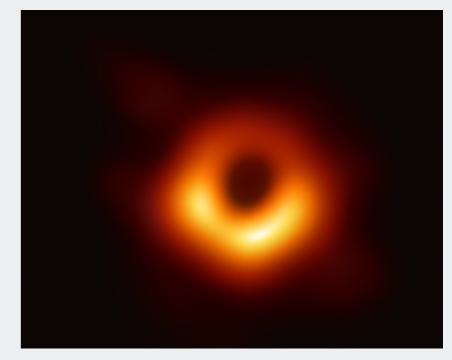
Bekenstein-Hawking '74:

$$S = \frac{k_{\rm B}c^3 \text{area(horizon)}}{4G_{\rm N}\hbar} = k_{\rm B} \frac{\text{area(horizon)}}{4l_{\rm P}^2}$$

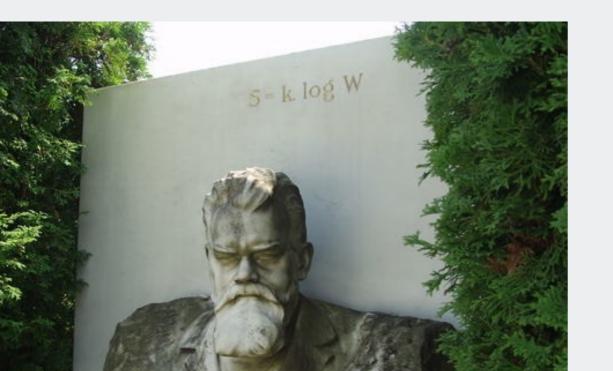
 $G_{
m N}$ ightarrow gravity

 \hbar \rightarrow quantum mechanics

 k_{B} ightarrow statistical mechanics



Event Horizon Telescope '19



What are the "atoms" of the black hole? Why is $S \propto$ area?

ENTROPY AND AREA

If space has d dimensions, $G_{\rm N}\hbar$ has units of area (L^{d-1})

Planck area: basic unit in quantum gravity, translates into unit of entropy

Generalizations of Bekenstein-Hawking:

De Sitter spacetime (Gibbons-Hawking '77):

$$S = \frac{\text{area(horizon)}}{4G_{\text{N}}\hbar}$$

Holographic entropy bounds (Bekenstein '81, Bousso '99): $S \leq \frac{\rm area}{4G_{\rm N}\hbar}$

Jacobson '95: area-entropy relation implies Einstein equation

How general is the area-entropy relation? What is its origin?

A clue: Holographic entanglement entropy (Ryu-Takayanagi '06)

Vast (but also limited) generalization of Bekenstein-Hawking

To understand it, we first need to extend our notion of entropy...

ENTANGLEMENT ENTROPY

Classical mechanics:

definite state → certain outcome for any measurement

Quantum mechanics:

definite state → uncertain outcomes for some measurements

Example: |↑⟩

measurement of S_z definitely gives $+\frac{1}{2}\hbar$ measurement of S_x gives $+\frac{1}{2}\hbar$ or $-\frac{1}{2}\hbar$ with equal probability

When only certain kinds of measurements are allowed, a definite (pure) state will effectively be indefinite (mixed)

Suppose a system has two parts, but we can only measure one part

Spin singlet state:
$$|0,0\rangle=\frac{1}{\sqrt{2}}(|\uparrow\rangle|\downarrow\rangle-|\downarrow\rangle|\uparrow\rangle)$$

$$S_{AB}=0$$

To see that this is a pure state (superposition, not mixture, of $|\uparrow\rangle|\downarrow\rangle$ and $|\downarrow\rangle|\uparrow\rangle$) requires access to both A and B

For an observer who only sees A, effective state is mixed:

$$\rho_A = \frac{1}{2} \left(|\uparrow\rangle\langle\uparrow| + |\downarrow\rangle\langle\downarrow| \right) \qquad S_A = \ln 2$$

