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Hilbert space: H = ⌦sites iHi

4

Setting

local operator:

R

O = OR ⌦ 1R̄



- a unitary operator U is locality-preserving if for every local 
operator A on site j,

is supported on a finite number of sites near j.

- a unitary U is locally-generated if it is a constant depth 
circuit of local unitaries:

U =

U†AU
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Setting

- Compute {locality-preserving} / {locally-generated}



Plan

- Walker-Wang model (based on UMTC)

- Disentangling Walker-Wang models

 can ground state be disentangled with finite depth circuit of local 
unitaries?

ground state and Hamiltonian can be disentangled with 
locality-preserving unitary U

existence of non-trivial 3d locality preserving unitaries

boring in the world of all gapped Hamiltonians, but interesting in the 
world of commuting projector Hamiltonians.
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(Walker & Wang; von 
Keyserlingk, Burnell, Simon)



3-fermion Walker-Wang model: Hamiltonian
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- two spin-1/2 degrees of freedom per link     of a cubic lattice`
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prescription, applied for the first time to produce an SPT
phase. However, rather than using this formalism, we be-
gin by defining our Hamiltonian at an elementary level
and explicitly demonstrating its bulk and edge proper-
ties. Our Hamiltonian is a spin model with specially
tuned interactions to allow for exact solvability. Time
reversal is the only symmetry considered, which we show
remains unbroken in the ground state. Hence this phase
models a topological paramagnet (in an insulating system
with magnetic moments), in which the spin symmetry is
broken down to just time reversal, as would be expected
with strong spin-orbit couplings. In contrast to quantum
spin liquids, which have exotic deconfined excitations in
the bulk, here the unusual physics appears only at the
surface. An important future direction is the construc-
tion of more realistic magnetic Hamiltonians that lead to
this topological paramagnet phase.

II. EXACTLY SOLUBLE MODEL OF A 3D SPT
PHASE WITH SURFACE TOPOLOGICAL

ORDER

Our model is built out of 4-dimensional spin Hilbert
spaces living on the links of a cubic lattice. We use
the following ordered basis for the spin Hilbert space:
{|1i, |ei, |mi, |"i}, but also find it convenient to express
it as the product of two spin 1/2’s, acted on by Pauli
matrices �j and ⌧ j . In this notation, the ordered basis
becomes {| + +i, | � +i, | + �i, | � �i}, where the first
(second) sign corresponds to the eigenvalue of the Pauli
matrix �x (⌧x). We will label the particular link with a
subscript where necessary. The Hamiltonian is a sum of
vertex (AV ) and plaquette (BP ) terms:

H = �
X

V

AV �
X

P

BP (1)

where the first sum is over all vertices V and the second
sum is over all plaquettes P . The vertex term is defined
as

AV =
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where ⇤V is the set of 6 links adjacent to the vertex V .
The plaquette term is more complicated. To define it,

we fix a specific 2d projection of our 3d lattice once and
for all, one that in particular has the property that each
plaquette has one of the three forms shown in Fig. 1.
For each such plaquette P , there are two links which end
up in its interior under the 2D projection. These links,
labeled O and U in the figure, lie “over” and “under” P ,
respectively32. The plaquette term BP then acts on the
four links that make up P (we will denote this collection
of 4 links by @B), but also depends on the labels of the

associated O and U links. Specifically, BP = B(e)
P +B(m)

P
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FIG. 1. Choice of links on which B
(e/m)
P act, for the three

di↵erent types of plaquettes in the lattice. In the chosen pro-
jection O links (red) cross over the plaquette P , and U links
(blue) cross under it.
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To gain some intuition for this Hamiltonian, we can view
it as a “twisted” product of two Z

2

gauge theories. In-
deed, �x

i and ⌧xi define a two independent Z
2

charges on

each link, which we denote Z(e)
2

and Z(m)

2

respectively.
The vertex terms AV then simply enforce conservation

of Z(e)
2

⇥ Z(m)

2

charge at each vertex, whereas BP is the
usual Z

2

gauge theory plaquette term twisted by some
signs related to the occupation numbers of the O and U
links.
An important point is that all of the terms in the

Hamiltonian commute. Indeed, all the vertex terms AV

clearly commute with each other, and since each BP can

only change the Z(e/m)

2

charge on an even number of links
adjacent to each vertex (namely 0 or 2), the plaquette
terms also commute with all the vertex terms. To see
that [BP