Indefiniteness from entanglement

ENTANGLEMENT ENTROPY

In general: if ρ is state of full system, then effective state for subsystem A is

$$\rho_A = \operatorname{Tr}_{A^c} \rho$$

Entanglement entropy is defined as von Neumann entropy of subsystem:

$$S_A = -\text{Tr}\rho_A \ln \rho_A$$

(Any entropy can be viewed as due to entanglement with environment)

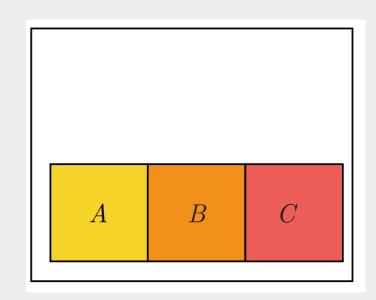
Entanglement entropies obey many important properties, such as:

Subadditivity:
$$S_{AB} \leq S_A + S_B$$

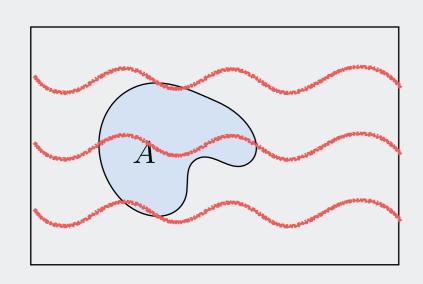
Mutual information:
$$I_{A:B} := S_A + S_B - S_{AB} \ge 0$$

Strong subadditivity:
$$S_{AB} + S_{BC} \ge S_B + S_{ABC}$$

(Lieb-Ruskai '73)
$$(I_{A:BC} \ge I_{A:B})$$



ENTANGLEMENT ENTROPY IN QFT



In quantum field theories (& many-body systems), spatial regions are highly entangled with each other

Consider microwave cavity

Even in vacuum, electromagnetic field fluctuates:

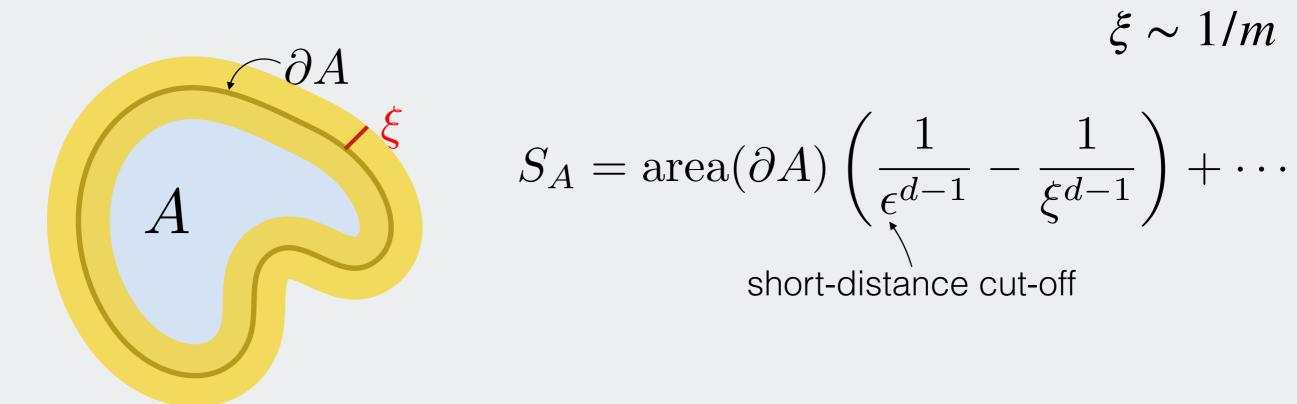
zero-point quantum fluctuations of modes

 $\xi \sim 1/m$

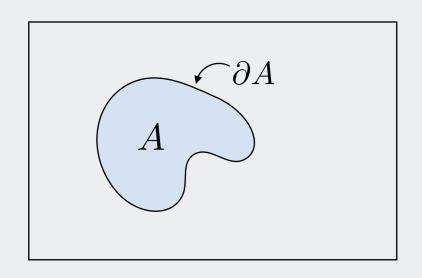
Each mode is distributed in space

- => fluctuations are spatially correlated
- => any part A of cavity is entangled with rest

 S_A is ultraviolet divergent due to entanglement of short-wavelength modes across ∂A Massive (gapped) field: entanglement extends out to correlation/Compton length



ENTANGLEMENT ENTROPY IN QFT



In quantum field theories (& many-body systems), spatial regions are highly entangled with each other S_A depends on:

- parameters of theory (including ϵ)
- state
- size and shape of region A

Contains a lot important physics

Examples:

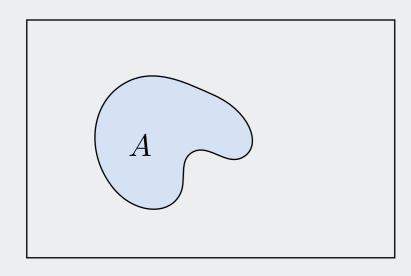
 $length(\partial A) \supseteq$

• Gapped theory in d=2: $S_A=\frac{L}{\epsilon}-\frac{L}{\xi}-\gamma$ topological entanglement entropy (Kitaev-Preskill '05; Levin-Wen '05) correlation length

• Critical (conformal) theory in d=1: $S_A=\frac{c}{3}\ln\frac{L}{\epsilon}$ (Holzhey-Larsen-Wilczek '94; Calabrese-Cardy '03)

• At finite temperature, also usual extensive entropy: $s(T) \times \text{volume}(A)$ thermal entropy density

ENTANGLEMENT ENTROPY IN QFT



Powerful probe of QFTs and many-body systems:

- quantum criticality
- topological order
- renormalization-group flows
- energy conditions
- many-body localization
- quenches
- much more...

However, usually very difficult to compute—even in free theories

Simplifies in certain theories with many strongly-interacting fields...

HOLOGRAPHIC DUALITIES

Consider a QFT with N interacting fields for example SU(n) Yang-Mills theory, $N \sim n^2$

When N is large, these fields may admit a collective description in terms of a small number of degrees of freedom

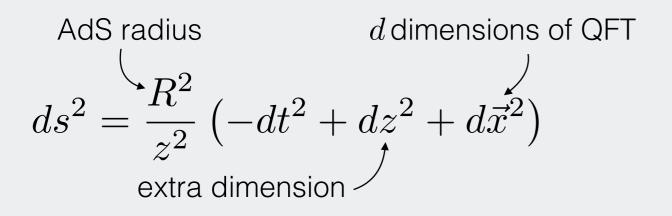
- classical (think of hydrodynamics)
- usually complicated

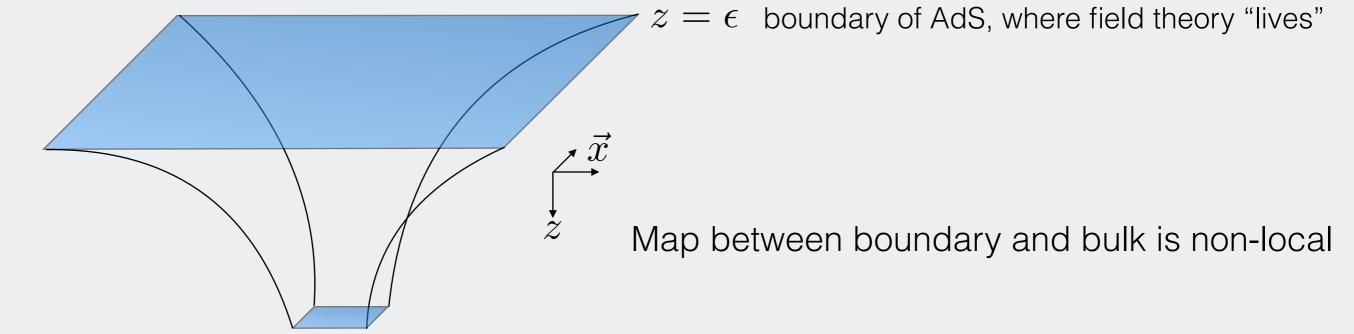
However, in certain cases, when the fields are very *strongly* interacting, it simplifies dramatically:

General relativity in d+1 dimensions with cosmological constant $\Lambda < 0$ (plus some matter fields) subject to certain boundary conditions: "universe in a box" (Maldacena '97)

HOLOGRAPHIC DUALITIES

If QFT is conformal (scale-invariant), ground state is anti-de Sitter (AdS) spacetime:





If QFT is gapped (massive), space ends on wall at $z_{\rm max} \sim \xi$ (correlation length)

Many specific examples known in various dimensions (mostly supersymmetric, derived from string theory)

HOLOGRAPHIC DUALITIES

QFT

N

thermodynamic limit $N \to \infty$ statistical fluctuations collective modes deconfined plasma

$$S \propto N$$

GR

AdS radius
$$R^{d-1}$$
 Planck area

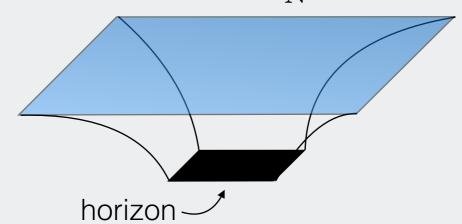
classical limit $\hbar \to 0$

quantum fluctuations

gravitational waves, etc.

black hole

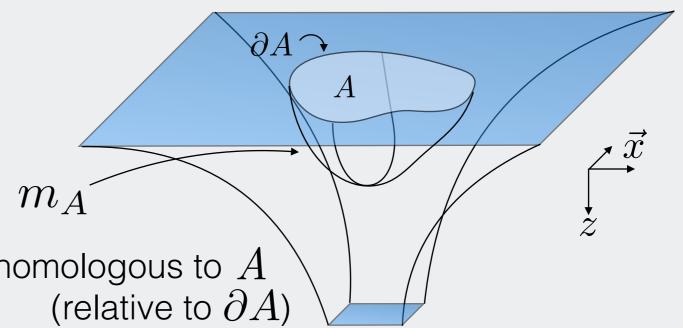
$$S = \frac{\text{area(horizon)}}{4G_{N}\hbar}$$



Holographic dualities are useful for computing *many* things in strongly interacting QFTs Let's talk about entanglement entropies...

Ryu-Takayanagi '06:

$$S_A = \frac{\operatorname{area}(m_A)}{4G_N \hbar}$$

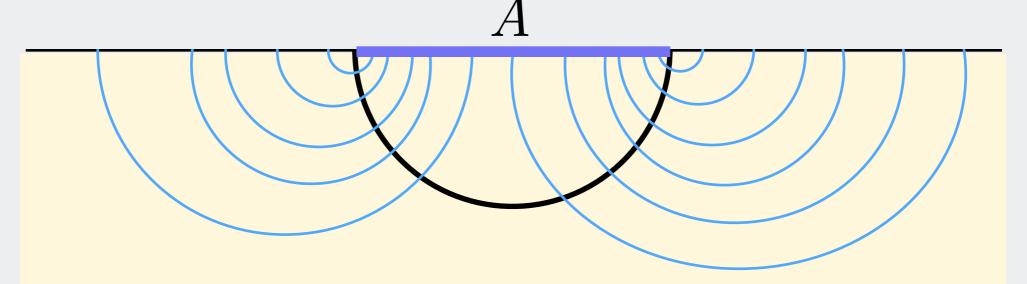


 $m_A=$ minimal-area hypersurface homologous to A (relative to ∂A

hangs down in order to minimize area

MH-Freedman '16: $S_A=\max$ "bit threads" connecting A to rest of boundary (equivalence to minimal surface by Riemannian max flow-min cut theorem Federer '74, ...)