1

, BP
2

] = 0, we note that this is clearly true if
the O and U links of P

1

have no overlap with @P
2

(note
that this is equivalent to the condition with 1 and 2 ex-
changed). When this condition fails, it must be that
either the O link of P

1

intersects @P
2

and the U link of
P
2

intersects @P
1

, or we have this situation with 1 and 2
exchanged. In both cases, the minus signs from commu-
tators of x and z Pauli matrices cancel in pairs, so BP

1

and BP
2

commute.
Also, since the matrix elements of H are real, the

Hamiltonian is invariant under time reversal T , where T
is defined to be complex conjugation of the many body
wave function in our 1, e,m, " basis. Note that this time
reversal operator satisfies T 2 = 1.

A. Trivial Bulk:

We now argue that our model has a unique ground
state when defined on topologically non-trivial manifolds.

(Burnell, Chen, Fidkowski, 
Viswhanath)

- gapped (3+1)-D lattice Hamiltonian
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prescription, applied for the first time to produce an SPT
phase. However, rather than using this formalism, we be-
gin by defining our Hamiltonian at an elementary level
and explicitly demonstrating its bulk and edge proper-
ties. Our Hamiltonian is a spin model with specially
tuned interactions to allow for exact solvability. Time
reversal is the only symmetry considered, which we show
remains unbroken in the ground state. Hence this phase
models a topological paramagnet (in an insulating system
with magnetic moments), in which the spin symmetry is
broken down to just time reversal, as would be expected
with strong spin-orbit couplings. In contrast to quantum
spin liquids, which have exotic deconfined excitations in
the bulk, here the unusual physics appears only at the
surface. An important future direction is the construc-
tion of more realistic magnetic Hamiltonians that lead to
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To gain some intuition for this Hamiltonian, we can view
it as a “twisted” product of two Z
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gauge theories. In-
deed, �x
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An important point is that all of the terms in the

Hamiltonian commute. Indeed, all the vertex terms AV

clearly commute with each other, and since each BP can

only change the Z(e/m)

2

charge on an even number of links
adjacent to each vertex (namely 0 or 2), the plaquette
terms also commute with all the vertex terms. To see
that [BP
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] = 0, we note that this is clearly true if
the O and U links of P
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, or we have this situation with 1 and 2
exchanged. In both cases, the minus signs from commu-
tators of x and z Pauli matrices cancel in pairs, so BP

1
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2

commute.
Also, since the matrix elements of H are real, the

Hamiltonian is invariant under time reversal T , where T
is defined to be complex conjugation of the many body
wave function in our 1, e,m, " basis. Note that this time
reversal operator satisfies T 2 = 1.

A. Trivial Bulk:

We now argue that our model has a unique ground
state when defined on topologically non-trivial manifolds.

(Burnell, Chen, Fidkowski, 
Viswhanath)

- gapped (3+1)-D lattice Hamiltonian
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=> no bulk deconfined excitations

- Pauli stabilizer Hamiltonian



Walker-Wang model: intuition

 ( )  ( )= �

 ( )  ( )=

 ( )  ( )= �

(Walker & Wang; von 
Keyserlingk, Burnell, Simon)

- superposition over string 
net configurations:

�x ⌧x

+1 +1
+1 - 1
- 1 +1
- 1 - 1
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string operator anti-commuting plaquette 
operator

- no anyons in 3d bulk:

Walker-Wang model: intuition

- surface topological order:

6- all statements can be made rigorous in commuting projector 
context, and proven using Pauli nature of Hamiltonian



= �

= �

- quasiparticles are fermions:

- and mutual semions:

Walker-Wang model surface topological order

“the 3-fermion theory”

7- can be generalized to whole class of models (premodular 
categories)



3-fermion topological order in 2d

K =U(1) Chern-Simons theory with

e2⇡ic�/8 =

P
a d

2
a✓apP
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2
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=
1� 1� 1� 1

2
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=>         = 4 mod 8c�

- nonzero chiral central charge => edge energy current at 
finite temperature => no 2d commuting projector realization
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Analogy

3-fermion theory2d theory with ’t Hooft anomaly

- cannot be realized by 2d lattice 
Hamiltonian commuting with onsite 
symmetry G

- cannot be realized by 2d 
commuting Hamiltonian lattice 
model

- can be realized at surface of 3d 
lattice Hamiltonian commuting with 
onsite symmetry G

- can be realized at the surface of 
Walker-Wang commuting projector 
model

- 3d Hamiltonian: trivial without 
symmetry but non-trivial with 
symmetry (3d ‘Symmetry Protected 
Topological’ phase)

???

9



Analogy

3-fermion theory2d theory with ’t Hooft anomaly

- cannot be realized by 2d lattice 
Hamiltonian commuting with onsite 
symmetry G

- cannot be realized by 2d 
commuting Hamiltonian lattice 
model

- can be realized at surface of 3d 
lattice Hamiltonian commuting with 
onsite symmetry G

- can be realized at the surface of 
Walker-Wang commuting projector 
model

- 3d Hamiltonian: trivial as a gapped 
Hamiltonian, but non-trivial as a 
commuting projector gapped 
Hamiltonian
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- 3d Hamiltonian: trivial without 
symmetry but non-trivial with 
symmetry (3d ‘Symmetry Protected 
Topological’ phase)



Separators and locally flippable separators

- assume Hilbert space is built on qubits on sites j.

- A separator is a collection of operators       such that:Zj

[Zj ,Zk] = 0-

-         is supported on sites near jZj

- for any set of                , there is a unique (up to phase) 
state which is an eigenvalue       eigenvector of         for all j

zj = ±1
zj Zj

- A locally flippable separator has the additional property that 
for each j there exists        supported on sites near j such thatXj

XjZj = �ZjXj and [Xj ,Zk] = 0 (j 6= k)
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Separators: examples

- toric code vertex and plaquette terms: separator (on 
sphere, with one vertex and one plaquette removed) but not 
locally flippable

- 1d Ising model: �z
1�

z
2 , �

z
2�

z
3 , . . . , �

z
N�1�

z
N , �z

N

also not locally flippable

- 3-fermion Walker-Wang model has another set of stabilizers 
that define a locally flippable separator

12

(polynomial formalism for Pauli 
stabilizer models)



Locally Flippable separators and locality-preserving 
unitaries

- For any locally flippable separator, the       can be chosen to 
have the additional property that

[Xj ,Xk] = 0

[Zj ,Zk] = 0

- Together with the commutation relations

Xj

XjZj = �ZjXj [Xj ,Zk] = 0 (j 6= k), ,

this implies the existence of locality-preserving unitary U:

U†ZjU = Zj

U †XjU = Xj

13



- a translation is locality preserving but not constant depth:

V †XjV = Xj+1

- that’s all in 1d (Gross, Nesme, Voigt, Werner 2012).  Open 
problem in higher dimensions.

Classification of locality preserving unitaries

- relation to Floquet many-body-localized phases

- the unitary U that disentangles the 3-fermion Walker-Wang 
model defines a non-trivial locality preserving operator in 3d

15
(non-trivial = not ‘blendable’ to identity)



Disentangling the 3-fermion Walker-Wang model

- impossible to find constant-depth circuit U such that

H =
X

j

Hj
commuting local terms

U †HjU = �z
j

- Proof: by contradiction - truncate U:

Pauli z operators on 
independent spins

U =

16
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Disentangling the 3-fermion Walker-Wang model

- impossible to find constant-depth circuit U such that

H =
X

j

Hj
commuting local terms

U †HjU = �z
j

- Proof: by contradiction - truncate U:

Pauli z operators on 
independent spins

Utrunc =

18(also true for any locality-preserving unitary 
blendable to the identity)



Disentangling the 3-fermion Walker-Wang model

surface

Utrunc

trivial Hamiltonian 
stabilizing a trivial 
product state

19



Disentangling the 3-fermion Walker-Wang model

surface

Utrunc

trivial Hamiltonian 
stabilizing a trivial 
product state

2d commuting projector 
model realizing 3-fermion 
topological order

contradiction, because then we would have 3-fermion 
topological order must have thermal Hall response 20



Conclusions:

- 3-fermion Walker-Wang model can be stabilized by flippable 
separator

- the corresponding locality preserving unitary operator is not 
blendable to identity.

- Open questions:

- U(1) analogue?

- quantized index for U?  I.e. what does U pump?

- can we find U’^2 = 1?  Duality interpretation?

- can ground state be disentangled with a finite depth 
circuit (short range or with tails)?
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- rigorous proof that 3-fermion impossible with 
commuting projectors in 2d?