Each bit thread has cross section of 4 Planck areas Represents entangled pair of qubits between \boldsymbol{A} and complement



Ryu-Takayanagi '06:

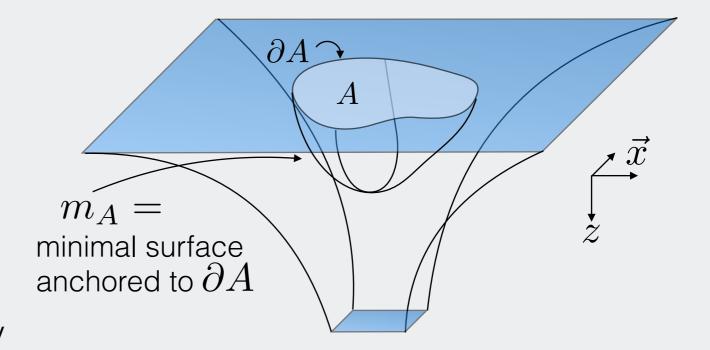
$$S_A = \frac{\operatorname{area}(m_A)}{4G_N \hbar}$$

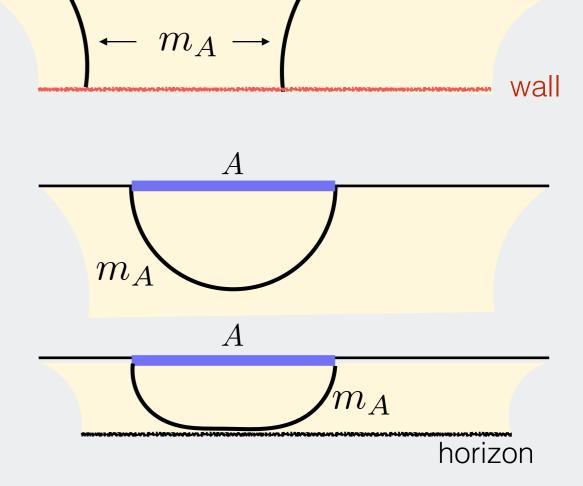
Geometrizes entanglement:

- Area-law UV divergence due to infinite area of m_A near boundary
- Gapped theory:
 minimal surface extends to wall
 (Klebanov, Kutasov, Murugan '07)

$$S_A = \operatorname{area}(\partial A) \left(\frac{1}{\epsilon^{d-1}} - \frac{1}{\xi^{d-1}} \right) + \cdots$$

- Conformal theory in d=1 : $S_A=\frac{c}{3}\ln\frac{L}{\epsilon}$
- Finite temperature:
 minimal surface hugs horizon
 => extensive entropy s(T)volume(A)

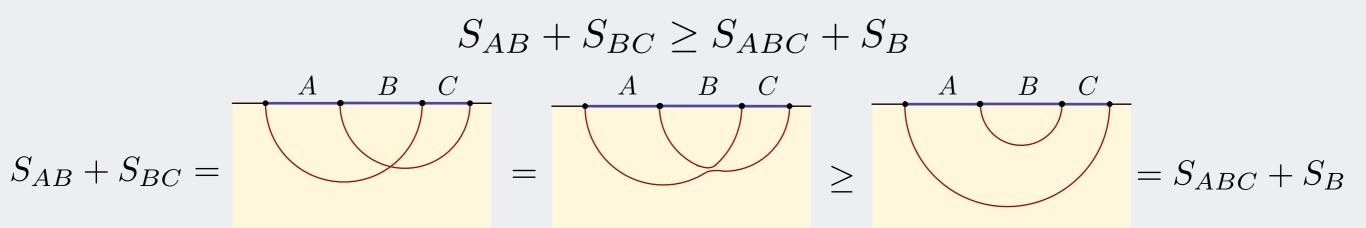




Democratizes Bekenstein-Hawking: not about horizons!

Quantum information theory is built into classical spacetime geometry

Example: Strong subadditivity

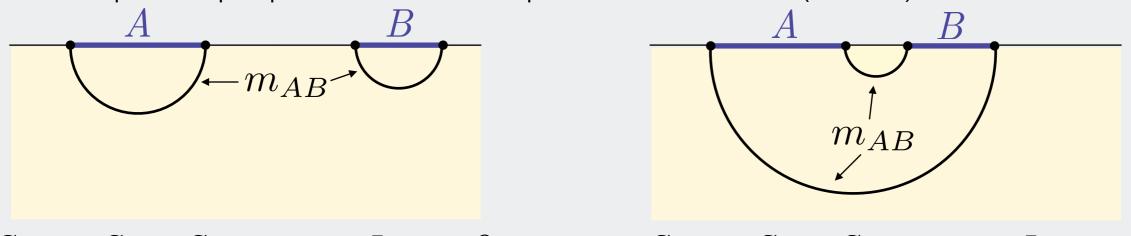


(MH-Takayanagi '07)

(Dual proof using bit threads Freedman-MH '16)

In fact, RT formula obeys *all* general properties of entanglement entropies (Hayden-MH-Maloney '11; MH '13)

Also has special properties, such as phase transitions (MH '10)



$$S_{AB} = S_A + S_B \quad \Rightarrow \quad I_{A:B} = 0 \qquad \qquad S_{AB} < S_A + S_B \quad \Rightarrow \quad I_{A:B} > 0$$

Monogamy of mutual information inequality (Hayden-MH-Maloney '11; MH '13):

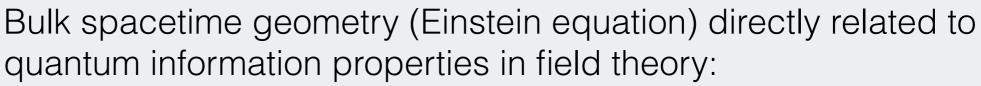
$$S_{AB} + S_{AC} + S_{BC} \ge S_A + S_B + S_C + S_{ABC}$$

$$I_{A:BC} \ge I_{A:B} + I_{A:C}$$

So far, we've ignored time

In space time, find minimal-area codimension-2 spacelike surface homologous to ${\cal A}$

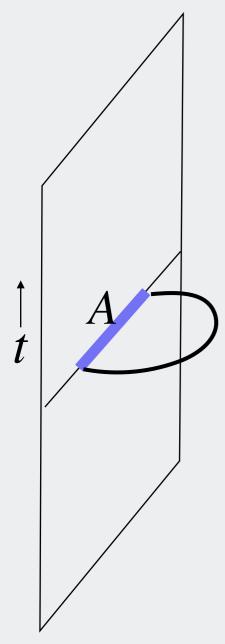
(Hubeny-Rangamani-Takayanagi '07)



- Strong subadditivity (Wall '12)
- Causality (no faster-than-light signalling)
 (MH-Hubeny-Lawrence-Rangamani '14)
- First law of entanglement:

$$\Delta S = \langle H_{\text{mod}} \rangle$$

To some extent, Einstein equation can be *derived* from properties of entanglement (Lashkari-McDermott-Van Raamsdonk '13)



Many other developments:

- Relation between bulk & boundary modular Hamiltonians and relative entropies (Jafferis-Lewkowycz-Maldacena-Suh '15)
- Derivation of RT formula (MH '10, Lewkowycz-Maldacena '13)
- Tensor networks for modelling holography (Swingle '08)
- Bit threads & entanglement structures (Cui et al '18)
- Holography as quantum error-correcting code (Almheiri-Dong-Harlow '14)

•

Many other developments:

- Relation between bulk & boundary modular Hamiltonians and relative entropies (Jafferis-Lewkowycz-Maldacena-Suh '15)
- Derivation of RT formula (MH '10, Lewkowycz-Maldacena '13)
- Tensor networks for modelling holography (Swingle '08)
- Bit threads & entanglement structures (Cui et al '18)
- Holography as quantum error-correcting code (Almheiri-Dong-Harlow '14)

•